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ABSTRACT 

This research presents an integrated multi-objective distribution model for use in 
simultaneous strategic and operational food supply chain (SC) planning. The proposed 
method is adopted to allow use of a performance measurement system that includes 
conflicting objectives such as distribution costs, customer service level (safety stock 
holding), resource utilisation, and the total delivery time, with reference to multiple 
warehouse capacities and uncertain forecast demands. To deal with these objectives and 
enable the decision makers (DMs) to evaluate a greater number of alternative solutions, 
three different approaches are implemented in the proposed solution procedure. A detailed 
case study derived from food industrial data is used to illustrate the preference of the 
proposed approach. The proposed method yields an efficient solution and an overall degree 
of DMs’ satisfaction with the determined objective values.  

OPSOMMING 

Die navorsing behandel ’n geïntegreerde multidoelwit distribusiemodel vir strategiese 
beplanning van ’n voedseltoevoerketting. Om met die model doelmatig te werk, moet ’n 
versameling van randvoorwaardes hanteer word om die saamgestelde optimiseringsdoelwit 
te bereik teen ’n agtergrond van uiteenlopende sienings. 
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1. INTRODUCTION 

The distribution planning decision (DPD) is one of the most comprehensive strategic 
decision issues that need to be optimised for the long-term efficient operation of a whole 
supply chain (SC). The DPD involves optimising the transportation plan for allocating goods 
and/or services from a set of sources to various destinations in a supply chain (Liang [1]). 
An important strategic issue related to the design and operation of a physical distribution 
network in a supply chain system is the determination of the best sites for intermediate 
stocking points, or warehouses. The use of warehouses provides a company with flexibility 
to respond to changes in the marketplace, and can result in significant cost savings due to 
economies of scale in transportation or shipping costs. 
 
The major task of DPD is the determination of distribution costs, customer service level 
(safety stock holding), resource (warehouse space) utilisation, and the total delivery time, 
with reference to multiple warehouse capacities and uncertain forecast demands (Torabi & 
Hassini [2]). 
 
In previous studies, both deterministic and stochastic customers’ demands have been 
considered, but more attention has been paid to the deterministic cases. (See the recent 
survey on stochastic components in facility location models by Snyder [3].)  
 
Generally, the applied constraints in modelling DPDs are the capacity limitation and single 
source constraints (Farahani & Elahipanah [4]). In some cases, in addition to the capacity 
constraints, some other restrictions on the number of covered demands and the service 
levels of the warehouses are also defined.  
 
Recently some authors have incorporated inventory control decisions into DPD models. For 
example, Miranda & Garrido [5, 6], Daskin et al. [7], and Shen et al. [8] present similar 
versions of the DPD model incorporating the inventory control decisions.  
 
Erlebacher & Meller [9] present a location-inventory model for designing a two-level 
distribution system serving continuously represented customer locations. They develop a 
stylised analytical model to provide some intuition and basic results for the problem. The 
stylised model also motivates bounds for the problem, which they use to develop a 
heuristic. They show that the heuristic performs very well on test problems that considered 
variation in customer demand and spatial dispersion.  
 
In these works, the ordering decisions are based on the classic economic order quantity 
(EOQ) model, and a normal distribution is assumed for the demand pattern. 
 
Additionally, researchers have developed various methods to solve multi-objective DPD 
problems. Liang [1] develops an interactive fuzzy multi-objective linear programming 
method for solving the fuzzy multi-objective DPD problem with piecewise linear 
membership functions. Selim & Ozkarahan [10] suggest an interactive fuzzy goal 
programming (FGP) for the supply chain distribution network design. The goal of their 
model is to select the optimum numbers, locations, and capacity levels of the plants and 
warehouses to deliver the products to the retailers at the least cost while satisfying the 
preferred customer service level. 
 
In most of the past research studies like Gourdin et al. [11], Jayaraman [12], Pirkul & 
Jayaraman [13], and Tragantalerngsak et al. [14], one major drawback is that they limit the 
number of capacity levels available to each facility to just one. However, in real case 
studies, there are usually several capacity levels to choose for each facility. This flexibility 
in capacity levels makes the problem more realistic and, at the same time, more complex 
to solve. Another major drawback in some previous studies is that they limit the number of 
opening facilities to a pre-specified value. Moreover, these studies fail to describe how this 
value can be determined in advance. Amiri [15] represents a significant improvement over 
previous research by presenting a unified model of the problem that includes the numbers, 
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locations, and capacities of both warehouses and plants as variables to be determined in 
the model. In addition, he develops an efficient heuristic solution procedure based on 
Lagrangean Relaxation (LR) of the problem, and reports extensive computational tests with 
up to 500 customers, 30 potential warehouses, and 20 potential plants.  
 
In this paper we develop a new non-linear multi-objective DPD model, consisting of one 
manufacturer and multiple distribution centres (warehouses), that integrates the 
location/allocation and distribution plans. In this model, to improve over previous research, 
we also incorporate tactical/operational decisions – such as inventory control decisions – 
into the DPD problem. Then we propose an efficient goal programming approach to solve 
the developed model. We consider three important objective functions:  
• investment in opening distribution centres/warehouses (location costs);  
• total cost of logistics, such as the costs of transporting products from the plant to the 

opened warehouses, and from the opened warehouses to the retailers, and holding 
costs (inventories and safety stocks); and 

• total delivery time. 
 
The problem is particularly motivated by consulting work that was done for a large food 
industry company owning one production site and multiple distribution centres. Since the 
transportation cost constitutes the main part of the unit cost, and since delivery time and 
limited storage capacity are also very important, implementing the distribution planning 
system for the DCs’ location and inventory control decisions is of particular interest. 
 
The paper has two important applied and theoretical contributions. First, it presents a new 
comprehensive and practical, but tractable, optimisation model for distribution network 
designing. Second, it introduces a novel solution procedure for finding more non-dominated 
and efficient compromise solutions to a stochastic multi-objective mixed-integer 
programme. In our literature survey we have found a lack of studies in this field, which is 
understandable, given that large mixed integer programming is known to be complex even 
when all data is certain and precise. 
 
The remainder of this paper is organised as follows. In Section 2 we consider a summary of 
key challenges in agro-food supply chains. In Section 3 we define our notation, state our 
assumptions, and propose a new multi-objective stochastic non-linear program (MOSNLP) 
for the proposed DPD problem. After applying appropriate strategies for converting the 
stochastic model into a multi-objective nonlinear model (MONLP), in Section 4 we propose a 
novel interactive payoff approach to solve this MONLP and find an efficient compromise 
solution. The proposed model and the solution method are validated through numerical 
tests in Section 5. The data for these numerical computations have been inspired by a real 
life food industrial case study, as well as randomly generated data. Concluding remarks on 
computational results and further research directions are the subject of Section 6. 

2. IMPORTANT PROBLEMS IN SUPPLY CHAIN MANAGEMENT IN THE FOOD SECTOR 

Almost without exception, all well-known industries are redesigning their distribution 
networks in a bid to meet global trends and continue to meet customer demands. 
Considering the competitive market, key food industries must work on the optimal supply 
chain structure. However there is no doubt that supply chain networks are confronting new 
challenges. Hunt et al. [16] summarise these challenges:  
• More instances of multi-site manufacturing 
• Increasingly cut-throat marketing channels 
• The maturation of the world economy 
• Heightened demand for local products 
• Competitive pressures to provide exceptional customer service 
• Quick, reliable delivery 
• Commonality of turbulence and volatility in markets 
• Time-to-market for new products 
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Based on these challenges, in this paper we focus on supply chain costs, customer service 
level, and delivery time in food distribution planning. 

3. PROBLEM SCOPE AND FORMULATION  

We consider a firm that owns a manufacturing plant that is capable of producing multiple 
products. The products are then delivered to different distribution centres 
(warehouses/wholesalers) in order to satisfy their associated dynamic demands. The 
network is illustrated in Figure 1.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure1: Structure of the supply chain distribution network 

Assume that in the company the logistics centre seeks to determine the right transportation 
plan to allocate multiple commodities from the source (factory) to J warehouses (DCs). 
Each destination has a forecast demand of each commodity to be received from the plant. 
The forecast demand of each warehouse depends on uncertain demands of allocated 
customers to this warehouse. This work focuses on developing a MOSNLP method to 
optimise distribution decisions such as location/allocation and inventory policy in a food 
industry company. 
 
This problem in fact integrates three decision sub-problems: (1) selecting the optimum 
numbers, locations, and capacity levels of the warehouses to deliver products to 
retailer/customer at the least cost while satisfying desired service level to retailers; (2) 
allocation of these retailers to the open warehouses; and (3) inventory decisions for the 
supply chain. 
 
Decision-making in such a complex supply chain network requires the consideration of 
conflicting objectives and of different constraints imposed by the manufacturer and 
distributors. Moreover, in practical situations, due to the variability and/or uncertainty of 
required data over the strategic and mid-term horizon, most of the parameters embedded 
in a DPD problem are frequently stochastic in nature, and can be obtained through 
probabilities or subjectively in a fuzzy environment. For example, in a real decision 
problem, market demands, cost/time coefficients, and the amounts of available resources 
are usually imprecise over the planning horizon, and therefore assigning a set of crisp 
values for such ambiguous parameters is not appropriate. We rely on probability theory to 
model this uncertainty. This theory uses statistical distributions to handle this inherently 
ambiguous phenomenon in the problem parameters. 

Distribution Network 

 Suppliers The plant Warehouses Retailers Customers 
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3.1 Problem description, assumptions, and notation 

The stochastic multi-objective DPD problem examined here can be described as follows: 
• In the analysed case study, the plant location is known and fixed. The network 

considered encompasses a set of retailers with known locations, and a discrete set of 
possible location zones/sites where the plant and warehouses are located.  

• The final products have stochastic retailer demand over the given finite planning 
horizon with mean dil and variance vil (note that our customers are mostly retailers, 
not end consumers). 

• There are multiple values for storage capacity at each warehouse (five level storage 
capacities). 

• The distribution costs and delivery time on the given route are directly proportional to 
the shipped units. 

• Products are independent of each other, related to marketing and sales price. 
• The number of potential DCs and their maximum capacities are known. 
• Retailers receive each product only from a single DC. 
• No inventory is held in the plant. 
• Decisions are made within a single period. 
 
The indices, parameters, and variables used to formulate the mathematical problem are 
described as follows: 
 
Indices: 

I index set of customers/customer zones (i=1,…,I) 

J index set of potential warehouse sites (j=1,…,J) 

L index set of products (l=1,…,L) 

H   index set of capacity levels available to the potential warehouses (h=1,…,H) 

G index for objectives for all g=1,2,3 

η  investment cost performance index [0,1] 

γ  delivery time performance index [0,1]  

K customer service performance index [0,1]  

α−1Z normal distribution value for system service level 

Parameters: 

TCijl unit cost of supplying product l to customer zone i from warehouse on site j 

jlTC  unit cost of supplying product l to warehouse on site j from the plant 

tijl 
delivery time per unit delivered from warehouse j to customer zone i for  
each product l 

tjl 
delivery time per unit delivered from the plant to warehouse j for each  
product l 

LTjl the elapsed time between two consecutive orders of product l for site j 

Fjh 
fixed cost for opening and operating warehouse with capacity level h on  
site j per time unit 

dil        mean demand of product l from customer zone i per time unit 

vil variance demand of product l from customer zone i per time unit 

HCjl holding cost of product l in warehouse on site j per time unit 

OCjl ordering cost of product l from warehouse on site j to the plant 

capjh capacity of warehouse on site j with capacity level h 

sl space requirement of product l at any warehouse 

PH planning horizon 
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Decisions variables: 

Xjh 

 
it takes value 1, if a warehouse with capacity level h is installed on potential 
 site j, and 0 otherwise; 

Yijl 
 
it takes value 1, if the warehouse on site j serves product l of customer i, and 0 otherwise;  

Djl mean demand of product l to be assigned to warehouse on site j per time unit  

Vjl variance demand of product l to be assigned to warehouse on site j per time unit 

3.2 Stochastic multi-objective non-linear programming model 

3.2.1 Objective functions 
We have selected the multi-objective functions for solving the DPD problem by reviewing 
the literature and considering practical situations. In particular, these objective functions 
are normally stochastic or fuzzy in nature owing to incomplete and/or uncertain 
information over the planning horizon. Accordingly, three objective functions are 
simultaneously considered in formulating the original stochastic DPD problem, as follows: 
 

• Minimise total investment (INV) in opening DCs/warehouses: 
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• Minimise total costs (TCOST) 
 
This objective function contains (see Appendix):  

• Transportation cost of products from the plant to the warehouses and from the 
warehouses to the retailers 

• Holding cost for mean inventory and safety stocks 
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• Minimise total delivery time (TDELT) 
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3.2.2 Constraints 

• Constraints that ensure that each retailer is served exactly for each product by one 
warehouse (single source): 
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• Constraints of the warehouse capacity:  
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• Constraints that compute the served average demand by each warehouse: 
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• Constraints that indicate the total variance of the served demand by each 
warehouse: 

LlJjVYv jl
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=

    (7) 

 
Implicitly, we assume that the demands are independently distributed across the retailers, 
and thus that all the covariance terms are zero. 

• Constraints that ensure that each warehouse can be opened at least at one capacity 
level  
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      (8) 

• Binary constraints of decision variables:  

{ } HhLlJjIiYX ijljh ,...,1,,...,1,,...,1,,...,11,0, =∀=∀=∀=∀∈ (9) 

4. THE PROPOSED SGP-BASED SOLUTION APPROACH 

4.1 Defining the goals of the objective functions 

As we know, stochastic goal programming (SGP) needs an aspiration level for each 
objective. These aspiration levels are determined by DMs. In addition to the aspiration 
levels of the goals, we need max-min limits (ug , lg) for each goal. While the DMs decide the 
max-min limits, the linear programming results are starting points, and the intervals are 
covered by these results. Note that in non-linear programming (with a minimisation 
objective) the minimum limit of any non-linear objective may be calculated by the results 
of the other objectives. This situation may occur because the optimum value may be its 
local optimum.  
 
Generally the DMs find estimates of the upper (u) and lower (l) values for each goal using 
payoff table (Table 1). Thus the feasibility of each stochastic goal is guaranteed [10]. 
 
Here, Zg(X) denotes the gth objective function, and X(g) is the optimal solution of the gth 
single objective problem. Solving the problem with X(g) (g=1,...,G) for each objective, a 
payoff matrix with entries Zpg =Zg (X

(p)), g, p=1,...,G  can be formulated as presented in 
Table 1. Here, ug= max (Z1g , Z2g , . . . , ZGg) and lg=Zgg , g =1,..., G. 

Table 1: The payoff table 

 Z1(X) Z2(X) … ZG(X) 
X(1) Z11 Z12 … Z1G 

X(2) Z21 Z22 … Z2G 
. 
. 

. 

. 
. 
. 

… 
. 
. 

X(G) ZG1 ZG2 … ZGG 
 
Using the interactive paradigm can improve the flexibility and robustness of multi-objective 
decision making by: 
• Providing a learning process about the system, whereby the DMs can learn to recognise 

good solutions, 
• The DMs can control the search direction during the solution procedure and, as a 

result, the efficient solution achieves their preferences, 
• Various scenarios could be generated, based on a systematic procedure.  

4.2 Solution methodology 

To deal with multi-objectives and enable the DMs  to evaluate a greater number of 
alternative solutions, three different approaches are implemented in this section.   
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Solution Approach 1. The weights of objective Z1 and Z2 are specified with W1 and W2 as 
follows: 
W1 : Set of weights for the INV objective function ( w1 ,w2 ,w3 ,…), and  
W2 : Set of weights for the TCOST objective function ( 1-w1 ,1-w2 ,1-w3 ,…) (10) 
 
Note that, based on the three presented objective functions and preferred DMs’ service 
level (K), in this approach we generate several scenarios and the TDELT objective is not 
considered. (A more detailed explanation about the service level of the system is presented 
in Appendix) So problem 1 can be summarised as follows: 
 
Generated Problem 1: Zp1 = Min W1Z1+W2.(PH.Z2) 
 Subject to:    (4)-(9) (11) 
 
TH allows one to sum the investment cost that occurs at the beginning of the planning 
horizon with the rate cost incurred by the entire network. In order to determine the 
weights, there are some good approaches in the literature, such as the analytical hierarchy 
process, the weighted least square method, and the entropy method. However, 
determination of the weights is not the focus of this study.  
 
Solution Approach 2. In this approach the weights of the objectives ( Z1 , Z2 ) and preferred 
DMs’ service level are the same as in solution approach 1, but we consider Z3 (TDELT 
objective) as a new constraint.  
 
Generated Problem 2 Zp2 = Min W1Z1+ W2.(PH.Z2) 

 Subject to:    Z3≤  Z33 + γ  Z33 
 and (4) - (9) (12) 
 
In the payoff table we calculate optimum (or local optimum) values for the three objective 
functions. In this approach, to compare each objective function against the others, we use 
the performance Index as a compensation rate. Since objectives Z3 and Z2 are very 
interactive, it is important for the DMs to evaluate the impact of increasing γ  % in total 
delivery time (TDELT) on the system costs (INV and TCOST). To generate new scenarios we 
calculate the γ  parameter based on the DMs preferences.  
 
Solution Approach 3. In this approach, the objective function is TCOST and the other 
objectives (INV, TDELT) are added to the previous constraints (4)-(9). As in solution 
approach 2, it is important for DMs to consider Z1 and Z3 against the TCOST objective 
function.  
 
Generated Problem 3: Zp3 = Min Z2 

 Subject to:      Z1≤  Z11 + η  Z11 

 Z3≤  Z33 + γ  Z33 
 and (4) - (9) (13) 
To generate more scenarios we calculate η  and γ  parameters based on the DMs 
preferences. 

4.3 Solution procedure 

The interactive solution procedure of the proposed MOSNLP method for solving stochastic 
multi-objective DPD problems includes the following steps: 
 
Step 1: Formulate the original stochastic MOSNLP model for the DPD problem. 

Step 2: Obtain efficient extreme solutions (payoff values) used for constructing the right-
hand side of the added constraints (first and third objective functions). If the DMs select 
one of them as a preferred solution, go to Step 10. 
Step 3: Define upper and lower bounds of each objective functions from the payoff table. 
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Step 4: Formulate problems 1, 2 and 3. 

Step 5: Ask the DMs if they want to modify the right-hand side of the newly-added 
constraints of problems 2 and 3. 

Step 6: Introduce η  and γ  parameters to generate new scenarios – i.e., define a 
systematic rule for changing upper bound of Z1 and Z3. 

Step 7: Determine the values of the SC performance vector (W1 , W2 , η , γ , K). 

Step 8: Improve the generated scenarios with the performance vector determined in Step 
7. 
Step 9: Analyse outputs of generated scenarios and obtain non-dominated solutions. If the 
DMs select one of them as a preferred solution, go to Step 10; otherwise, go to Step 5.          
Step 10: Stop. 

5. CASE STUDY 

The case study presented here, with an example from the food industry, illustrates the 
algorithm proposed in Section 4, as well as the applicability and effectiveness of the model. 
This food industry company is the leading producer of two main categories of Iranian food 
and drink (rice and tea). The basic distribution data are presented in the next sub-section. 

5.1 Setup 

A case study inspired by a food producer in Iran is presented to demonstrate the validity 
and practicality of the model and solution method. The company owns one production site 
and six potential DC/warehouse sites in the different customer zones (Figure 2). There are 
three types of products and twenty main retailers.  
 
Lingo 8.0 optimisation software is used as the problem solver. All scenarios are solved on a 
Pentium 4 (Core 2 Duo) with 1GB RAM and 4 GHz CPU. 
 
Because of confidentiality, the input data are randomly generated. However, the 
generation process is done so that it will be close to the real data available in the company. 
Without loss of generality and just to simplify generation of the stochastic parameters, we 
apply the pattern of a systematically normal distribution for our numerical test.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Location of potential warehouses 

 
The required throughput capacity of any warehouse for product l is as follows: s1= 2, s2= 5, 
s3= 4. Tables 2 and 3 list some of the other basic distribution data.  
 

 

 
Warehouse 
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Table 2: Some potential warehouses data 
a Warehouse capacity (m2) 

b Investment in opening the warehouse ($/m2) 

Warehouse Capacity level (h)     

(j) 1 2 3 4 5 

A 384750a/3.21b 577125 769500 961875 1154250 
B 445500/3.30 668250 891000 1113750 1336500 
C 243000/4.45 364500 486000 607500 729000 
D 162000/3.82 243000 324000 405000 486000 
E 324000/3.34 486000 648000 810000 972000 
F 303750/4.10 455625 607500 759375 911250 

Table 3: Ordering and transportation costs 
a Ordering cost, OCjl ($). 

b Transportation cost per unit, TCjl ($) 
# 

Product (l) 
Warehouse      

 A B C D E F 
1 17a/3.6b 14/3.8 8/4.6 5/5.2 3/3.1 8/6.0 
2 15/1.6 ¼.2 3/3.2 7/4.5 5/1.4 6/4.6 
3 5/1.2 12/2.3 16/3.3 12/3.8 10/2.4 8/3.1 

5.2 Performance analysis 

The interactive solution procedure using the proposed SGP method for the case study is as 
follows:  
 
First, formulate the original stochastic multi-objective DPD problem according to equations 
(1)-(9). The goal of the model is to select the optimum numbers, locations, and capacity 
levels of warehouses to deliver the products to the retailers at the least cost, while 
satisfying the desired service level of the retailers. The proposed model is distinguished 
from the other models in this field in the modelling approach. Because of the somewhat 
uncertain nature of retailers’ demand and DMs’ aspiration levels for the goals, a stochastic 
modelling approach is used. Additionally, a novel and generic SGP-based solution approach 
is proposed to determine the preferred compromise solution.  
 
Second, obtain efficient extreme solutions for each of the objective functions. These 
extreme solutions of the case study are presented in Table 4.  

Table 4: The payoff table for the problem 
Gap= [(Max-Min)/Min]×100. 

*TCOST is a non-linear objective function; therefore some values for this objective may be local 
optimum values. So Z32 provides a lower bound for TCOST than Z22 

 INV TCOST TDELT 
INV 9,922,500  5,386,177 53,486,321  
TCOST   13,680,000  3,815,037  37,933,514  
TDELT 14,880,000  3,407,083*  33,672,890 
Gap 50% 58% 59% 

 
It is assumed that the DMs do not choose any of the efficient extreme solutions as the 
preferred compromise solution, and proceed to the next step. 
 
Considering the efficient extreme solutions given in Table 4, the lower and upper bounds of 
the objectives can be determined. In our case, the corresponding minimum and maximum 
values of the efficient extreme solutions are determined as the lower and upper bounds 
respectively, as presented in Table 5. 
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After calculating the upper and lower bounds of each objective function, the next step is 
formulation of problems 1, 2 and 3. A summary of the results for the various scenarios is 
given in Tables 6, 9 and 11.  

Table 5: Lower and upper bounds for the objectives 

Objectives Lower bound Upper bound 
INV 9,922,500  14,880,000 
TCOST 3,407,083 5,386,177 
TDELT 33,672,890 53,486,321  

 
As stated previously, the relative weights for the first and second objective functions in 
problem 1 can be determined by DMs using various methods. For the presented case study, 
DMs determine three weights for the INV and TCOST objectives as follows: (0.7, 0.3), (0.5, 
0.5) and (0.3, 0.7). For this problem, no constraint on delivery time is included and 
TH=1000 (planning horizon) hereafter. By fixing the values of W1 and W2, the solution given 
in Table 6 is obtained. In this table, for three values of each objective function and three 
levels for the customer service performance index (K), nine scenarios have been generated. 
 
In Table 6, the warehouse load ratio percentage (WRL) column shows the efficiency of the 
opened warehouses. The average WRL in approach 1 is 0.9865, and since Zp1 is a non-linear 
objective function, the range of the CPU time for solving this problem is very wide, from 6 
to 180 seconds. 

Table 6: Results of the proposed model by approach 1 
*WRL = total demand of retailers/toal capacity of selective warehouses 

*Inferior scenarios 

Scenario # Performance vector 
(W1, W2, η, γ, K) 

Obj. # open 
warehouses 

WRL% CPU time 
(sec.) 

# constraints 

1 (0.5, 0.5, -,-,97.5) 7,111,742 3 0.9859 44 112 

2 (0.5, 0.5, -,-,90) 6,991,673 3 0.9859 6 112 

3 (0.5, 0.5, -,-,75) 6,988,496 3 0.9859 58 112 

4 (0.3, 0.7, -,-,97.5) 5,828,280 3 0.9859 97 112 

5* (0.3, 0.7, -,-,90) 6,078,254 5 0.9917 180 112 

6* (0.3, 0.7, -,-,75) 5,877,230 3 0.9859 9 112 

7 (0.7, 0.3, -,-,97.5) 8,261,421 3 0.9859 8 112 

8 (0.7, 0.3, -,-,90) 8,165,355 3 0.9859 6 112 

9 (0.7, 0.3, -,-,75) 8,163,974 3 0.9859 7 112 

 
Note that in scenarios 5 and 6, although the customer service performance (90%, 75%) is 
lower than in the 4th scenario (97.5%), the objective function is higher. Therefore these 
scenarios are inferior and must be removed from the scenario list. Figure 3 shows the 
results of equal weights for scenarios 1, 2 and 3, comparing them with non-equal weights 
for scenarios 7, 8 and 9 in approach 1. A comparison of the first and third scenarios in Table 
7 shows that total cost is increased slightly from 6,988,496 to 7,111,742 (1.7%) when CSPI is 
increased from 75% to 97.5% (23%). This situation is the same for scenarios 7, 8 and 9 in 
approach one and for the other scenarios in the second and the third approaches (Tables 9 
and 11). As can be seen, the effect of customer service level decreasing on cost 
improvement is negligible. This may support management’s preference to select K=97.5% 
because a large increase in CSPI results in a small cost penalty. Selecting the first or the 
seventh scenario in this approach is based on DMs’ preferred objective weights.  
 
To solve problem 2, first the γ  parameter must be calculated based on the DMs’ 
preferences for the right-hand side of the new constraint (TDELT). Table 8 shows three 
preferred values for the delivery time performance index (γ ). 
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Figure 3: The total cost-customer service performance index curve (approach 1) 

Table 7: Scenario Sensitivity analysis (comparing total cost versus CSPI) 
a %decreasing (scenario i,j )= [(obj (i)-obj (j))/obj (i)]× 100 

b %decreasing (scenario i,j )= [(CSPI (i)-CSPI (j))/CSPI (i)]× 100 

 Scenario # 
 1 2 3 7 8 9 
Total cost 7,111,742 6,991,673 6,988,496 8,261,421 8,165,355 8,163,974 
% decreasing in total costa - 1.7 0.05 - 1.2 0.02 
Customer service index (%) 97.5 90 75 97.5 90 75 
% decreasing CSPIb - 7.7 16.7 - 7.7 16.7 

Table 8: Preferred values for γ  parameter 

TDELT optimum value γ =0% γ =5% γ =10% 

Z33 Z33+0.0× Z33 Z33+0.05× Z33 Z33+0.1× Z33 
33,672,890 33,672,890 35,356,535 37,040,179 

 
Based on three values for W1, W2 andγ , eighteen scenarios have been generated. The 
results of these scenarios are presented in Table 9. In approach 2, the WRL average 
(0.9644) is lower than approach 1 (0.9865); and by considering the TDELT objective in 
approach 2, this effect was predictable. Considering the sixth column in Table 8, it can be 
determined that since Zp2 is a non-linear objective, the range of the CPU time to solve this 
problem is very wide, from 32 to 1,693 seconds. Comparing the CPU times in Table 6 and 9 
shows that these times for problem 2 are significantly larger than those for problem 1. 
Unfortunately, LINGO optimisation software could not solve the 16th scenario in 180 
minutes. The results presented in Table 9 are illustrated graphically in Figures 4 and 5.  
 
                                                                   γ                             γ 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4: The total cost-customer service performance index curve (approach 2A) 
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Figure 5: The total cost-customer service performance index curve (approach 2B) 

Table 9: Results of the proposed model by approach 2 
*Inferior scenarios 

Scenario # Performance vector 
(W1, W2, η, γ, K) 

Obj. # open 
warehouses 

WRL% CPU time 
(sec.) 

# constraints 

10 (0.5, 0.5, -, 0%,97.5) 8,243,538 6 0.8873 32 113 

11 (0.5, 0.5, -, 0%,90) 8,239,363 6 0.8873 55 113 

12 (0.5, 0.5, -, 0%,75) 8,235,653 6 0.8873 27 113 

13 (0.5, 0.5, -, 5%,97.5) 7,632,590 6 0.9917 360 113 

14 (0.5, 0.5, -, 5%,90) 7,445,910 5 0.9862 1693 113 

15* (0.5, 0.5, -, 5%,75) 7,599,068 5 0.9633 10 113 

16 (0.3, 0.7, -, 5%,97.5) ---------- -- ---- --- 113 

17 (0.3, 0.7, -, 5%,90)  5 0.9917 600 113 

18* (0.3, 0.7, -, 5%,75) 5,935,038 5 0.9801 1086 113 

19 (0.3, 0.7, -, 10%,97.5) 6,055,389 5 0.9888 360 113 

20 (0.3, 0.7, -, 10%,90) 5,942,147 5 0.9859 360 113 

21 (0.3, 0.7, -, 10%,75) 5,886,385 5 0.9921 360 113 

22 (0.7, 0.3, -, 5%,97.5) 9,143,315 5 0.9801 638 113 

23 (0.7, 0.3, -, 5%,90) 9,174,460 5 0.9525 360 113 

24 (0.7, 0.3, -, 5%,75) 9,046,248 5 0.9745 360 113 

25 (0.7, 0.3, -, 10%,97.5) 8,838,670 4 0.9745 360 113 

26* (0.7, 0.3, -, 10%,90) 8,999,840 5 0.9859 360 113 

27* (0.7, 0.3, -, 10%,75) 8,998,700 5 0.9859 360 113 
 
Table 10 shows the preferred values for η  and γ  in problem 3. For this problem, six 
scenarios are examined. The performance vectors and the other results are presented in 
Table 11, and illustrated graphically in Figure 6. It is interesting to note that in approach 3 
the WRL average is 0.9878, and it is higher than the other approaches.  

Table 10: Preferred values for η and γ  parameters 

INV and TDELT optimum value η =15% , γ =5% η =15% ,γ =10% 

Z11 = 9,922,500 Z11+0.15× Z11 Z11+0.15× Z11 
Z33 =33,672,890 Z33+0.05× Z33 Z33+0.1× Z33 

 
In summary, we make the following observations from our case analysis: 
• Ten cases out of 33 scenarios are dominated by the other ones. 
• The solution results indicate that the proposed model is not very sensitive to CSPI, so 

the preferred value for this parameter is 97.5%.  
 
It can be concluded that the proposed SGP solution using approach 3 may provide different 
and even more preferable results when compared with approaches 1 and 2 
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Figure 6: The total cost-customer service performance index curve (approach 3) 

Table 11: Results of the proposed model by approach 3 
*Inferior scenarios 

Scenario # Performance vector 
(W1, W2, η, γ, K) Obj. # open 

warehouses WRL% CPU time 
(sec.) # constraints 

28 (-, -,15%,5%,97.5) 3,523,690 5 0.9859 164 114 

29 (-, -, 15%,5%,90) 3,515,250 5 0.9859 164 114 

30 (-, -, 15%, 5%,75) 3,507,633 5 0.9859 169 114 

31* (-, -, 15%,10%,97.5) 3,557,681 5 0.9917 109 114 

32* (-, -, 15%,10%,90) 3,553,972 5 0.9917 7 114 

33* (-, -, 15%,10%,75) 3,574,117 5 0.9859 212 114 

6. SUMMARY AND CONCLUSION  

This study proposed a multi-objective, multi-commodity distribution planning model that 
integrates location and inventory control decisions in a multi-echelon supply chain network 
with multiple capacity centres in a stochastic environment. An interactive stochastic goal 
programming formulation for food production is developed. The goal of the model is to 
select the optimum numbers, locations, and capacity levels of the warehouses to deliver 
the products to the retailers at the least cost, while satisfying the desired service level. 
The modelling approach of this model is distinguished from the other models in this field by 
the fact that DMs’ imprecise aspiration levels for the goals, and retailers’ imprecise 
demand are incorporated into the model using a stochastic modelling approach, which is 
otherwise not possible by conventional mathematical programming methods.  
 
This paper also contributes to the literature by proposing a novel and generic SGP-based 
solution approach that determines the preferred compromise solution for multi-objective 
decision problems. 
 
An Iranian food industry case study was used to demonstrate the feasibility of the proposed 
method for real distribution problems. Some realistic scenarios have been investigated, 
based on the DMs’ strategies. These strategies can be compared by determining the 
performance vector for each strategy. The proposed method yields an efficient solution and 
overall degree of DMs’ satisfaction with the determined objective values. Accordingly, the 
proposed method is practically applicable to solving real-world multi-objective DPD 
problems in an uncertain environment.  
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Figure A1: Evolution of the inventory level )(tI jl at site j 

APPENDIX 

In this appendix we proof Eq. 2: 
 
A1. Stochastic weights in allocation problem: Transportation costs 
In this section we used the Weber problem for modelling allocation/transportation costs. 
The objective allocation function is: 
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where wil is the weights of the demand customer zone i for product l and d( Xj , Pi ) is the 
distance between customer zone i , located at Pi =(ai , bi) and the warehouse j located at X= 
( xj, yj). We consider the following Euclidean distance measure: 

   22 )()(),( ijijij byaxPXd −+−=  (A2) 

 
Since wil is a stochastic parameter, the allocation costs function to be minimised is: 
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To calculate transportation costs, we replaced the distance component in the above 
objective function with the transportation cost in the whole network. Now we can 
formulate the transportation costs objective function, which is equivalent to: 

 
 (A4) 

 

Where ilil dwE =)( . 

A2. Inventory holding costs 
To calculate inventory holding costs at any located warehouse, we consider the continuous 
inventory revision [5]. In this inventory control policy, when the inventory level of product l 
falls below rjl , an order of Qjl units is triggered, which is received after LTjl time units. 
Figure A1 shows the stochastic demand pattern and warehouse fulfil rate. In this figure, the 
continuous line is the on-hand inventory, and the segmented line is the inventory position.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If an order is submitted to any located warehouse, the inventory level must cover the 
customers’ demand during lead time LTjl , with a given probability α−1  from the DMs. 
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This probability is known as the service level of the inventory system. The service level 
constraint can be written as follows: 

   Prob α−=≤ 1))(( )max( jljl DLTD   (A5) 

where )( jlLTD  is the uncertain demand, assigned to the warehouse j during the lead 

time for product l, and )max( jlD is maximum demand during the lead time, and can be 

expressed as follow: 

)max( jlD = jljl ssD +   (A6) 

where jlD is the mean demand, assigned to warehouse j during the lead for product l, and 

jlss  is the level of safety stock inventory that should be held at warehouse j for product l. 

If we assume a normal distribution demand, and consider )max( jlD  as the re-order point, rjl 

can be determined as follows:  

( ) ( ) ))(])[(( 22
1 jljlLTjljljljl VLTEDEZLTEDEr

JL
⋅+⋅⋅+⋅= − σα     (A7) 

Since in this paper we assume that the LTjl is a constant parameter, then Eq. (A7) is: 

jljljljljl LTVZLTDr ⋅⋅+⋅= −α1     (A8) 

where α−1Z  is the value of the standard normal distribution, which accumulates a 

probability of α−1 . This parameter is assumed to be fixed for the entire network, 
determining a uniform service level of the system. 
 
The average holding cost rate for each warehouse j and product l ($/day) based on Eq. 
(A8), can be written as: 

jljljljljl VLTZHCQHC ⋅⋅⋅+⋅ −α12     (A9) 

The first term of Eq. (A9) is the average cost incurred due to holding the order quantity Qjl, 
which is the inventory of product l used to cover the demand that arose during two 
successive orders. The second term in (A9) is the average cost associated with safety stock 

kept at warehouse j )( 1 jljl VLTZ ⋅⋅−α . 

In this case we assume that there is no capacity constraint on the order quantity. So, 
differentiating the objective function in terms of Qjl for each warehouse and product, and 
equaling to zero, we get: 

0
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From Eq. (A10) we could obtain: 
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By replacing Eq. (A11) in Eq. (A9), the TCOST objective function can be expressed as 
follows: 
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