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ABSTRACT

In this paper, the optima planning of manpower traning progranmes in a manpower System
with two grades is discussed. The planning of manpower training within a given organizetion
involves a trade-off between training costs and expected return. These planning problems are
examined through modes that reflect the random nature of manpower movement in two
grades. To be specific, the system conssts of two grades, grade 1 and grade 2. Any number
of persons in grade 2 can be sent for training and after the completion of training, they will
day in grade 2 and will be given promotion as and when vacacies arise in grade 1.
Vacancies arise in grade 1 only by wastage. A person in grade 1 can leave the system with
probability p. Vacancies are filled with persons in grade 2 who have completed the training.
It is assumed that there is a perfect passing rate and that the sizes of both grades are fixed.
Asuming that the planning horizon is finite and is T, the underlying stochestic process is
identified as a finite date Markov chain and usng dynamic programming, a policy is evolved
to determine how many persons should be sent for training a any time k so as to minimize the
total expected cost for the entire planning period T.
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INTRODUCTION

Optimd planning of traning in manpower sysems has been dudied by severd
researchers (see Guardabass (1969), Purkiss (1969), Grinold and Marshdl (1977),
Vagda (1978), Nakamura and Shingu (1984), Goh et a (1987)). In these papers, the
generd objective is to minimize the reference cost or maximize the expected return for
the planning period. In paticular, in the paper of Goh et d (1987), the dynamic
programming principle of Bdlman (1957) is used to obtan the optimum training plan
for a angle grade organization, in which the random naure of manpower movements
are conddered due to training and waste. As training is imparted not only for the
upgrading of knowledge but aso for promotion in multi-grade organizations, it is
worthwhile to dudy the optimization problem from the point of view of traning,
wagte and promoation.

This paper is an attempt to fill the gap. For the purpose of smplicity condder a
manpower system with two grades, one a lower grade and the other a higher grade and
condder traning as a criterion for promotion. When traned employees are not
avalable in the lower grade, the vacancies aidng in the higher grade remain unfilled
and a production loss is suffered. However, if promotion is not given to a trained
employee in the lower grade, an excess cost will be incurred so as to keep him/her in
the organization.

Usng a dynamic programming approach, the optimd training plan for two cases is
obtained. In case |, the objective is to minimize the tota expected cost and in case I,
to maximize the total expected return.

In section 2, we describe the manpower model, assumptions and notation.  Section 3
presents a finite state Markov decison modd for the traning programme.  The
principle of dynamic programming is goplied in section 4 to obtain the optima policy
for the entire planning period for two objectives. A numerica example is provided in
section 5 to illustrate the behaviour of the moddl.

ASSUMPTIONSAND NOTATION

Assumption 1

We condder a manpower organization condsting of two grades. Grade 2 is the lower
and Grade 1 isthe higher.

Assumption 2
Grade 1 can accommodate N persons and Grade 2 can accommodate M persons.
Assumption 3

Persons from Grade 2 are sent for training thet involves training costs.
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Assumption 4

Any number of persons can be sent for training at any time and there is a perfect pass
rate. After the completion of training al these persons are returned to Grade 2 and are
not dlowed to leave the organization as long as they remain in Grade 2. Promotion is
only given to these trained persons.

Assumption 5

Vacancies that arise in Grade 1 are filled by promoting trained employees waiting for
promotion in Grade 2.

Assumption 6
If a trained employee is not avaladle in Grade 2, then vacancies in Grade 1 remain
unfilled and a promotion loss is suffered until a trained person becomes available in

Grade 2. Untrained persons leaving the organization from Grade 2 are ingtantaneoudy
replaced by untrained persons and the population of Grade 2 remains M at dl times.

Assumption 7
We assume that the number of trainings given in the planning period is finite and each
traning lagts for a fixed duration of time. We condder the period of training of one
batch of persons as one unit of time. Consequently, the planning period is L units of
time.
Assumption 8
We dso assume that the probability of a person leaving the organization from Grade 1
during the time intervd (k, k+1) is P; k=0, 1, 2, ..., L. Promations and trainings
occur a timepointsk=0, 1, 2, ..., L.
Notation:

K+ 0: Thetime point immediady after k.

X(K): Number of trained employees in Grade 2 at
timeK + 0

Y(K):  Number of untrained employees in Grade 2
atimek+ O

Z(K):  Number of vacanciesin Grade 1  time
K+0

U(k,i,j): The control varigble representing the

number of employees sent for traning at
timek when X(k) =1i; Z(k) =]
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gLk, X(K), Z(K), U(k, X(K), Z(K))]: The one-step return function & time k.

p: Probability that avacancy arisesin Grade 1
a any time,

FINITE-STATE MARKOV DECISION MODEL
Wefirst observe that

X(K) +Y(K) +Z(K)=M; k=0,1,2, .., L

and

O£UK)EM-X(k); k=0,1.2....,,L

where we have denoted the control varigble U(k, X(k), Z(k)) by U(k) for amplicity.
The date of the manpower sysem a any time k is represented by the vector (X(k),
Z(k));

k=0,1,2. ..., L.

The feed-back control depends on (X(k), Z(k)) and hence the manpower state of time
kH is only dependent on the last manpower sate (X(k), Z(k)). Consequently (X(k),
Z(K)) is a finite-state Markov decision process. We note that the State-space of the
processis

{(0,0), (0,2), ..., (0,N), (1, 0), (2, 0), ... (M, 0)}

Let usdefine
P(Z,MJi, j, UK) = P[X(k+1) = ¢, Z(k+ 1) = MIX(K) =, Z(K) = |, U(K)]

whereO£i, / EMandO£j,M £ N.

To derive the expression for p(¢, MY, j, U(K)), we discuss the leaving process from
Grade 1. For this, we note that the number of person promoted during (k, kH) is
clearly

i + U(k) — ¢ and so the number of persons who have left the syssem during (k, k + 1]
is

M—j+ 1+ UK — ¢. Sincethe number of persons in Grade 1 a time N — | and the
number of vacancies arisng during (k, k + 1] follows a binomid digtribution with
parameter (N - j, P), we have

. _&® N- | O m-j+i+uk)- £
P(Z, M[i, j, U(K)) = gM T irU0- zE,FNJ (3.1)

WhereN—j2 M—j+i+ UK -/ andM—j+i+UK-730
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TWO STOCHASTIC PROGRAMMING PROBLEMS

In this section, we formulate two stochastic programming problems based upon the
Markov chain decison modd of the manpower system consdered in Section 3. The
fird minimizes an operating cost and the second maximizes a return.  For each of
these modds we obtan the optimd training policy by aoplying the principle of
dynamic programming.

4.1

4.2

Minimization modédl

We consider the totd operating cost due to two mutudly exclusive cases.

() keeping a trained person in Grade 2 for want of a vacancy in Grade 1
and

(i) keeping avacancy in Grade 1 for want of atrained person in Grade 2.

Let C; be the cost of keegping a trained person in Grade 2 per unit time for want
of a vacancy in Grade 1 and let C, be the cost of keeping a post vacant in
Grade 1 per unit time for want of a trained person in Grade 2. Then the one-
step cost function g[ k, X(k), Z(k), U(K)] at eechtimepoint k isgiven by

i X(k)+U(KK)C;  X(k>0
olk X(K, 20, UKI = | Z(K)C,i  Z(K) >0 (4.1.1)

I UKIC,; X(k)=0Z(k)=0

With the above cogt function, we Sate the following programming problem:
Given that the sysem darts in the gtate (X(0) = i, Z(0) = j), find a traning
policy U(k), k=0, 1, ..., 2 such that the expected total cost

g(k, X(k),Z(k),U (k)

Qo-

=
i

0

over the entire planning period is minimized.

Let Vij(k) be the minimum expected accumulated cost from time k to the end of
the planning period, given that X(k) = iand Z(k) = j. Then the problem is
reformulated asfollows:

Find atraining policy U(k), k=0, 1, ..., 2 such that V;;(0) isminimized.
Maximization model

We asume that the monetary return from the trained employees to the
organization is more than the cost incurred by the organization to tran these
employees. But, the number of traned employees must be less than a
threshold level, because when the trained employees exceeds the threshold, a
diminishing peattern of return may occur due to the pressure that these
employees exert on the organization. Following the lines of Goh et a (1987),
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we assume a logigic form of return due to trained employees of Grade 2 and
define the one-gtep return function g(k, X(K), Z(k), U(K)) a each time point k by

a(k, X(K), Z(k), U(k)) =
{N-Z(K}P1+ {M - X(K) - U(}P2 + (1 + &) P{3(X(KIM)® -
2(X(K)[M)? IM - bU(K) — rH(U(K)) (4.2.1)
where the various parameters are
P1:  return per employee of Grade 1 per unit of time,
P2:  return per untrained employee of Grade 2 in unit of time,

a: theproportional increase in contribution of atrained employee
over an untrained one,

b: thetraining cost per employee, and
g theset-up cost for each training course
With the above return function, we state the programming problem as follows:

Given that the system dtarts off in the state (X(0) = i, Z(0) = j), find atraining
policy U(k); k = 0, 1, 2, .., L such that the expected totd return

éL_ g(k,X(k),Z(k)U (k)) over the entire planning period is maximized.

k=0

Let Vjj(k) be the maximum expected accumulated return from time K to the end
of the planning period given that X(k) = iand Z(k) = j. Then the problem is
reformulated as follows: Find a policy U(k), k = 0, 1, ..., L such that V;;(0) is
maximized.

Dynamic programming and the optimal policy

We now proceed to derive a recurrence relation for Vjj(k). By definition, & the
end of the planning period, we have Vij(L) = 0; OE i £ M; O£ ] £ N.

Applying Belman's principle of optimality (Bellman (1957)), we have
Vij(L - k) = optU(L - k,i,j)T U
3 i+U(L-K,i, )

fg(L- ki JUL-ki, )+ & a
|

=0 M=maq0,j- L-U (L- ki,j)}
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P(¢, MY, j, UL =K, i, j(V ¢ mL —k + 1)} (4.3.1)

where opt denotes min or max according to whether the optimization problem
is the minimization problem (4.21) or the maximization problem (4.3.1), and
U denotes the set of dl controls U(k, i, ) satiffying the condition 0 £ U(k, i, |)
£EM—-i,k=0,1, ..., L. Wecan cary the cdculaions forward in k one-step at
atimeuntil k = L. At each k we have the optima control vector

U*(L-K) =
(U*(L -k, 0,0)), ..., UX(L - k, 0, N), U*(L - k, 1, 0), ..., U*(L - k, M, 0)

Thus we obtain the optima control U*(O, i, j), & time k = O for any given
initid state (X(0) = i, Z(0) = j).

This control dictates the trandtion into another state (¢, M) a time 1 and the
optima control U*(1, ¢, M) a this time decides the next trandtion and so on

until the end of the planning period is reached when we obtain the optimum
vaue of the objective function.

5. NUMERICAL ILLUSTRATION
The behaviour of modd |

We condder the one-step cost function (4.1.1) and let the vaues of the
parameters

L=30,M=8,N=4,P=0,2
The State-space of the Markov chainis given by

Eéo(’))}O)’ (0.1), (0,2), (0,3), (04), (10), (20), (30), (40), (50), (6,0), (7,0),

Let us name the dates respectively x;, j = 0, 1, 2, ...,12. Then usng the

principle of optimdity (see Bdlman (1957)) and the backward procedure
explained in section 4.3, the optimum is obtained.

The optimal policy

We obtain the fallowing optimd policy for traning during the entire planning
period:

cov(i): C; = 15; C, = 1000

u* =(1,3,4,4,6,0,0,00000,0): k=0,2 68,12, 17, 19
u*=(1,3,4,4,50,00,0,0,0,00): k=1,3,7 13, 14, 18, 22, 24
u*=(1,3,4,5,500,0,0,00,00): k=4,5,9, 11, 16, 20
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u*=(1,3,4,5,6,0,0,0,0,0,0,0,0); k=10, 15,21, 25
u* =(1,3,3,4,4,600000000); k=23
u*=(1,3,3,4,500,0,0,0,0,00); k= 26,27
cov(ii): C, = 20; C,= 100

u* =(1,3,345,0,0000,0,0,0); 0£kE26
u=(1,23,4,500000,0,00); k= 27,28

u* =(0,0,0,0,0,0,0,0,0,0,0,0,0); k= 29,30

We observe that in case (i), the optima control does not converge to any
dationary control, in case (ii), we are able to achieve rapid convergence to
dationary control.

u*=(1,3,34,500,00,0,0,0,0)
The corresponding minimum one-step cost in case (ii) is 2833.
Steady-state distribution

While the dationary control is being used, the date didribution rapidly
approaches that of the steady-date invariant distribution given by

(0.002, 0.000, 0.000, 0.000, 0.000, 0.001, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.997)

Theoptimal size of Grade 2

For L=30,N=1, P = 0.6, G = 15, we determine the optima number to be
sent for training and the corresponding optimal cost for different values of C;
and for various szes of Grade 2 when the system is initidly in dae (O, 0).
The results are given in Tables 1, 2 and 3. From the tables, we see that the
optimal cost remans the same even though the Sze of Grade 2 increases.
Hence the optima sze of Grade 2 can be used for planning purposes.

Tablel
No. sentfor training Cost  Size of Grade 2
2833 1**
2833
2833
2833
2833
2833
2833
2833

C> =100

OCOO0OO0OO0OOO0OO0
O~NO O hhWN

**Optimal size of Grade 2is 1.
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Table2
No. sent fortraining Cost  Size of Grade 2
C, =800 0 14166 2
0 13999 3
0 13878 4
0 13788 B**
0 13788 6
0 13788 7
0 13788 8
**Optimal size of Grade 2is5.
Table3
No. sentfortraining Cost  Sizeof Grade 2
C, = 1000 0 28332 2
0 27947 3
0 27475 4
0 27138 5
0 27063 6
0 27969 T**
0 26969 8

**Optima szeof Grade 2is7.

The behaviour of Model 1

We congder the logistic term (4.2.1) and assume that the return due to a
trained employee is higher than the cogt of training one employee. Let us
assume the following vaues for the parameters:

L=30,M=8,N=4,p=0.2,

P1=10,P,=08,a=05b=059g=10.

The state-pace of the Markov-chain is given by

{(0,0), (0, 1), (0, 2), (0,3), (0,4), (1, 0), (2,0), (3,0), (4 0), (50), (60), (7,
0), (8, 0)}

Let us name the dates respectively by x;, j = 0, 1, 2, ..., 12. Now, usng the
backward procedure of the previous section, the optimal control vectors are
computed to be

u*=(8,223,4,76,543,21,0), 0£KE 16,
u*=(8,1,2,0,0,7,6,5,43, 2 1,0), k=17,

u* =(8,0,0,0,0,7,6543,21,0), k= 18, 19,
u*=(0,0,0,0,0,7, 6,543 2 1,0), k= 20,
u*=(0,0,0,0,0,0,6,5,4,3,2 1,0), k= 21, 22, 23,
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u*=(0,0,0,0,0,0,0,5,4,3,21,0), k=24, 25, 26, 27,
u*=(0,0,000,0,0,0,4,3,21,0), k=28,
u*=(0,0,00,0,0,0,0,0,0,0,0,0), k= 29.

We observe that the optimal control converges rapidly to the stationary control
u*=(8,2234,7,6,54,3,2,1,0).

The corresponding maximum one-step return is found to be 274.3145 and the
one-gep trangtion matrix is

§.OO 0.00 0.00 000 000 o000 0.00 000 000 003 015 0.41 0.419
038 010 001 000 000 051 000 O0.00 0.0 000 0.00 0.00 0.00-
EO.64 032 004 000 000 000 0.00 000 0.00 0.00 0.00 o0.00 0.00:
.80 0.20 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 000 000 0.00+
81.00 0.00 0.00 0.00 000 000 000 000 000 000 000 0.00 0.00.
.00 0.00 0.00 000 0.00 000 0.00 000 0.00 003 015 041 0417
lé).OO 0.00 000 000 000 0.00 000 000 000 003 015 041 0.41:
E0.00 0.00 0.00 000 000 o000 0.00 000 000 003 015 0.41 O.4l:
.00 0.00 0.00 000 0.00 0.00 000 000 000 003 015 041 0417
E0.00 0.00 0.00 0.00 000 000 000 000 000 003 015 041 041
.00 0.00 0.00 000 0.00 000 0.00 000 0.00 003 015 041 0417
lé).OO 0.00 000 000 000 0.00 000 000 000 003 015 041 0.41+
@.OO 0.00 000 000 000 o000 0.00 000 000 003 015 0.41 0.413

Denoting the above trandtion matrix by Q and the steady-date invariant
digtribution by p;, and solving the equation pQ = p together with the condition

12

ap; =1 wege

j=0

p=(,00000000,0.03 0.15,0.41, 0.41).
6. CONCLUSIONS

A finite planning horizon problem is congdered in this paper. Given the cods G and G,
an optima control policy determining the number of persons to be sent for training a any
time k for the different grade leveds of the sysem is obtaned. If this optima control
rapidly converges to a dationary control policy, then the invariant distribution of the
grade Szesis determined in the case of the infinite horizon problem.
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