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ABSTRACT 

The overall objective of the reliability allocation is to increase the profitability of the 
operation and optimise the total life cycle cost without losses from failure issues. The 
methodology, called risk-based reliability (RBR), is based on integrating a reliability 
approach and a risk assessment strategy to obtain an optimum cost and acceptable risk. 
This assessment integrates reliability with the smaller losses from failures issues, and so can 
be used as a tool for decision-making. The approach to maximising reliability should be 
replaced with the risk-based reliability assessment approach, in which reliability planning, 
based on risk analysis, minimises the probability of system failure and its consequences. 
This paper proposes a new methodology for risk-based reliability under epistemic 
uncertainty, using possibility theory and probability theory. This methodology is used for a 
case study in order to determine the reliability and risk of production systems when the 
available data are insufficient, and to help make decisions. 

OPSOMMING 

Die hoofdoelwit van betroubaarheidstoedeling is die verhoging van winsgewendheid van 
sisteemgebruik teen die agtergrond van optimum totale leeftydsikluskoste. Die metodologie 
genaamd “risikogebaseerde betroubaarheid” behels die bepaling van ’n risikoskatting om 
optimum koste te behaal vir ’n aanvaarbare risiko. Die navorsing stel vervolgens ’n nuwe 
ontledingsmetode voor vir epistemiese onsekerheid gebaseer op moontlikheids- en 
waarskynlikheidsleer. ’n Bypassende gevallestudie word aangebied. 
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Nomenclature 
 
m mass function 
bpa basic probability assignment 
bel belief function 
pl plausibility function 
doubt doubt function 
C total system cost 
Ci(Ri) cost of component/subsystem i 
Ri reliability of component/subsystem i 
n number of components within the system considered in the optimisation 
Ri,min minimum reliability of component/subsystem i 
Ri,max maximum achievable reliability ofcomponent/subsystem i 
Rs system reliability 
RG system reliability goal 

1. INTRODUCTION 

Avoiding the risks of a production system by increasing reliability is the main goal of this 
study. In recent years there has been an increased emphasis on accounting for the various 
forms of uncertainties that are introduced in mathematical models and simulation tools. 
Various forms of uncertainties exist, and it is very important that each one of them is 
accounted for, depending on the amount of available information. 
 
Gathering data for reliability is mostly done under uncertain conditions that may be 
simplified. This type of uncertainty, known as epistemic uncertainty, occurs as a result of a 
lack of knowledge. Risk has two dimensions: 1) the severity of the consequences of the 
event, and 2) the probability of its occurrence. In the case of a production system, one can 
use a reliability index to calculate the likelihood of failure; but there is an even larger lack 
of knowledge regarding consequences. 
 
In this paper, an integrated method is proposed to determine risk-based reliability in 
uncertain conditions. It attempts to determine epistemic uncertainty using intervals 
bounding variables. Some applications of intervals variables are available in the literature – 
for instance, as upper and lower coherent methods of prediction [11, 17]. 
 
In general, several methods are used to predict the future, notably possibility theory [5], 
evidence theory [4], the transferable belief model [14], and Bayesian theory [1]. However, 
the method used in this paper is the Dempster-Shafer theory [4], which is normally used for 
decision-making under uncertainty conditions and when rarely-found data related to our 
subject of decision are used. The application of this method helps to use the maximum data 
available and to calculate the maximum risk in predicting the reliability of systems under 
epistemic uncertainty conditions. This means that, instead of seeking a precise number, we 
determine the range. For instance, to determine the consequence of a system failure, we 
produce a range rather than a particular number. This study aims to calculate risk-based 
reliability under uncertainty conditions. It employs the Dempster-Shafer theory to describe 
the relation between reliability and system-failure risk, and finally to find the minimum and 
maximum required reliability for a production system, while coming to a certain decision 
using the minimum available data. The problem of risk and reliability estimations is an old 
problem; and the difficulty of reliability optimisation risk and reliability needs accurate 
modelling and accurate data. But accurate data are not always available; therefore, we can 
only strive towards a hybrid optimal reliability strategy that consists of qualitative and 
quantitative methods. 

2. RISK-BASED RELIABILITY (RBR) 

A considerable number of studies have introduced reliability optimisation involving costs [6, 
10, 15, 18]. On the other hand, a risk-based method aims at reducing the overall risk that 
may result as a consequence of the unexpected failure of operating facilities. By assessing 
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the level of reliability of each component, one can prioritise the risk caused by the failure 
for the components of the system. It means that high risk items are given more reliability 
allocation than low risk items. Using risk-based reliability (RBR), one can determine the 
reliability allocation of equipment to minimise the total risk as a result of failure. The 
implementation of RBR reduces the likelihood of an unexpected failure through estimate 
and adjustment reliability. 
 
The minimum optimum reliability of the system can be found by creating a balance 
between the cost of a system failure and the cost of finding reliability [8]. The quantitative 
value of the risk is the basis for prioritising the improvement reliability activities, and is 
shown in Figure 1. RBR starts by separating the complete system under study into small 
manageable units. The risk, which is computed for a specific failure scenario(s) of a unit, is 
compared and evaluated against the acceptance criteria. If the risk value exceeds the 
criteria, the reliability allocation is re-evaluated for the optimal cost that brings the 
exceeded risk to an acceptable level. This process is repeated for each unit. The results 
obtained for all units are combined to develop a reliability allocation plan for the system. A 
description of each step of the RBR method is detailed in the following sections and case 
study. 

3. DECISION-MAKING UNDER UNCERTAIN CONDITIONS 

In recent decades, much attention has been given to various methods of making a decision 
under uncertain conditions. Among these methods, the belief theory, known as the 
Dempster-Shafer theory, is capable of showing and representing the uncertainty of our 
incomplete knowledge. The application of this theory was based on Dempster’s work in 
explaining the principles of calculating upper and lower probabilities [4], and then the 
mathematical theory developed by Shafer [13]. In recent decades, the Bayesian statistical 
theory was used by many researchers in the literature because it was a well-known theory 
in this area. However, a few studies have been carried out in the Dempster-Shafer theory 
recently. Dempster-Shafer studies have a wide range of applications as a technique for 
modelling under uncertain conditions. Various studies are introduced for uncertainty 
management. Buchanan & Shortliffe [2] introduced a model that manages uncertainty and 
has certain factors. With limited knowledge, it is more suitable to use uncertain methods. 
Fedrizzi & Kacprzyk [7] carried out a number of studies on fuzzy prioritising and on using 
the interval value to show the opinions and judgment of experts through accumulated 
distributions. Every method that we use for uncertainty management has its own 
advantages and disadvantages [12]. For instance, Walley [16] and Caselton & Luo [3] 
discussed problems resulting from the Bayes’s popular analysis, caused by the lack of 
information. Klir [9] carried out a critical analysis of uncertainty for gaining knowledge.  
 
Among the above-mentioned methods, the Dempster-Shafer theory [4] has been widely 
used when the data have been gathered from several sources. In this study the Dempster-
Shafer theory is also used to calculate the failure risk of equipment in a production 
organisation. What happens to production systems in a real situation is not predictable. One 
is always confronted with risk, especially when the data is limited. Although various studies 
have been carried out into using Dempster-Shafer theory in identifying systems, calculating, 
and decision-making, one is still confronted with problems in the practical use of the theory 
in assessing the existing risk of the system and in making executive decisions in real 
production systems. The study aims to propose an integrated method for the better 
identification of risk assessment of equipment, and making it practicable. The executive 
samples are also provided by calculating the risk of the facilities in a production 
organisation. 
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Figure 1: Risk-based reliability (RBR) method 

Yager [19] stated that if one cannot obtain the exact probability, one can estimate the rank 
of the probability, as shown below. 
 
bel(A) ≤ P(A)≤ pl(A)        (1) 
 
The above equation is the core of this study. With it, the risk and reliability of a production 
system under uncertain conditions may be calculated. 

3.1 Basic probability assignment 

The basic probability assignment (BPA or m) differs from the classical definition of 
probability. It is defined by mapping over the interval [0-1], in which the basic assignment 
of the null set m(ø) is zero, and the summation of basic assignments in a given set A is ‘1’. 
The basic probability assignment is called a focal element for each element for which m (A) 
≠ 0 is true. This can be represented by: 
a 
a 
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3.2 Belief function 

The lower and upper bounds of an interval can be determined through a basic probability 
assignment, which includes the probability of the set bounded by two non-additive 
measures, namely belief and plausibility. The lower limit of belief for a given set A is 
defined as the summation of all basic probability assignments of the proper subsets B, in 
which B is a subset of A. The general relation between BPA and belief can be represented 
by: 

 
 

(3) 
 

 

 

3.3 Plausibility function 

The upper bound is plausibility, which is the summation of basic probability assignments of 
subsets of B, for which A (i.e., B∩A ≠ ø) is true, and is expressed by: 

 
(4) 

 
The plausibility function is related to the belief function through the doubt function, 
defined by: 

 

(5) 
 

Moreover, the following relationship is true for the belief function and the plausibility 
function under all circumstances. 

 
 

 
(6) 

 
 

3.4 Belief interval 

The belief interval represents a range in which the probability may lie. It is determined by 
reducing the interval between plausibility and belief. The narrow uncertainty band 
represents more precise probabilities. The probability is uniquely determined if 
bel(A)=pl(A); and for the classical probability theory, all probabilities are unique. If U(A) 
has an interval [0, 1], it means that no information is available; but if the interval is [1, 
1],then it means that A has been completely confirmed by m(A). 

4. RELIABILITY OPTIMISATION MODEL 

To compute the probability that all involved components are operational during the task 
several methods of allocation problem are available. This paper addresses the nonlinear 
optimisation problem by Tilman et al. [15] as follows: 
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s.t. 

Gs RR ≥  

max,1min, ii RRR ≤≤  

ni .,.........2,1=  
 
It is clear from the above discussion that maximising the reliability of a distributed system 
is equivalent to minimising the unreliability cost function Z. However, to achieve a 
satisfactory allocation, additional constraints should be considered with the cost function to 
meet the application requirements and not to violate the availability of system resources.  
 
Tilman et al. [15] obtain a relationship for the cost of each component as a function of its 
reliability. A general behaviour for the cost function is proposed as follows: 
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This formulation is applied to achieve three goals that are proved in the real conditions of a 
production system, as follows: 

1. If a high reliability component is required, the related cost will be increased 
exponentially. 

2. If a high reliability component is not required, the cost of a low reliability 
component will be low. 

3. Increasing component reliability may be feasible or non-feasible. 
 
In Eqs.(7) and (8), Ri,min is the initial (current) reliability value of the ith component 
obtained from the failure distribution of that component and for the specified time. Ri,max, 
is the maximum achievable reliability of the ith component, and fi is the feasibility of 
increasing a component’s reliability, and it assumes values between 0 and 1.  
 
To gain a level of reliability, one needs to know its feasibility. These features, depending 
on the complexity of the system, are gained through various methods such as a new 
reliability allocation through investments in process facilities. The greater the reliability of 
the systems, the greater the effort required; therefore, reliability improvement can be very 
difficult, costly, or impossible, depending on whether the design complexity, technological 
limitations, and feasibility parameter are a constant. It is difficult to improve the reliability 
of the component subsystem, since it is a number between 0 and 1. 
 
This is an optional step, aimed at verifying that the reliability plan developed will produce 
an acceptable risk level for the complete system. In this step, the process is repeated using 
revised values for the failure probabilities. The result of this step determines whether or 
not the developed reliability plan is effective in managing risk. 

5. CASE STUDY: OPTIMUM RBR STRATEGY FOR A PRODUCTION SYSTEM 

For the purposes of this study, any production system may be assigned to one of the 
following three categories: series systems (Figure 2), parallel systems (Figure 3), or hybrid 
systems (Figure 4).  
 
Series systems are those systems in which the failure of any element leads to the failure of 
the system. Conceptually, a series system is one that is as weak as its weakest link. A 
graphical description of a series system is shown in Figure 2.  
 
A parallel system is a configuration in which, as long as not all of the system components 
fail, the entire system works. Conceptually, in a parallel configuration the total system 
reliability is higher than the reliability of any single system component. A graphical 
description of a parallel system of ‘n’ components is shown in Figure 3.  
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If a system does not satisfy these strict definitions of series or parallel systems, the system 
is classified as a hybrid system. Hybrid systems are made up of combinations of several 
series and parallel configurations. The way to obtain system reliability in such cases is to 
break the total system configuration down into homogeneous subsystems, and then to 
consider each of these subsystems separately as a unit, and calculate their reliabilities. 
Finally, put these simple units back (via series or parallel recombination) into a single 
system and obtain its reliability. A graphical description of a hybrid system is shown in 
Figure 4. 
 

 

Figure 2: Series system 

 

 

 

 

 

 

 

 

 

Figure 3: Parallel system 

 
 

 

 

 

 

 

Figure 4: Hybrid system  

For example, consider a system composed of a combination in series. Assume that the 
objective reliability for the system is shown in Table 1 for a mission time of 150 hrs. To 
begin the analysis, part of the critical fault tree of the machine has been drawn (Figure 5). 
The first step is to obtain the system’s reliability equation. In this case, and assuming 
independence, the reliability of the system, Rs, is given by: 
 
Rs=R1.R2.R3.R4.R5        (9) 
 
To represent the behaviour of the reliability function for each individual component using 
the cost function given by Eq. (8), a scenario is considered for the allocation problem of 
Table 1. There are three parameters in Table1. Ri,min is  the minimum reliability of 
component/subsystem I, Ri,max is the maximum achievable reliability of component/ 
subsystem i, and Feasibility is the feasibility of increasing the reliability of component/ 
subsystem i. 
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Figure 5: Part of the critical fault tree of the machine 

 

Table 1: Objective reliability for a mission time of 150 hrs 

 Pump (R1) Motor (R2) Crane (R3) Computer (R4) PLC  (R5) 

Rmin 0.8 0.8 0.7 0.7 0.75 
Rmax 0.98 0.99 0.98 0.97 0.97 
Feasibility 0.8 0.7 0.6 0.8 0.9 

 
According to Table 1, by using Eq.7 it follows that:  
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The results for this case are shown in Table 2. It can be seen that the highest reliability is 
allocated to the component with the higher cost. When estimating the probability of the 
occurrence of an event (Probability of Failure, or POF), Reliability is always one at the start 
of its life (i.e., R(0) =1 and R(∞) =0). If T is the time to failure, let R(t) be the probability 
P(T ≤ t) that the time to failure T will not be greater than a specified time t. The time to 
failure distribution R (t) is linked with the probability of failure (POF) by: 
 
POF = 1-Reliability                   (11) 
 
Subsequently one calculates reliability and POF as shown in Table 2 by using Eq. (10). 

a 
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Table 2: Results for the case study 

 RG POF RG POF RG POF RG POF RG POF RG POF 

 0.83 0.17 0.84 0.16 0.85 0.15 0.86 0.14 0.87 0.13 0.88 0.12 

             

R1 0.970 0.030 0.971 0.029 0.973 0.027 0.975 0.025 0.976 0.024 0.978 0.022 

R2 0.975 0.025 0.977 0.023 0.980 0.020 0.982 0.018 0.984 0.016 0.987 0.013 

R3 0.954 0.046 0.958 0.042 0.962 0.038 0.966 0.034 0.970 0.030 0.974 0.026 

R4 0.956 0.044 0.958 0.042 0.960 0.040 0.962 0.038 0.965 0.035 0.967 0.033 

R5 0.963 0.037 0.964 0.036 0.965 0.035 0.967 0.033 0.968 0.032 0.969 0.031 

cost 165  340  967  5060 102210 128111900 

 

5.1 Application of the Dempster-Shafer calculations for consequence assessment 

The objective here is to quantify the potential consequences of total functional failure, 
represented by a credible scenario. Although some data pertaining to the failure probability 
of systems is available, there is not adequate data for calculating the failure probability 
through the classical probability theory, since there are conditions of uncertainty. The 
analysis applies the Dempster-Shafer theory, resulting in a decision-making framework using 
the minimum available data, which includes an assessment of the likely consequences if a 
failure scenario did materialise. 
 
With this method, the consequences are quantified in terms of damage by using a basic 
probability assignment instead of classical probability theory. Since one cannot use classical 
probability theory, use is made of intervals for determining the breakdown of machines. 
This allows one to distinguish the prioritisation performed on each category. 

5.2 Basic probability assignment for consequence impact 

The second factor in determining the risk of equipment is to find the magnitude of 
breakdowns. Existing data on failures during the previous 13 years are limited, and direct 
decision-making is not possible through statistical methods.  
 
The company intends to make decisions about how to react to the failure risk of these three 
parts on the basis of previous data and expert opinion. After analysing the past records of 
breakdowns, they are sorted into three categories: (L) or low, in which the magnitude of 
breakdown is low; (M) or medium, where the magnitude of breakdown is medium and leads 
to interruption, but is repairable; and (H) or High, in which the magnitude of breakdown is 
high and, if it happens, will cause a crisis.  
 
The set of occurrences will be Θ= {L, M, H}. There will be eight possible subsets: 
{φ},{L},{M},{H},{L,M},{L,H},{M,H},{L,M,H}. The set of basic probability allocations for the 
occurrence of breakdown in the production system is shown in Table 3. The gathered data 
on the magnitude of breakdown of machines are found in BPA’s records of machine 
breakdown.  

5.3 Calculation of failure consequence 

The upper and lower bounds of an interval are set by basic probability allocations, which 
include a probability set bounded by the two extents of belief and plausibility. The lower 
bound of belief (bel) from a given set A is the summation of all basic probabilities that are 
allocated to occurrences in Eq. (3), and the upper bound is also found through Eq. (4). 
a 
a 
a 
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Table 3: Basic probability assignment (BPA or m) for system failure 

Basic 
probability 

Assignment for 
Consequence  

impact 

Press machine section 

R1 R2 R3 R4 R5 

L 0.3 0.6 0.2 0.5 0 

M 0.1 0.1 0.2 0.2 0 

H 0 0.1 0 0.1 0.7 

L,M 0.1 0.1 0 0.1 0 

L,H 0 0 0 0 0 

M,H 0.5 0 0.6 0 0 

L,M,H 0 0.1 0 0.1 0.3 

 
The probability interval found through the belief and plausibility functions represents an 
uncertain interval, which can be given by the correct value to wrong value due to lack of 
adequate data. The uncertain interval is between these two values.  This interval starts 
from the belief function and continues to the value of the plausibility function. By using 
this interval U(A), the narrower U(A) shows an exact probability. In the analysis of the 
attained results of the belief and plausibility functions, if belief is equal to plausibility, the 
exact value for probability of failure consequence is obtained and then the uncertainty will 
be zero. In addition by using Eqs. (3) and (4), one can simply find the belief and plausibility 
functions for the system failure. Table 4 shows the results.  
 
To determine the failure consequence of each machine from the table of belief and 
plausibility functions, the interval that has a large belief interval will be chosen, since the 
belief function determines a low probability that is gained through the minimum available 
data. For example, one can calculate the basic probability assignment (BPA or m) for the 
likelihood of failure consequence as follows: 
 
The BPA for the pump or ‘p’ obtained from Table 4 is as follows: 
 
m(p)L=0.3                               m(p)L,H=0  
m(p)M=0.1                              m(p)M,H=0.5 
m(p)H=0                                 m(p)L,M,H=0 
m(p)L,M=0.1 
 
bel(p)L=m(p)L=0.3                                         bel(p)L,M=m(p)L+m(p)M+m(p)L,M=0.3+0.1+0.1=0.5 
bel(p)M=m(p)M=0.1                                       bel(p)L,H=m(p)L+m(p)H+m(p)L,H=0.3+0+0=0.3 
bel(p)H=m(p)H=0                                           bel(p)M,H=m(p)M+m(p)H+m(p)M,H=0.1+0+0.5=0.6 
bel(p)L,M,H=m(p)L+m(p)M+m(p)H+m(p)L,M+m(p)L,M+m(p)L,H+m(p)M,H+m(p)L,M,H=0.3+0.1+0.1+0.5=1 
 
pl(p)L=m(p)L+ m(p)L,M+ m(p)L,H+ m(p)Θ =0.3+0.1+0=0.4 
pl(p)M=m(p)M +m(p)L,M +m(p)M,H+m(p)Θ=0+0+0.5+0=0.7 
pl(p)H=m(p)H+ m(p)L,H + m(p)M,H + m(p)L, Θ =0+0+0.5+0=0.5 
pl(p)L,M=m(p)L+m(p)M+m(p)L,M+ m(p)L,H + m(p)M,H + m(p) Θ =0.3+0.1+0.1+0+0.5+0=1 
pl(p)L,H=m(p)L+m(p)H+m(p)L,M+ m(p)L,H + m(p)M,H + m(p)Θ =0.3+0+0.1+0.5=0.9 
pl(p)M,H=m(p)M+m(p)H+m(p)L,M+ m(p)L,H+ m(p)M,H+ m(p)Θ=0.1+0.1+0.5=0.7 
pl(p)L,M,H=m(p)L+m(p)M+m(p)H+m(p)L,M+m(p)L,H+m(p)M,H+m(p)Θ=0.3+0.1+0.1+0.5=1 

a 
a 
a 
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Table 4: Calculation of the belief and plausibility functions for the consequences of 
failure 

Co
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L 0.3 0.3 0.4 0.6 0.6 0.8 0.2 0.2 0.2 0.5 0.5 0.7 0 0 0.3 

M 0.1 0.1 0.7 0.1 0.1 0.3 0.2 0.2 0.8 0.2 0.2 0.4 0 0 0.3 

H 0 0 0.5 0.1 0.1 0.2 0 0 0.6 0.1 0.1 0.2 0.7 0.7 1 

L,M 0.1 0.5 1 0.1 0.8 0.9 0 0.4 1 0.1 0.8 0.9 0 0 0.3 

L,H 0 0.3 0.9 0 0.7 0.9 0 0.2 0.8 0 0.6 0.8 0 0.7 1 

M,H 0.5 0.6 0.7 0 0.2 0.4 0.6 0.8 0.8 0 0.3 0.5 0 0.7 1 

L,M,H 0 1 1 0.1 1 1 0 1 1 0.1 1 1 0.3 1 1 

 
After obtaining Tables 4 for all devices, a decision may be made by using the principles of 
Dempster-Shafer. The belief function bel(A) measures the total probability that must be 
distributed among the elements of A; it inevitability reflects and signifies the total degree 
of belief of A, and constitutes a lower limit function on the probability of A. On the other 
hand, the plausibility function pl(A) measures the maximal amount of probability that can 
be distributed among the elements in A; it describes the total belief degree related to A, 
and constitutes an upper limit function on the probability of a belief interval [bel(A), 
pl(A)]. Marked gray in Table 4, it reflects uncertainty and describes the unknown with 
respect to A. As shown in Table 4, different belief intervals represent different meanings. 
 
A decision is made for the interval that must follow rules, such as the less uncertainty 
interval between belief and plausibility representing greater precision. Obtaining a belief 
function that considers the available evidence, the selected range has a higher belief. 

5.4 Determining risk interval using risk assessment matrix 

Once the failure probability and the magnitude band of system failure are determined, one 
can use the risk assessment matrix to find the level of risk for each component. For this 
purpose, a model may be used that assigns probability of failure and consequence impact in 
a band (Table 5).  

Table 5: Grading the X axis in the risk matrix 

Risk factor Insignificant Minor Moderate Major 

X Low or 
Low-medium 

Low-medium 
or 

Medium-high 

Medium 
or 

Medium-high 

Medium-high 
or 

High 
Y [0,0.02] [0.02-0.025] [0.025-0.030] [0.030-0.040] 
 Likelihood and consequences ranking in the axis 

 
The grading of the band starts from insignificant breakdowns and ends with major 
breakdowns. After blending the two dimensions of Table 5, and drawing a two-dimensional 
risk diagram, it is found that the X axis of the diagram is related to the consequences, while 
the Y-axis shows the likelihood of the occurrence of failure or probability of failure (POF), 
in which each section represents the failure risk of each machine. For instance, calculations 
for a pump (R1), motor (R2), and PLC (R5) are shown in Figure 6. 
a 
a 
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Figure 6: Risk diagram for press machine 
 
This figure indicates that the failure risk of the motor (R2) for two reliability intervals 
[R2=0.975 (i.e., F=0.025), R2=0.987 (i.e., F=0.013)] changes from minor risk to insignificant 
risk. Other results pertaining to other machines (i.e., pump and PLC) are shown in the 
diagram as well. The reliability of R1 for pump up to 0.978 can be increased. Thus, the 
probability of failure up to 0.022 can be decreased. Next, the risk of the pump is 
decreased; however, for the PLC, increasing the reliability does not affect on the risk. 
Thus, we should reduce the consequence impact of failure. For example, one can decrease 
the consequence impact with added redundancy. If one does not have adequate data 
available, qualitative and precise numbers may be used together to calculate the risk. In 
this case study, due to lack of information, a range for the consequence impact is 
determined, and the probability of failure with the relation between risk and reliability is 
calculated. 

6. CONCLUSIONS  

The final challenge of reliability optimisation problems is to find a solution that improves 
reliability with lower cost and risk. However, maximising system reliability does not 
necessarily guarantee decreasing losses from failure. This does not comply with the general 
understanding and knowledge of the concept of reliability. Decision-making is a process in 
which a decision-maker predicts and evaluates the outcome using existing data, and 
chooses a certain solution to attain the objective. For complex systems, no theoretical 
model is available for analysing risk. This article proposes a framework for showing and 
representing the uncertainty of incomplete knowledge when calculating the risk of a 
production system. A new approach is proposed named ‘risk-based reliability’. This 
approach is useful for decision-making; under conditions of uncertainty, decision-makers 
still have to decide what the best solution will be for their purposes.  
 
Usually the algorithms of optimal reliability search are used to maximise reliability or 
minimise cost. However, there is one important problem in any process that decision-
makers must analyse to identify the risk of solution. In this paper, the Dempster-Shafer 
theory has been applied to guide the selection of preferences to achieve the best solution, 
via risk–matrix diagrams that visualise and analyse the risk for any component. When the 
risk factor is high, one may replace system reliability with feasible reliability at minimum 
cost and risk of production. 
 
The contributions of this paper are in the four main sections on reliability allocation. These 
are to calculate the likelihood of failure, the consequence of failure and the risk to the 
production system, and to reallocate reliability decreasing risk to an acceptable level.  
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The results are from a case study of a single sample production system. In this way, 
decision-makers can focus on risk and reliability together. 
 
The original contributions of the work include risk–based reliability that in complex systems 
helps the decision-maker to choose a certain solution for attaining the objective. The 
Dempster-Shafer theory is used to obtain the required data, and then analyse the data and 
prepare a scenario of choices for the decision-maker. The decision-maker then makes a 
choice, and the decision-making process is complete. 
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