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ABSTRACT 

 
In this paper, the optimal planning of manpower training programmes in a manpower system 
with two grades is discussed.  The planning of manpower training within a given organization 
involves a trade-off between training costs and expected return. These planning problems are 
examined through models that reflect the random nature of manpower movement in two 
grades.  To be specific, the system consists of two grades, grade 1 and grade 2.  Any number 
of persons in grade 2 can be sent for training and after the completion of training, they will 
stay in grade 2 and will be given promotion as and when vacancies arise in grade 1.  
Vacancies arise in grade 1 only by wastage.  A person in grade 1 can leave the system with 
probability p. Vacancies are filled with persons in grade 2 who have completed the training.  
It is assumed that there is a perfect passing rate and that the sizes of both grades are fixed.  
Assuming that the planning horizon is finite and is T, the underlying stochastic process is 
identified as a finite state Markov chain and using dynamic programming, a policy is evolved 
to determine how many persons should be sent for training at any time k so as to minimize the 
total expected cost for the entire planning period T. 
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1. INTRODUCTION 
  

Optimal planning of training in manpower systems has been studied by several 
researchers (see Guardabassi (1969), Purkiss (1969), Grinold and Marshall (1977), 
Vajda (1978), Nakamura and Shingu (1984), Goh et al (1987)).  In these papers, the 
general objective is to minimize the reference cost or maximize the expected return for 
the planning period.  In particular, in the paper of Goh et al (1987), the dynamic 
programming principle of Bellman (1957) is used to obtain the optimum training plan 
for a single grade organization, in which the random nature of manpower movements 
are considered due to training and waste.  As training is imparted not only for the 
upgrading of knowledge but also for promotion in multi-grade organizations, it is 
worthwhile to study the optimization problem from the point of view of training, 
waste and promotion. 
 
This paper is an attempt to fill the gap.  For the purpose of simplicity consider a 
manpower system with two grades; one a lower grade and the other a higher grade and 
consider training as a criterion for promotion.  When trained employees are not 
available in the lower grade, the vacancies arising in the higher grade remain unfilled 
and a production loss is suffered.  However, if promotion is not given to a trained 
employee in the lower grade, an excess cost will be incurred so as to keep him/her in 
the organization. 
  
Using a dynamic programming approach, the optimal training plan for two cases is 
obtained.  In case I, the objective is to minimize the total expected cost and in case II, 
to maximize the total expected return. 
  
In section 2, we describe the manpower model, assumptions and notation.   Section 3 
presents a finite state Markov decision model for the training programme.  The 
principle of dynamic programming is applied in section 4 to obtain the optimal policy 
for the entire planning period for two objectives.  A numerical example is provided in 
section 5 to illustrate the behaviour of the model. 

 
2. ASSUMPTIONS AND NOTATION 

  
Assumption 1 

 
We consider a manpower organization consisting of two grades.  Grade 2 is the lower 
and Grade 1 is the higher. 
  
Assumption 2 

 
Grade 1 can accommodate N persons and Grade 2 can accommodate M persons. 
  
Assumption 3 

 
Persons from Grade 2 are sent for training that involves training costs. 
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Assumption 4 
 

Any number of persons can be sent for training at any time and there is a perfect pass 
rate.  After the completion of training all these persons are returned to Grade 2 and are 
not allowed to leave the organization as long as they remain in Grade 2. Promotion is 
only given to these trained persons. 
  
Assumption 5 

 
Vacancies that arise in Grade 1 are filled by promoting trained employees waiting for 
promotion in Grade 2. 
  
Assumption 6 

 
If a trained employee is not available in Grade 2, then vacancies in Grade 1 remain 
unfilled and a promotion loss is suffered until a trained person becomes available in 
Grade 2.  Untrained persons leaving the organization from Grade 2 are instantaneously 
replaced by untrained persons and the population of Grade 2 remains M at all times. 
  
Assumption 7 

 
We assume that the number of trainings given in the planning period is finite and each 
training lasts for a fixed duration of time.  We consider the period of training of one 
batch of persons as one unit of time.  Consequently, the planning period is L units of 
time. 
  
Assumption 8 

 
We also assume that the probability of a person leaving the organization from Grade 1 
during the time interval (k, k+1) is P; k = 0, 1, 2, ..., L.   Promotions and trainings 
occur at time points k = 0, 1, 2, ..., L. 

 
Notation: 

 
K + 0: The time point immediately after k. 

  
X(k): Number of trained employees in Grade 2 at 

time K + 0 
  

Y(k): Number of untrained employees in Grade 2 
at time k + 0 

  
Z(k): Number of vacancies in Grade 1 at time  

K + 0 
  

U(k, i, j): The control variable representing the 
number of employees sent for training at 
time k when X(k) = i; Z(k) = j  
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g[k, X(k), Z(k), U(k, X(k), Z(k))]:  The one-step return function at time k. 

  
p: Probability that a vacancy arises in Grade 1 

 at any time. 
 
3. FINITE-STATE MARKOV DECISION MODEL 

  
We first observe that 

  
X(k) +Y(k) +Z(k) = M;     k = 0, 1, 2, ..., L 

  
and 

  
0 ≤ U(k) ≤ M - X(k);   k = 0, 1. 2. …, L 

  
where we have denoted the control variable U(k, X(k), Z(k)) by U(k) for simplicity.  
The state of the manpower system at any time k is represented by the vector (X(k), 
Z(k));   
k = 0, 1, 2. …, L. 
The feed-back control depends on (X(k), Z(k)) and hence the manpower state of time 
kH is only dependent on the last manpower state (X(k), Z(k)).   Consequently (X(k), 
Z(k)) is a finite-state Markov decision process.  We note that the state-space of the 
process is 

  
{(0, 0), (0, 1), …, (0, N), (1, 0), (2, 0), … (M, 0)}  
 
Let us define 

  
P(l , M|i, j, U(k)) = P[X(k +1) = l , Z(k + 1) = M|X(k) = , Z(k) = j, U(k)] 

  
where 0 ≤ i, l  ≤ M and 0 ≤ j, M ≤ N. 
To derive the expression for p(l ,  Mi, j, U(k)), we discuss the leaving process from 
Grade 1.  For this, we note that the number of person promoted during (k, kH) is 
clearly  
i + U(k) – l  and so the number of persons who have left the system during (k, k + 1]  
is  
M – j + I + U(k) – l .  Since the number of persons in Grade 1 at time N – j and the 
number of vacancies arising during (k, k + 1]  follows a binomial distribution with 
parameter (N - j, P), we have 

  

P(l , M|i, j, U(k)) = 







−++−

−
l)(kUijM

jN
PM-j+i+U(k)- l                      (3.1) 

 
Where N – j ≥ M – j + i + U(k) - l  and M – j + i + U(k) - l  ≥ 0 
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4. TWO STOCHASTIC PROGRAMMING PROBLEMS 
 

In this section, we formulate two stochastic programming problems based upon the 
Markov chain decision model of the manpower system considered in Section 3.  The 
first minimizes an operating cost and the second maximizes a return.  For each of 
these models, we obtain the optimal training policy by applying the principle of 
dynamic programming. 

  
4.1  Minimization model 

  
We consider the total operating cost due to two mutually exclusive cases:    
(i) keeping a trained person in Grade 2 for want of a vacancy in Grade 1 

and  
(ii) keeping a vacancy in Grade 1 for want of a trained person in Grade 2. 
 
Let C1 be the cost of keeping a trained person in Grade 2 per unit time for want 
of a vacancy in Grade 1 and let C2 be the cost of keeping a post vacant in 
Grade 1 per unit time for want of a trained person in Grade 2.   Then the one-
step cost function g[k, X(k), Z(k), U(k)] at each time point k   is given by 
  

g[k, X(k), Z(k), U(k)] = 
0)(;0)(

0)(

0)(

;)(
;)(

;)()(

1

2

1

==
>

>







 +
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CkU
CkZ
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      (4.1.1) 

 
With the above cost function, we state the following programming problem: 
Given that the system starts in the state (X(0) = i, Z(0) = j), find a training 
policy U(k), k = 0, 1, ..., 2 such that the expected total cost 
  

∑
=

L

k

kUkZkXkg
0

))(),(),(,(  

 
over the entire planning period is minimized. 
Let Vij(k) be the minimum expected accumulated cost from time k to the end of 
the planning period, given that X(k) = i and Z(k) = j.  Then the problem is 
reformulated as follows: 
  
Find a training policy U(k), k = 0, 1, ..., 2 such that Vij(0) is minimized. 

 
4.2 Maximization model 

  
We assume that the monetary return from the trained employees to the 
organization is more than the cost incurred by the organization to train these 
employees.  But, the number of trained employees must be less than a 
threshold level, because when the trained employees exceeds the threshold, a 
diminishing pattern of return may occur due to the pressure that these 
employees exert on the organization.  Following the lines of Goh et al (1987), 
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we assume a logistic form of return due to trained employees of Grade 2 and 
define the one-step return function g(k, X(k), Z(k), U(k)) at each time point k by 
 
g(k, X(k), Z(k), U(k)) = 
 
          {N - Z(k)}P1 + {M - X(k) - U(k)}P2 + (1 + α) P2{3(X(k)|M)3 – 
 

2(X(k)|M)2 }M - βU(k) – rH(U(k))                                                        (4.2.1) 
  
where the various parameters are 
  
P1: return per employee of Grade 1 per unit of time, 
  
P2: return per untrained employee of Grade 2 in unit of time, 
  
α: the proportional increase in contribution of a trained employee 

over an untrained one, 
  
β: the training cost per employee, and 
  
γ: the set-up cost for each training course 
  
With the above return function, we state the programming problem as follows: 
  
Given that the system starts off in the state (X(0) = i, Z(o) = j), find a training 
policy U(k);  k = 0, 1, 2, ..., L such that the expected total return 

∑
=

L

k

kUkZkXkg
0

))(),(),(,( over the entire planning period is maximized. 

  
Let Vij(k) be the maximum expected accumulated return from time k to the end 
of the planning period given that X(k) = i and Z(k) = j.  Then the problem is 
reformulated as follows:  Find a policy U(k), k = 0, 1, ..., L such that Vij(0) is 
maximized. 
 

4.3 Dynamic programming and the optimal policy 
  
We now proceed to derive a recurrence relation for Vij(k).  By definition, at the 
end of the planning period, we have Vij(L) = 0; 0 ≤ i ≤ M; 0 ≤ j ≤  N. 
  
Applying Bellman's principle of optimality (Bellman (1957)), we have 
  
Vij(L - k) = optU(L - k, i, j) ∈ U 
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P(l , Mi, j, U(L – k, i, j(V l M(L – k + 1)}             (4.3.1) 
 
where opt denotes min or max according to whether the optimization problem 
is the minimization problem (4.2.1) or the maximization problem (4.3.1), and 
U denotes the set of all controls U(k, i, j) satisfying the condition 0 ≤ U(k, i, j) 
≤ M – i, k = 0, 1, …, L.  We can carry the calculations forward in k one-step at 
a time until k = L.  At each k we have the optimal control vector 
  
U*(L - k) =  
 
(U*(L - k, 0, 0)), ..., U*(L - k, 0, N), U*(L - k, 1, 0), ..., U*(L - k, M, 0) 
  
Thus we obtain the optimal control U*(0, i, j), at time  k = 0 for any given 
initial state (X(0) = i, Z(0) = j). 
  
This control dictates the transition into another state (l ,  M) at time 1 and the 
optimal control U*(1, l , M) at this time decides the next transition and so on 
until the end of the planning period is reached when we obtain the optimum 
value of the objective function. 
 

5. NUMERICAL ILLUSTRATION 
 

 The behaviour of model I 
 
We consider the one-step cost function (4.1.1) and let the values of the 
parameters 
 
L = 30, M = 8, N = 4, P = 0,2 
  
The state-space of the Markov chain is given by 
  
{(0, 0), (0,1), (0,2), (0,3), (0,4), (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), 
(8,0)}. 
 
Let us name the states respectively ξ j, j = 0, 1, 2, ...,12.  Then using the 
principle of optimality (see Bellman (1957)) and the backward procedure 
explained in section 4.3, the optimum is obtained.  
 
The optimal policy 
  
We obtain the following optimal policy for training during the entire planning 
period:  

  
cov(i): C1 = 15;   C2 = 1000 

  
 u* = (1, 3, 4, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0);  k = 0, 2, 6, 8, 12, 17, 19 
 u* = (1, 3, 4, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0);  k = 1, 3, 7, 13, 14, 18, 22, 24 
 u* = (1, 3, 4, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0);  k = 4, 5, 9, 11, 16, 20 
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 u* = (1, 3, 4, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0);  k = 10, 15, 21, 25 
 u* = (1, 3, 3, 4, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0);  k = 23 
 u* = (1, 3, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0);  k = 26, 27  

  
cov(ii): C1 = 20;  C2 = 100  
 
u* = (1, 3, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0);  0 ≤ k≤ 26 
u* = (1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0);  k = 27, 28 
u* = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);  k = 29, 30 
 
 
We observe that in case (i), the optimal control does not converge to any 
stationary control, in case (ii), we are able to achieve rapid convergence to 
stationary control. 
  
 u* = (1, 3, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0) 
 
The corresponding minimum one-step cost in case (ii) is 2833.  
 
Steady-state distribution 
  
While the stationary control is being used, the state distribution rapidly 
approaches that of the steady-state invariant distribution given by 
  
(0.002, 0.000, 0.000, 0.000, 0.000, 0.001, 0.000, 0.000, 0.000, 0.000, 0.000, 
0.000, 0.997)  
 
The optimal size of Grade 2 
  
For L = 30, N = 1, P = 0.6, C1 = 15, we determine the optimal number to be 
sent for training and the corresponding optimal cost for different values of C2 
and for various sizes of Grade 2 when the system is initially in state (0, 0).  
The results are given in Tables 1, 2 and 3.  From the tables, we see that the 
optimal cost remains the same even though the size of Grade 2 increases.  
Hence the optimal size of Grade 2 can be used for planning purposes. 
 
                                       Table 1 

 No. sent for training Cost Size of Grade 2 
C2 = 100 0 2833 1** 
 0 2833 2 
 0 2833 3 
 0 2833 4 
 0 2833 5 
 0 2833 6 
 0 2833 7 
 0 2833 8 

 
**Optimal size of Grade 2 is 1. 
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Table 2 
 No. sent for training Cost Size of Grade 2 
C2 = 800 0 14166 2 
 0 13999 3 
 0 13878 4 
 0 13788 5** 
 0 13788 6 
 0 13788 7 
 0 13788 8 

 
**Optimal size of Grade 2 is 5. 
 

Table 3 
 No. sent for training Cost Size of Grade 2 
C2 = 1000 0 28332 2 
 0 27947 3 
 0 27475 4 
 0 27138 5 
 0 27063 6 
 0 27969 7** 
 0 26969 8 

 
**Optimal size of Grade 2 is 7. 
 
The behaviour of Model II 
  
We consider the logistic term (4.2.1) and assume that the return due to a 
trained employee is higher than the cost of training one employee.  Let us 
assume the following values for the parameters: 
  
L = 30, M = 8, N = 4, p = 0.2, 
  
P1 = 1.0, P2 = 0.8, α = 0.5, β  = 0.5, γ = 1.0. 
  
The state-space of the Markov-chain is given by 
  
{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 
0), (8, 0)} 
  
Let us name the states respectively by ξ i, j = 0, 1, 2, ..., 12.  Now, using the 
backward procedure of the previous section, the optimal control vectors are 
computed to be 
 
u* = (8, 2, 2, 3, 4, 7, 6, 5, 4, 3, 2, 1, 0),   0 ≤ k ≤ 16, 
u* = (8, 1, 2, 0, 0, 7, 6, 5, 4, 3, 2, 1, 0),  k = 17, 
u* = (8, 0, 0, 0, 0, 7, 6, 5, 4, 3, 2, 1, 0),  k = 18, 19, 
u* = (0, 0, 0, 0, 0, 7, 6, 5, 4, 3, 2, 1, 0),  k = 20, 
u* = (0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0),  k = 21, 22, 23, 
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u* = (0, 0, 0, 0, 0, 0, 0, 5, 4, 3, 2, 1, 0),  k = 24, 25, 26, 27, 
u* = (0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 2, 1, 0),  k = 28, 
u* = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),  k = 29. 

 
We observe that the optimal control converges rapidly to the stationary control 
  
u* = (8, 2, 2, 3, 4, 7, 6, 5, 4, 3, 2, 1, 0). 
 
The corresponding maximum one-step return is found to be 274.3145 and the 
one-step transition matrix is 
 

















































0.410.410.150.030.000.000.000.000.000.000.000.000.00
0.410.410.150.030.000.000.000.000.000.000.000.000.00
0.410.410.150.030.000.000.000.000.000.000.000.000.00
0.410.410.150.030.000.000.000.000.000.000.000.000.00
0.410.410.150.030.000.000.000.000.000.000.000.000.00
0.410.410.150.030.000.000.000.000.000.000.000.000.00
0.410.410.150.030.000.000.000.000.000.000.000.000.00
0.410.410.150.030.000.000.000.000.000.000.000.000.00
0.000.000.000.000.000.000.000.000.000.000.000.001.00
0.000.000.000.000.000.000.000.000.000.000.000.200.80
0.000.000.000.000.000.000.000.000.000.000.040.320.64
0.000.000.000.000.000.000.000.510.000.000.010.100.38
0.410.410.150.030.000.000.000.000.000.000.000.000.00

 

Denoting the above transition matrix by Q and the steady-state invariant 
distribution by π i, and solving the equation πQ = π  together with the condition 

∑
=

=
12

0

,1
j

jπ  we get  

 
π  = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03, 0.15, 0.41, 0.41). 

 
6.    CONCLUSIONS   
 

A finite planning horizon problem is considered in this paper.  Given the costs C1 and C2, 
an optimal control policy determining the number of persons to be sent for training at any 
time k for the different grade levels of the system is obtained.  If this optimal control 
rapidly converges to a stationary control policy, then the invariant distribution of the 
grade sizes is determined in the case of the infinite horizon problem. 
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