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ABSTRACT 

This paper proposes a fuzzy forecasting problem to forecast the Alabama University 
enrolment dataset. A novel simulated annealing heuristic algorithm is used to promote the 
accuracy of forecasting. The algorithm enjoys two new neighbourhood search operators 
called ‘subtitle’ and ‘adjust’.  A Taguchi method is also used as an optimisation technique 
to tune the different parameters and operators of the proposed model comprehensively. 
The experimental results show that the proposed model is more accurate than existing 
models. 

OPSOMMING 

Die navorsing handel oor ’n voorgestelde wasige vooruitskatting vir studente-inskrywing by 
die Universiteit van Alabama. ’n Nuwerwetse louter heuristiese simulasie-algoritme word 
gebruik. Die model word onder andere beheer deur ’n Taguchi optimiseringstegniek. Die 
modelresultate toon ’n verbetering op ander bestaande metodes. 
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1. INTRODUCTION 

It is indisputable that forecasting plays an important role in our daily life. It is also used in 
many areas for decision-making, such as stock markets, university enrolments, and weather 
forecasting.  
 
Various techniques for time series forecasting have been evolved in recent decades. 
Compared with other models, ARMA and ARIMA-based models are prominent and highly 
useful. However, they cannot deal with time series vagueness and linguistic terms [1]. In 
addition, these statistical methods could not perform appropriately on time series with a 
small amount of data [2]. To deal with such deficiencies, fuzzy time series have been 
developed and widely applied. 
 
Fuzzy time series (FTS) were first introduced by Song & Chissom [1,3,4]. They developed 
this model based on fuzzy logic. In recent years, FTS models have attracted the attention of 
many researchers because of their advantages: better performance in some real forecasting 
problems [2], dealing with data in linguistic terms [2], and their ability to integrate with 
heuristic knowledge and models [5].  
 
One of the most critical issues in FTS models is the style of their universe of discourse 
partitioning, which affects their performance in forecasting [6]. Therefore, one of the main 
purposes of this study is to propose a new simulated annealing (SA) based model to find the 
right length of the intervals, thus improving forecasting results. A Taguchi method is 
applied to tune the parameters of the model.  
 
The structure of this paper is as follows: Section 2 provides a review of the literature 
related to fuzzy time series models. Section 3 examines the concept of fuzzy time series. 
The proposed model and its algorithm will be described in Section 4. An evaluation and 
implementation of the model and its results are presented in Section 5. Section 6 concludes 
the paper.  

2. LITERATURE REVIEW 

The concept of a fuzzy set theory was first introduced by Zadeh [7]. Since then, the 
adoption of fuzzy logic has been extensive. Song & Chissom [1,3,4] presented time variant 
and time invariant fuzzy time series models, which improved the forecasting approach. 
Chen [8] simplified these models by using simple mathematical operations, because of their 
simplicity and better forecasting accuracy. This model became especially popular among 
scientists.  
 
Chen considered the number 7 to be the suitable number of intervals. This researcher 
divided the universe of discourse into seven equal intervals, representing the linguistic 
values of very low, low, slightly low, medium, slightly high, high, and very high. These 
intervals are the simplest and the easiest to use that do not take into account the type and 
distribution of data.  Chen revisited his idea in 2002, investigating the problem for seven to 
14 intervals. He worked with equal intervals in his article, simply changing the numbers. He 
also presented a high-order fuzzy time series model in this study [9]. 
 
Huarng was the first to study the length of intervals, pointing out that length affects 
forecast accuracy in fuzzy time series, and proposing a method with distribution-based 
length and average-based length to reconcile this issue [6]. Since then, partitioning the 
universe of discourse has become one of the important issues in this area. Various studies 
have been done in this field, some of which this paper introduces.  
 
For example, Jilani [10] investigated fuzzy intervals, dividing the universe of discourse into 
seven equal parts and sorting them in descending order, based on the number of data in 
each interval. He then divided the first interval into four parts, the second interval into 

http://sajie.journals.ac.za



178 

three, the third interval into two parts, and then used the rest of the intervals as they 
appeared in the data to forecast the University of Alabama’s enrolment data.  
 
Cheng [11] is another researcher to have addressed the universe of discourse partition. He 
not only used a new heuristic method to determine appropriate fuzzy intervals, but also 
improved the prediction model. He applied expected adaptation to forecast Alabama 
enrolments and TAIFEX data. In this model, the intervals are first divided into seven equal 
parts, and the average data that is in each interval is calculated. Then those intervals in 
which the data are above average are divided into two parts. This process, like the previous 
one, attempts to homogenise the intervals and divides the intervals with more data.  
 
Huarng [5] pioneered the application of heuristic knowledge to fuzzy time series models. 
Integrating heuristic models with FTS models intensified their forecasting performance, 
making them popular among scientists. Heuristic models have also been used in universe of 
discourse partitioning in some studies. Lee et al. [12,13] introduced two methods based on 
fuzzy time series, the genetic algorithm, and simulated annealing heuristics to forecast 
temperature and the TAIFEX. Chen & Chung [14,15] developed first order and high order 
fuzzy time series models by using the genetic algorithm for enrolment forecasting. Kuo et 
al. [16] used a PSO-based model called HPSO to achieve well-tuned intervals forecasting 
Alabama enrolments. Park et al. [17] studied a two-factor high-order fuzzy time series using 
the PSO method, applying the model to TAIFEX and KOSPI 200 datasets. 
 
Yolcu et al. [18] proposed a new approach using a single-variable constrained optimisation 
to determine the ratio for the length of intervals. To find the correlation between stock 
volume and stock market price, Chu et al. [19] proposed a dual-factor method. Cheng et al. 
[20] proposed another novel method that incorporated trend weighting into the fuzzy time-
series models of Chen and Yu, and applied this method to explore the extent to which the 
innovation diffusion of ICT products is described using this procedure. Wang & Chen [21] 
presented a new method to predict temperature and TAIFEX using automatic clustering and 
two-factor high-order fuzzy time series for temperature prediction. Teoh et al. [22] 
proposed a hybrid fuzzy time series model using the cumulative probability distribution 
approach (CPDA) and rough set rule induction techniques. Leu & Lee [23] presented another 
fuzzy time series model using distance-based fuzzy time series to forecast the exchange 
rate. Egrioglu et al. [24] proposed a hybrid high-order approach to analyse seasonal fuzzy 
time series, determining the order of the model using the Box-Jenkins model. Bahrepour et 
al. [25] developed an adaptive ordered fuzzy time series that employs an adaptive order 
selection algorithm to compose the rule structure and partition the universe of discourse 
into unequal intervals based on a fast self-organising strategy. They employed it on the 
FOREX market. Liu & Wei [26] proposed a model to forecast seasonal data.  
 
The literature shows that quite a lot of work has been done on the effective partitioning of 
the system. In our view, using simulated annealing (SA) to partition the universe of 
discourse has been considered once, as discussed above. In this paper, we will use SA-FTS 
to show how SA is able to increase the performance of the system.  

3. FUZZY TIME SERIES 

As discussed above, there has been considerable growth in fuzzy time series models in 
forecasting approaches and decisions in recent years. They have all tried to deal with 
forecasting problems – and they have all been applied according to different definitions. In 
what follows the concept and definitions of fuzzy time series are explained. 
 
Definition 1. [1,3,4] Let Y(t)(t=..., 0, 1, 2, ...), a subset of real numbers, be the universe 
of discourse by which fuzzy sets fj(t) are defined. If F(t) is a collection of f1(t), f2(t). . . 
then F(t) is called a fuzzy time-series defined on y(t).  
Definition 2. [1,3,4] If there is a fuzzy relationship R(t-1,t), such that F(t)=F(t-1)×R(t–1, t), 
where × is an operator, then F(t) is said to be caused by F(t-1). The relationship between 
F(t) and F(t-1) can be denoted by F(t-1) → F(t).  
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Definition 3. [1,3,4] Suppose F(t-1)=Ai and F(t)=Aj, a fuzzy logical relationship is defined as 
Ai → Aj; where Ai is named as the left-hand side of the fuzzy logical relationship and Aj the 
right-hand side.  
Definition 4. [1,3,4] Fuzzy logical relationships with the same fuzzy set on the left-hand 
side can be further grouped into a fuzzy logical relationship group. Suppose there are fuzzy 
logical relationships such that: 

Ai→Aj1 
Ai→Aj2 
… 

then they can be grouped into a fuzzy logical relationship group Ai→Aj1, Aj2, … 
Definition 5. [1,3,4] Suppose F(t) is caused by F(t-1) only, and F(t) = F(t-1)×R(t-1, t). For 
any t, if R(t-1, t) is independent of t, then F(t) is named a time-invariant fuzzy time series; 
otherwise it is a time-variant fuzzy time series.  
Definition 6. [1,3,4] In a multivariate fuzzy inference process, an m-factor k-order fuzzy 
time series is a time series consisting of m factors that are of kth order. For example, a two-
factor kth order fuzzy time series with X as the primary and Y as the second factor could be 
stated as: 
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Chen [8] developed a new model based on the above definitions, and simplified Song & 
Chissom’s model. Chen’s model provided a better forecasting performance and better 
integration with heuristic knowledge, compared with Song & Chissom’s model [5,8]. 
 
However, Chen’s model also has a drawback: it omits fuzzy logic relations repetitiveness. 
To overcome this drawback, this study uses the frequency weighted method [2]. In this case 
the fuzzy logic relationship (FLR) that occurred often in the past will likely happen often in 
the future. The procedure of forecasting with fuzzy time series is described as follows: 
 
Step 1. Define the universe of discourse and intervals: 
Let the Umin and Umax be the minimum and maximum value of historical data, let

],[ maxmin uuU =   be the universe of discourse. Then U is partitioned into several 

intervals. 
 
Step 2. Define fuzzy sets based on the intervals, and fuzzify the historical data.  
Let U be the universe of discourse, where U={u1, u2, u3, …, un}. A fuzzy set Ai is defined by:  
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where 
iAz  is the membership function of fuzzy set Ai, and )( kA uz

i  
is the degree of 

belongingness of uk in Ai. 𝑧𝐴𝑖(𝑢𝑘)𝜖[0, 1];  1 ≤ 𝑖 ≤ 𝑚; 1 ≤ 𝑘 ≤ 𝑛.  
 
A price or a datum is fuzzified to Ak, if the maximum membership function is under Ak . As 
in the literature, the present study uses a triangular membership function to define fuzzy 
sets Ai. To present the procedure here, let the number of intervals be seven. Thus the fuzzy 
sets are defined by the following equation: 
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Step 3. Establish fuzzy logical relationships, and group them based on the left hand side. 
According to Definitions 2 and 3, in first order models the fuzzy relationship F(t-1) F(t) 
could be denoted by  Ai  Aj, in which Ai and Aj are the corresponding linguistic values of 
F(t-1) and F(t) respectively. Therefore, the way of evoking all fuzzy logical relationships 
under n order is to find any relationship consisting of the type 𝐹(𝑡 − 𝑛),𝐹(𝑡 − 𝑛 + 1),𝐹(𝑡 −
𝑛 + 2), …𝐹(𝑡 − 1) → 𝐹(𝑡). Then by replacing the corresponding linguistic values, n order 
fuzzy relationships were established as 𝐴𝑖 ,𝐴𝑗 ,𝐴𝑘 …𝐴𝑙 → 𝐴𝑧. 
 
The FLR with the same left-hand side could establish a FLR group. 

Ai, Aj  Ak; 
Ai, Aj  Al ; 
… 
Aj, Az  Am; 
Aj, Az  An; 
… 

Ai, Aj  Ak; Al; …; 
Aj, Az  Am; An;… ; 
… 

Step 4. Assign weights.  
All FLRs could establish a fluctuation matrix based on the repetitiveness of each FLR in the 
historical data. Equation (4) represents a 1×n fluctuation matrix for a specific FLR, in which 
n denotes the number of fuzzy sets and wi 1≤i≤n indicates the frequency of that specific 
FLR with the right hand side of Ai 1≤i≤n in the historical dataset. 

[ ]4321 ... wwwwmatrixnflactuatio =  (4) 

 
To obtain a frequency weighted matrix, the fluctuation matrix should be standardised by 
equation (5). 
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Finally, a frequency weighted matrix for each FLR group is calculated. The weight of a FLR 
is based on the repetitiveness of that FLR in the past. 
 
Step 5. Calculate the forecast values. 
To obtain the forecast value at time t, we will use Eq. (6) where Wn(t-1) is a frequency 
weighted matrix for a corresponding FLR group of time t-1, and Ldf(t-1) is a deffuzified 
matrix of fuzzy sets midpoints. 

4. PROPOSED MODEL  

Some studies  have shown  that intervals of different lengths influence the forecasting 
accuracy [6,16]. This paper also intends to integrate the SA heuristic with Chen’s model to 
achieve a better performance in forecasting.  

4.1 Simulated annealing 

Simulated annealing (SA) is an optimisation heuristic that searches the solution space by 
generating a stochastic neighbourhood. In most heuristics, local optimality is a critical 
problem. The SA algorithm tries to overcome this problem by accepting bad solutions with a 
decreasing probability [27,28]. 
 
The algorithm starts from a definite initial temperature called (Ts). During the process, 
temperature (T) decreases gradually by the mechanism of a cooling schedule until it 
reaches the final temperature (Te). In each iteration the algorithm generates a new 
solution in the neighbourhood of the current solution. Then by comparing the fitness of the 
neighbour with the current solution, SA decides whether or not to accept the solution. The 
algorithm accepts superior neighbours as the current solution; but in the case of inferior 

)1()1()( −×−= tWtLtF ndf  (6) 
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solutions, it accepts the solution by the probability that is generated by the Boltzmann 
function (-∆/kT). In this function, k is the constant part, T is the current temperature, and 
∆ is the difference between the current and the new solution’s fitness [27,28]. 
4.1.1 Encoding scheme 
In this section the encoding scheme is described. Let the number of intervals be n, with 
Umin,Umax as the lower and upper bands of the universe of discourse respectively. The 
solution X is a vector consisting of n-1 components 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛−1)  where 𝑥𝑖 ≥ 𝑥𝑖−1 , 
1 ≤ 𝑖 ≤ 𝑛 − 1. Each element of solution  𝑥𝑖 is called a break-point. Using this solution, n 
intervals will be produced as follows: int1=(Umin, x1), int2=(x1, x2), …and  intn=(xn-1, Umax). 
Figure 1 is a graphical representation of a solution with seven unequal intervals. 
 

 
 
 

Figure 1: Graphical representation of solution (n=7) 

4.1.2 Neighbourhood search structure 
The neighbourhood search structure (NSS) is a procedure that generates a new solution that 
slightly changes the current solution. A variety of NSSs is available and applied to the SA 
heuristic algorithm. In order to intensify and diversify the search space, two different NSSs 
are taken into consideration. 
 
• Substitute operator: the position of randomly chosen break-points regenerated within 

range (umin,umax). In other words, this procedure replaces a randomly-chosen interval 
with another newly-generated interval. The mechanism of this NSS is a random number 
(ri) generated for n-1 break-points. This random number is compared with a constant 
predefined value (α), if 𝑟𝑖 > 𝛼. The break-point will be replaced by another newly-
generated break-point (yi) where 𝑢𝑚𝑖𝑛 < 𝑦𝑖 < 𝑢𝑚𝑎𝑥. Figure 2 is a graphical 
representation of this procedure in a seven-interval solution where α=0.5. 

 
 
 

 
 
 

 
 
 
 
 
 
 

 

Figure 2: The substitute structure 

• Adjust operator: the position of a randomly-chosen break-point (xi) regenerated within 
the range (max(𝑢𝑚𝑖𝑛, 𝑥𝑖−1) , min(𝑢𝑚𝑎𝑥, 𝑥𝑖+1) ). In other words, this procedure aims to 
adjust a randomly-chosen break-point between the previous and the next break-points. 
The mechanism of this procedure can be explained thus: β is a predefined value that 
demonstrates the number of break-points that will be adjusted. So randomly-chosen 
break-points (xi) will be replaced with new break-points (yi), where max(𝑢𝑚𝑖𝑛, 𝑥𝑖−1) <
𝑦𝑖 < min(𝑢𝑚𝑎𝑥, 𝑥𝑖+1) . Figure 3 is a sample graphical representation of Adjust operator 
on a seven-interval solution where β=1. 

int1 int2 int3 int4 int5 int6 int7

      umin     x1    x2        x3         x4       x5            x6      umax

ri=                       0.34   0.87     0.43       0.53     0.11          0.05 
Change=              N       Y         N           Y           N               N

int1 Int2&3 Int4&5 int6 int7

      umin     x1               x3                   x5            x6      umax

int1 Int2 Int4 int6 int7int3 int5

      umin    x1                x2    x3            x4    x5    x6      umax

int1 int2 int3 int4 int5 int6 int7

      umin     x1    x2        x3         x4       x5            x6      umax
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int1 int2 int3 int4 int5 int6 int7

      umin     x1    x2        x3         x4               x5    x6      umax

int1 int2 int3 int4 int5 int6 int7

      umin     x1    x2        x3         x4       x5            x6      umax

Change=              N       N         N            N          Y               N

 

Figure 3: The adjust structure 
• Mix operator: Finally, these two operators – one of which tries to diversify (substitute), 

while the other tends to intensify (adjust) the search space – must be combined, with 
the third operator used as a mixer. The mechanism of this operator is thus: A random 
number (r) is generated and compared with a predefined value such as γ𝜖 [0,1]. If 𝑟 ≤ 𝛾 
the substitute operator will apply to the current solution; otherwise the adjust operator 
will be applied. 

4.1.3 Cooling schedule 
The main goal of using a cooling schedule is to control the SA heuristic’s behaviour. As 
explained above, to avoid becoming trapped in local optimums, the SA heuristic accepts a 
worse solution using a probability that is generated by the Boltzman function. This 
probability depends on a temperature that decreases steadily by a mechanism called a 
cooling schedule. There are three types of cooling schedule in the literature: linear, 
exponential, and hyperbolic. Table 1 presents the formula and the procedure of each 
mechanism, where Ts, Te, and N are the starting temperature, the stopping temperature, 
and the number of temperatures between Ts and Te respectively. By conducting some initial 
experiments, linear and exponential cooling schedules result in the proposed model’s 
better performance. Following the procedure described in [29], the starting temperature 
over the range 4 to 10 is appropriate for the problem; the stopping temperature is also 
determined over the range 0.001 to 0.1. 

Table 1: Cooling schedules and their formulas 

Cooling schedule Formula 

Linear 𝑇𝑖 = 𝑇0 − 𝑖
𝑇𝑠 − 𝑇𝑒
𝑁

, 𝑖 = 1,2, … ,𝑁 

Exponential 𝑇𝑖 =
𝐴

𝑖 + 1
+ 𝐵,   𝐴 =

(𝑇𝑠 − 𝑇𝑒)(𝑁 + 1)
𝑁

 𝐵 = 𝑇𝑠 − 𝐴,    𝑖 = 1,2, … ,𝑁 

Hyperbolic 𝑇𝑖 =
1
2

(𝑇𝑠 − 𝑇𝑒)�1 − 𝑡𝑔ℎ �
10𝑖
𝑁

− 5�� + 𝑇𝑒,    𝑖 = 1,2, , …𝑁 

 

4.1.4 Boltzman function 
In order to define the Boltzman function it is necessary first to determine the objective 
function of the model. The objective of forecasting models is to reduce forecasting errors. 
There are different ways of calculating error in the literature. One of these methods, which 
is prevalent in the literature, is the mean square error (MSE) [16]. E(x) indicates the 
forecasting error of solution X, which is calculated by a definition of MSE as follows: 

 
in which n denotes the number of forecasted data, Fi denotes the ith forecasted data, and 
Ai denotes the actual corresponding data. The function 𝑃(𝐸(𝑋𝑛),𝐸(𝑋𝑐),𝑇) = exp (−∆𝐸𝑖

𝑇𝑖
) is 

often taken to be a Boltzman function, in which E(Xn), E(Xc), Ti, denotes a new solution 
error, a current solution error, and the temperature at ith iteration respectively. 
 

𝐸(𝑥) =
∑ (𝐹𝑖 − 𝐴𝑖)2𝑛
𝑖=1

𝑛  (7) 
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The MSE performance measure depends on the amount of forecasted data. In order to 
handle different test problems with different ranges of data, a dimensionless Boltzman 
function is needed; therefore, ∆𝐸 is defined as: 

The pseudo-code of the proposed SA is described in Figure 4. 

T=Ts 

x= initialisation of the solution    

 

Xbest=x 

while t≥Te  do                      

for  iter=1 to itermax do  

if  rand() <γ then 
  

xn=substitute (x)     

else 

xn= adjust (x)          

end if 

        if  e(xn) < e(x) then              

  x=xn   

  if  e(xn) < e(xbest) then              

   xbest=xn

 endif 

          else 

if  rand() < exp (-∆/t) then 

x=xn 

endif 

     endif 

endfor 

t= temperature decreasing  

end while 

 

Initialise a solution with randomly-generated break-
points. 

 

while stopping criterion is not met do 

neighbourhood search in each temperature 

mix operator 

 

apply substitute operator on current solution  

 

apply adjust operator on current solution  

 

acceptance criterion 

 

comparison with best solution 

 

 
 

accepting inferior solution with a probability  

 

 

 

 

temperature reduction by cooling schedule 

Figure 4: Pseudo-code of proposed SA 

4.2 Parameter calibration 

There are parameters in the SA heuristic that need to be tuned, as each of them has an 
effect on the algorithm’s performance. Therefore, designing parameters appropriately 
makes them more efficient – depending, of course, on the nature of the problem. It is 
important to know that when a model or problem changes, the parameters must change. 
According to the literature, many researchers do not apply any tuning method to their 
problems. This study aims to design an experimental test to tune all parameters.  
 
There are so many approaches to the design of experimental tests. The most widely used – 
and comprehensive – method is full factorial. However, it is extremely time-consuming in 
problems with a large number of parameters, such as those included in this study, because 
the method examines every possible combination of factors. For that reason, fractional 
factorial experiments (FFE) were developed [30] to reduce the required number of 
experimental tests. The Taguchi method uses the orthogonal array to investigate the 
combination of factors and to measure the main effect of each one by designing a small 
number of experimental tests [31]. 
 

∆𝐸 =
𝐸(𝑋𝑛𝑒𝑤) − 𝐸(𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝐸(𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡)  (8) 
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Taguchi divides factors into two basic groups: controllable and noise (uncontrollable) 
factors. 
 
There is no direct control over noise factors. The Taguchi method is used to minimise the 
effect of the noise factors, and to set the optimum level of the controllable factors, based 
on the concept of robustness [32]. The Taguchi method also demonstrates the relative 
significance of each factor in its impact on the objective function. 
 
A transformation of the repetition data to another value is the measure of variation 
developed by Taguchi. Because of this transformation, which produces a signal-to-noise 
ratio (S/N), the Taguchi method is considered to be a robust design [32]. In this method, 
the terms ‘signal’ and ‘noise’ indicate the desirable value (response variable) and 
undesirable value (standard deviation) respectively. The method tends to maximise the 
signal-to-noise ratio. 
 
In this method, objective functions have been divided into three main groups: the-smaller-
the-better, the-larger-the-better, and nominal-is-best. Since our forecasting objective 
function is classified as ‘the-smaller-the-better’, the corresponding signal-to-noise ratio 
[32] is: 

 
For this problem, eight factors are considered to be SA control factors: cooling schedule, 
starting temperature, stopping temperature, value of desired temperature, value of 
neighbourhood search in each temperature, substitute operator parameter (α), adjust 
operator parameter (β) and mix operator (γ). Table 2 sets out the controllable factors and 
their related levels. 

Table 2: Factors and corresponding levels 

Factor  Levels 
A Cooling schedule (C.S)  {A(1): exponential, A(2): linear} 2 
B Starting temperature (Ts) {B(1): 4, B(2):8 B(3):10} 3 
C Value of desired temperature (Tn) {C(1):100, C(2):200, C(3):300} 3 
D Neighbourhood search in each temperature (NST) {D(1): 30, D(2):80, D(3):200} 3 
E Stopping temperature (Te) {E(1):0.001, E(2)=0.01, E(3)=0.1} 3 
F Mix operator parameter (γ) {E(1):0.1, E(2):0.2, E(3):0.3, E(4):0.4, E(5):0.5, E(6):0.6} 6 
G Substitute operator parameter (α) {F(1):0.4, F(2):0.5, F(3):0.6, F(4):0.7 F(5):0.8, F(6):0.9} 6 
H Adjust operator parameter (β) {G(1):1, G(2):2, G(3):3, G(4):4, G(5):5, G(6):6} 6 

 
The cumulative degree of freedom for these factors is 24, so the appropriate orthogonal 
array for this problem should have at least 24 rows and 8 columns. For the orthogonal array 
in this case, two modifications need to be done. First, the omission of two columns with 
three levels is necessary. 
 
Second, a two-level factor of the case (factor A: cooling schedule) lacks one level compared 
with L36. To offset this gap, one optionally selected existing level of the related factor 
needs to be allotted to that extra level. So the third level of factor A is set as a repetition 
of level 1. Table 3 shows 36 experimental tests that were designed according to the 
modified L36. 
 
Taguchi-designed experiments are conducted using a three-order fuzzy time series model 
on the Alabama University enrolment as a prominent test problem in the area of fuzzy time 
series. To get more reliable information, each trial is implemented three times. In all the 
experiments, Matlab 7.1 is used on a PC with a 2.4 GHz Intel Core 2 Duo processor and 4 GB 
of RAM. In order to compare the experimental tests, relative percentage deviation (RPD) is 
used as a performance measure, calculated as follows: 

𝑆
𝑁 𝑟𝑎𝑡𝑖𝑜 =  −10 log10(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)2 (9) 
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where minsol is the best result obtained for a given test problem among the experimental 
trials, and trialsol is the objective value (MSE) obtained in an experimental trial. 
 
The results obtained for each experiment were transformed into a S/N ratio. Figure 4 shows 
the average S/N ratio for each level. As shown in Figure 5, A(1), B(1), C(3), D(3), E(1), H(2) 
are the optimum levels of factors A, B, C, D, E, H respectively. Determining the optimal 
level of factors F and G needs more investigation, for which, the RPD needs to be analysed.  
 
The results of the average RPD are shown in Figure 6. This analysis strongly confirmed the 
optimal levels for factors A, B, C, D, E, and H, and it was found that  F(4) and G(4) were 
the superior levels, with a minimum RPD for factors E and F respectively. Thus the chosen 
levels are as follows: 

• Cooling schedule: exponential, starting temperature: 4.  
• Value of desired temperature: 300.  
• Neighbourhood search in each temperature: 200.  
• Stopping temperature: 0.001.   
• Mix operator parameter: 0.4.  
• Substitute operator parameter: 0.7.  
• Adjust operator parameter: 2. 

Table 3: The modified orthogonal array L36 

Trial 
Levels of control factors 

A B C D E F G H 
1 A(1) B(1) C(1) D(1) E(1) F(1) G(1) H(1) 
2 A(1) B(1) C(2) D(2) E(2) F(1) G(2) H(2) 
3 A(1) B(1) C(2) D(3) E(3) F(2) G(4) H(6) 
4 A(1) B(1) C(3) D(2) E(3) F(3) G(6) H(4) 
5 A(1) B(2) C(1) D(1) E(2) F(3) G(4) H(5) 
6 A(1) B(2) C(2) D(2) E(1) F(6) G(3) H(5) 
7 A(1) B(2) C(2) D(3) E(3) F(5) G(5) H(1) 
8 A(1) B(2) C(3) D(3) E(1) F(2) G(2) H(3) 
9 A(1) B(3) C(1) D(2) E(3) F(4) G(6) H(3) 
10 A(1) B(3) C(1) D(3) E(2) F(5) G(3) H(4) 
11 A(1) B(3) C(3) D(1) E(1) F(4) G(5) H(2) 
12 A(1) B(3) C(3) D(1) E(2) F(6) G(1) H(6) 
13 A(2) B(1) C(1) D(1) E(2) F(2) G(5) H(4) 
14 A(2) B(1) C(2) D(2) E(2) F(6) G(5) H(3) 
15 A(2) B(1) C(3) D(2) E(3) F(5) G(1) H(5) 
16 A(2) B(1) C(3) D(3) E(1) F(3) G(3) H(2) 
17 A(2) B(2) C(1) D(1) E(3) F(1) G(3) H(3) 
18 A(2) B(2) C(2) D(3) E(1) F(4) G(1) H(4) 
19 A(2) B(2) C(3) D(2) E(2) F(4) G(4) H(1) 
20 A(2) B(2) C(3) D(3) E(2) F(1) G(6) H(6) 
21 A(2) B(3) C(1) D(2) E(1) F(5) G(2) H(6) 
22 A(2) B(3) C(1) D(3) E(3) F(6) G(4) H(2) 
23 A(2) B(3) C(2) D(1) E(1) F(2) G(6) H(5) 
24 A(2) B(3) C(2) D(1) E(3) F(3) G(2) H(1) 
25 A(1) B(1) C(1) D(3) E(1) F(6) G(6) H(1) 
26 A(1) B(1) C(1) D(3) E(2) F(4) G(2) H(5) 
27 A(1) B(1) C(2) D(1) E(3) F(4) G(3) H(6) 
28 A(1) B(1) C(3) D(1) E(1) F(5) G(4) H(3) 
29 A(1) B(2) C(1) D(2) E(1) F(3) G(5) H(6) 
30 A(1) B(2) C(1) D(2) E(3) F(2) G(1) H(2) 
31 A(1) B(2) C(2) D(1) E(2) F(5) G(6) H(2) 
32 A(1) B(2) C(3) D(1) E(3) F(6) G(2) H(4) 
33 A(1) B(3) C(2) D(2) E(1) F(1) G(4) H(4) 
34 A(1) B(3) C(2) D(3) E(2) F(3) G(1) H(3) 
35 A(1) B(3) C(3) D(2) E(2) F(2) G(3) H(1) 
36 A(1) B(3) C(3) D(3) E(3) F(1) G(5) H(5) 

𝑅𝑃𝐷 =
𝑡𝑟𝑖𝑎𝑙𝑠𝑜𝑙 − 𝑚𝑖𝑛𝑠𝑜𝑙

𝑚𝑖𝑛𝑠𝑜𝑙
. 100% (10) 
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Figure 5: Mean S/N ration for each level of factors 
 
 

 

 

 

Figure 6: The mean RPD for each level of factors 
 

Table 4: S/N ratio and RPD for each level of factors 

Factor and levels Mean S/N ratio Mean RPD 
A(1) -45.404 199.9822 
A(2) -56.4162 699.337 

   
B(1) -48.3167 323.9288 
B(2) -49.3857 363.617 
B(3) -49.5218 411.7555 

   
C(1) -50.6879 444.7059 
C(2) -48.9248 364.1762 
C(3) -47.6114 290.4192 

   
D(1) -51.3608 484.5255 
D(2) -49.3264 357.5176 
D(3) -46.537 257.2582 

   
E(1) -47.2308 317.1252 
E(2) -49.0199 341.3405 
E(3) -50.9734 440.8356 

   
F(1) -49.2062 388.4628 
F(2) -49.4657 413.2079 
F(3) -49.1662 346.6948 
F(4) -49.6347 334.5277 
F(5) -47.8713 365.9912 
F(6) -49.104 349.7183 

   
G(1) -50.2645 360.2004 
G(2) -50.1616 449.9538 
G(3) -49.0085 370.5036 
G(4) -48.9786 331.2433 
G(5) -48.9753 349.2642 
G(6) -47.0597 337.4372 

   
H(1) -47.0746 329.7754 
H(2) -46.8824 257.5625 
H(3) -47.7762 361.9836 
H(4) -48.9362 338.6425 
H(5) -50.7834 420.1407 
H(6) -52.9955 490.4979 
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To examine the relative significance of the factors in terms of their impact on the objective 
function, an analysis of variance (ANOVA) was applied to the S/N ratio. The results are 
given in Table 4. The cooling schedule (A) factor has the largest impact on the objective 
function with a relative significance of 63.53%. After this factor, the next most important 
ones were: adjust operator parameter (H), at 10.41%; neighbour search in each 
temperature (D), 8.89%; stopping temperature (E), 5.17%; and number of desired 
temperature (C), 3.40%. The remaining factors – B, F, and G – had the least impact on the 
quality of the objective function. 

Table 5: ANOVA for S/N ratio 

S.V. D.F. S.S. M.S. F P. x Cu. 
A 1 9.71E+02 970.62 330.48 63.53 63.53 
B 2 10.9266 5.46 1.86 0.33 63.86 
C 2 57.6671 28.83 9.82 3.40 67.26 
D 2 141.2271 70.61 24.04 8.89 76.14 
E 2 84.572 42.29 14.40 5.17 81.31 
F 5 12.1206 2.42 0.83 0.17 81.48 
G 5 40.5572 8.11 2.76 1.70 83.18 
H 5 173.2995 34.66 11.80 10.41 93.59 
Error 11 32.3071 2.94 

   
Total 35 1.52E+03 

    

5. EXPERIMENTAL EVALUATION 

The proposed model was applied to the Alabama University enrolment data. A comparison 
of the results from the proposed model, from Kuo et al. [16], and from Chen & Chung [14], 
based on the different number of intervals and first-order forecasting, is shown in Table 6. 

Table 6: Comparison of results from proposed model and others under the different 
values of interval and first-order forecasting 

Methods Number of intervals 

 
8 9 10 11 12 13 14 

Proposed model 121052 85777 53115 40814 28962 20745 16643 
Chen & Chung [14] 132963 96244 85486 55742 54248 42497 35324 

Kuo et al. [16] 119962 90527 60722 49257 34709 24687 22965 
 
The main difference between the three methods is the heuristic algorithms that were used 
to forecast. Chen & Chung [14] used the genetic algorithm; Kuo et al. [16] used the PSO 
heuristic; while this study has proposed a method that benefits from the SA heuristic 
algorithm. This model is well-tuned by the Taguchi orthogonal arrays method. From Table 7 
it is clear that the proposed model offers a better performance in achieving the appropriate 
set of intervals. 
 
In the next step, a comparison is carried out between the proposed model and existing 
high-order models. The results are given in Table 7. They clearly indicate that the proposed 
model offers the greatest accuracy among all existing models. 

Table 7: Different high order models with seven intervals 

Order Chen [9] C & C [15] Singh [33] Kuo [16] SA-FTS 
2 89093 67834 

 
67123 53533 

3 86694 31123 133700 31644 27608 
4 89376 32009 

 
23271 20561 

5 94539 24948 
 

23534 21426 
6 98215 26980 

 
23671 21831 

7 104056 26969 
 

20651 18900 
8 102179 22387 

 
17106 15196 

9 102789 18734 
 

17971 15573 
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Table 8: Comparison of results from different first-order forecasting models 
Year Actual Chen [8] Huarng [5] C &C [15] Kuo[16] SA-FTS 
1971 13055 

     
1972 13563 14 000 14 000 13 714 13 555 13706 
1973 13867 14 000 14 000 13 714 13 994 13706 
1974 14696 14 000 14 000 14 880 14 711 14749 
1975 15460 15 500 15 500 15 467 15 344 15341 
1976 15311 16 000 15 500 15 172 15 411 15346 
1977 15603 16 000 16 000 15 467 15 411 15346 
1978 15861 16 000 16 000 15 861 15 411 15923 
1979 16807 16 000 16 000 16 831 16 816 16839 
1980 16919 16 833 17 500 17 106 17 140 17046 
1981 16388 16 833 16 000 16 380 16 464 16400 
1982 15433 16 833 16 000 15 464 15 505 15455 
1983 15497 16 000 16 000 15 172 15 411 15346 
1984 15145 16 000 15 500 15 172 15 411 15346 
1985 15163 16 000 16 000 15 467 15 344 15341 
1986 15984 16 000 16 000 15 467 16 018 15923 
1987 16859 16 000 16 000 16 831 16 816 16839 
1988 18150 16 833 17 500 18 055 18 060 18007 
1989 18970 19 000 19 000 18 998 19 014 19059 
1990 19328 19 000 19 000 19 300 19 340 19197 
1991 19337 19 000 19 500 19 149 19 340 19197 
1992 18876 19 000 19 000 19 149 19 014 19059 
MSE 

 
407 507 226 611 35 324 22 965 16643 

 
Table 8 contains a comparison of the forecasted enrolments generated by the proposed 
model and existing first-order fuzzy time series, with different number of intervals, such as 
Chen [8], Huarng [5], Chen & Chung [15] and Kuo et al. [16]. Three of the models – Chen & 
Chung [15], Kuo et al. [16], and the proposed model – used first order fuzzy forecast rules 
and 14 intervals to forecast enrolments.  
 
As the final step, the proposed model was compared with other high-order fuzzy forecasting 
models such as Chen [9], Singh [33], Chen & Chung [15], and Kuo et al. [16]. The results are 
shown in Table 9, where two of the models [15, 16] and the proposed model use ninth-
order fuzzy rules and 14 intervals to forecast enrolments. 

Table 9: Comparison of results for different high order models 
Year Actual data Singh [33] Chen [9] C & C [15] Kuo [16] SA-FTS 
1971 13 055      
1972 13 563      
1973 13 867      
1974 14 696 14 286 14 500    
1975 15 460 15 361 15 500    
1976 15 311 15 468 15 500    
1977 15 603 15 512 15 500    
1978 15 861 15 582 15 500    
1979 16 807 16 500 16 500 16 846   
1980 16 919 16 361 16 500 16 846 16 890 16890 
1981 16 388 16 362 16 500 16 420 16 395 16386 
1982 15 433 15 744 15 500 15 462 15 434 15434 
1983 15 497 15 560 15 500 15 462 15 505 15497 
1984 15 145 15 498 15 500 15 153 15 153 15153 
1985 15 163 15 306 15 500 15 153 15 153 15153 
1986 15 984 15 442 15 500 15 977 15 971 15986 
1987 16 859 16 558 16 500 16 846 16 890 16890 
1988 18 150 17 187 18 500 18 133 18 124 18152 
1989 18 970 18 475 18 500 18 910 18 971 18972 
1990 19 328 19 382 19 500 19 334 19 337 19328 
1991 19 337 19 487 19 500 19 334 19 337 19328 
1992 18 876 18 744 18 500 18 910 18 882 18877 
MSE  133 700 86 694 1101 234 159 
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All of the experimental results clearly confirmed that the new proposed SA is superior to 
the other algorithms in its different fuzzy order rules and number of intervals. 

6. CONCLUSION 

This paper dealt with a new forecasting model based on the simulated annealing (SA) 
heuristic and fuzzy time series (FTS) to forecast the Alabama University’s enrolment 
dataset. The proposed metaheuristic struck a compromise between intensification and 
diversification by using two neighbourhood search structures called ‘adjust’ and ‘substitute’ 
operators. To enhance the quality of the simulated annealing, a comprehensive comparison 
has been made between different parameters of the algorithm to obtain their precise 
calibration by means of the Taguchi method.  To investigate the model’s effectiveness in 
comparison with other models in the literature, the experimental results revealed the 
superiority of the proposed simulated annealing based model (SA-FTS). 
 
The SA-FTS was tested on Alabama enrolments under one factor condition. It could be 
applied to other problems with two or more factors, such as temperature prediction and 
stock indices, in further research.  
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