
 

 1

CONSTRAINT PROGRAMMING AND UNIVERSITY TIMETABLING 
 

G.W. Groves and W. van Wijck 
 

Department of Industrial Engineering 
University of Stellenbosch 

wvw@ing.sun.ac.za 
 

ABSTRACT 
 
The technology of Constraint Programming is rapidly becoming a popular alternative for 
solving large-scale industry problems.  This paper provides an introduction to Constraint 
Programming and to Constraint Logic Programming (CLP), an enabler of constraint 
programming. The use of Constraint Logic Programming is demonstrated by describing a 
system developed for scheduling university timetables.  Timetabling problems have a high 
degree of algorithmic complexity (they are usually NP-Complete), and share features with 
scheduling problems encountered in industry. The system allows the declaration of both hard 
requirements, which must always be satisfied, and soft constraints which need not be 
satisfied, though this would be an advantage.  
 

OPSOMMING 
 
Hierdie artikel beskryf ’n familie van probleem-oplossingstegnieke bekend as “Constraint 
Programming”, wat al hoe meer gebruik word om groot-skaalse industriële probleme op te 
los.  Die nut van hierdie tegnieke word gedemonstreer deur die beskrywing van ’n 
skeduleringsisteem om die roosters vir ’n universiteit te genereer.  Rooster-
skeduleringsprobleme is in praktiese gevalle NP-volledig en deel baie eienskappe met 
industriële skeduleringsprobleme.  Die sisteem wat hier beskryf word maak gebruik van beide 
harde beperkings (wat altyd bevredig moet word) en sagte beperkings (bevrediging hiervan is 
wel voordelig maar dit is opsioneel.) 
 
 
 
 

http://sajie.journals.ac.za



 

 2

1. Introduction 
 
In the last few years constraint programming has attracted much attention as an alternative to 
solving, particularly, combinatorial problems arising in industry.  The importance of 
constraint programming is emphasised by the fact that the ACM (Association for Computing 
Machinery) has identified it as one of the strategic directions in computer research [3].   The 
goal of this paper is both to serve as an introduction to the field, and to present an application 
of constraint programming to a university lecture-timetabling problem. University 
Timetabling problems share common characteristics with many resource scheduling problems 
encountered in industry, and are known to be NP-Complete for most practical cases.  NP-
Complete problems have the property that no algorithm capable of solving them in a time 
bounded by a polynomial function of the input size of the problem is thought to exist.  The 
execution time of algorithms solving these problems therefore grows extremely quickly as the 
size of the problem increases. Constraint programming has been successfully applied to many 
NP-Complete problems associated with the field of Operations Research, notably including 
scheduling problems [2,5].  Constraint Programming offers several advantages as a solution 
method, and is a good method to use on problems that need to be expressed in integer 
variables and that have many logical dependencies between the variables. 
 
Constraints arise in many areas of human activity.  They formalise the dependencies in the 
physical world and are used to guide common-sense reasoning.  If I say "I will be busy from 
five to six o'clock", then I cannot be scheduled to attend a meeting during that time. In 
mathematical terms, a constraint can be defined as a logical relation among several variables, 
each taking a value in a given domain.  The constraint restricts the possible values that 
variables can take.  Usually, we do not solve one constraint only, but a collection of 
constraints that are seldom independent.  
 
Constraint programming is the study of computational systems based on constraints.  The 
fundamental principle behind constraint programming is that of stating the constraints about 
the problem and finding a solution satisfying all of the constraints.  This highlights an 
important feature of constraint programming, namely its declarative nature, i.e. the constraints 
specify what relationship must hold without specifying a computational procedure to enforce 
the relationship.  In this sense it is similar to using linear programming, where a solver 
operating in the background determines a solution to a set of constraints.   While constraint 
programming is declarative, the human programmer must however still specify aspects of the 
solution procedure to be followed.  The term `programming' in `constraint programming' 
therefore refers to the act of programming a computer, whereas in the field of mathematical 
programming the word has its origins in the United States of America's defence department, 
and was used to describe programs of activities (i.e. plans) for conflict situations. Constraint 
programming is done in a constraint programming system, which consists of a constraint and 
a programming component.  The constraint component performs reasoning over the set of 
constraints, whereas the programming component guides the overall way in which the 
constraint component will operate.  A constraint program is therefore not a statement of a 
problem, as it is for a mathematical program, but rather a computer program that specifies a 
method for solving a particular problem. 
 
 

http://sajie.journals.ac.za



 

 3

2. Constraint Programming and Constraint Logic Programming 
 
Constraint programming has its origins in research done in the field of artificial intelligence in 
the 1960's and 1970's.   Early applications such as Waltz's scene labelling application [14], as 
well as the Sketchpad [13] and Thinglab [4] graphics systems contributed toward techniques 
used in constraint programming systems today.  An important step in the development of the 
field occurred with the integration of constraint techniques and Logic Programming 
languages [7, 8], giving birth to so-called Constraint Logic Programming (CLP) languages.  
Logic programming languages are declarative, and all program information is expressed as 
logic statements, on which the logic programming system operates.  The execution of a logic 
program is not explicitly specified in the code, by using instructions for loops and conditions 
for example, but is instead controlled by the method that the logic programming system uses 
to evaluate the logic statements.  Constraint Logic Programming languages are usually based 
on the Prolog programming language, a language in which all program information is 
expressed in first order logic form. Program execution in Prolog is controlled according to 
depth-first search (i.e. tree search).  During execution, the system proceeds to evaluate the 
truth of logic statements until an expression evaluates to false. At this point the Prolog system 
will return to a previous choice point and try another option.  This is referred to as 
backtracking, and this depth-first approach is an inefficient way of solving problems when 
used by itself.  Constraint Logic Programming systems augment logic programming systems 
with the ability to deal with constraints and a look-ahead feature to improve the efficiency of 
depth-first search.  Constraint Programming is however not limited to CLP in Prolog, and 
constraints have also been integrated into languages such as C++ and Java. 
 
2.1. Branches of Constraint Programming 
 
There are two branches of constraint programming, namely the branches of constraint 
satisfaction and constraint solving.  The vast majority of industry applications belong to the 
branch of constraint satisfaction [3] and it is therefore the focus of this paper.   The branch of 
constraint satisfaction deals with the so-called Constraint Satisfaction Problem (CSP).  A CSP 
is defined as a problem consisting of: 
 
- A set of variables { }ni XXX ,...,=  
- For each variable iX , a finite set 

iXD of possible values (its domain), and 
- A set of constraints restricting the values that the variables can simultaneously take 
 
The values of the variables need not be a set of consecutive integers (although they often are), 
and need not even be numeric. A solution to a CSP is an assignment of a value from its 
domain to every variable, in such a way that all constraints are satisfied at once.  The goal of 
the problem may be to either find a single solution (with no preference as to which one), all 
solutions, or one which is optimal (or satisfactory) with respect to some objective function 
defined in terms of some or all of the variables. 
 
The branch of constraint solving is similar to constraint satisfaction in that a set of constraints 
is stated, which are then solved.  The constraints, however, are defined over infinite or more 
complex domains.  The solution methods followed also differ.   Instead of using 
combinatorial methods as in constraint satisfaction, here the algorithms are based on 
techniques such as automatic differentiation, Taylor series or the Newton method. 

http://sajie.journals.ac.za



 

 4

2.2. Consistency Techniques 
 
Constraint Programming operates by reducing the domains of each of a problem’s variables 
until each domain is reduced to a single element.  This is done by using so-called consistency 
techniques, constraint propagation methods, and a search strategy.  Consistency techniques 
have the function of deducing domain-related information from constraints, and will attempt 
to reduce the domains of a constraint’s variables by evaluating the relationships imposed by 
the constraint and removing inconsistent values from the domains.  For example, given the 
constraint 
 

321 +< XX  
 
with variable domains { }101|

1
≤≤∈= xNxDX  and { }101|

2
≤≤∈= xNxDX , a consistency 

technique operating on it deduces the new domain values { }101|
1

≤≤∈= xNxDX  and Dx2 

= { }81|
2

≤≤∈= xNxDX .  In this example, some of the remaining values clearly cannot 
exist simultaneously in the domains of both variables.  Consistency techniques differ in the 
amount of information that they extract from constraints, and some techniques will attempt to 
deduce more information relating to the combinations of domain values that are compatible.  
The most effective techniques, however, do not deduce too much information and remain 
purposefully incomplete due to benefits in efficiency.  Consistency techniques are applied 
automatically by the constraint programming system, just as the truth testing of logical 
expressions is applied automatically by a logic programming system.  The encounter of an 
inconsistent constraint is equivalent to deducing a false result when evaluating a logical 
expression, and will result in a backtrack when using a depth-first search strategy.   
 
2.3. Constraint Propagation and Search 
 
Consistency techniques do not usually solve a problem when used alone, although it is 
theoretically possible that they can reduce the domains of each of a problem’s variables to a 
single value, given an unlikely combination of constraints.  In practice, some form of search is 
required to find variable assignments that are compatible with all constraints. The task of 
searching for values for variables once the constraints have been specified is referred to as 
labelling. It is possible to use ordinary depth-first search, done in combination with 
consistency checks on variables thus instantiated, to perform labelling.  However, as 
mentioned earlier, this is an inefficient way to search.   Although the efficiency of a program 
can be improved by using backward checking methods (see Haralick et al. [9]), CLP systems 
usually make use of constraint propagation techniques to achieve a degree of forward-
looking ability.  Constraint propagation techniques differ in the amount of forward looking 
that they achieve.  The majority of techniques perform simple consistency checks on variables 
that have recently had their domains reduced, i.e. if the domain of a variable is reduced, 
constraint propagation triggers consistency checks on all constraints involving that variable, 
in turn reducing the domains of more variables and triggering further constraint propagation.  
More complicated methods can remove more inconsistencies [9,12], but these methods are 
computationally expensive and are not used by most applications.   As is the case with 
consistency techniques, constraint propagation is automatically initiated by the constraint 
programming system.  It is however possible to specify user-defined consistency and 
propagation behaviour with some systems (e.g. ILOG Solver, Oz, and Eclipse). 

http://sajie.journals.ac.za



 

 5

The order in which variables are instantiated (the process of assigning a value to a variable is 
termed instantiation in constraint programming) can influence solution time, and solution 
time can usually be reduced by labelling variables with smaller domains sooner.   These 
variables are more likely to yield backtracking, and it is beneficial to limit backtracking to the 
earlier parts of the search.  The example presented in the next section demonstrates the 
concepts of constraint satisfaction in constraint programming.  
 
Simple Example 
 
The principles of constraint satisfaction in Constraint Programming are demonstrated through 
an example problem defined by the code fragment in Figure 1.  The code is written in the 
(Prolog based) Eclipse CLP language.  The code of other constraint programming languages 
(e.g. ILOG Solver) is very similar to Eclipse code. 
 
 
 
 
 
 
 
 
 
Figure 1.  Example constraint satisfaction problem 
 
The program makes the statement that the logic term example_solved is true if each of its 
lines is true (i.e. the comma after each line represents an AND statement).  The first line of the 
procedure (note that the word procedure used here is not technically correct in Prolog, and is 
used here for convenience) defines the data structure Vars, which is a list containing the three 
variables X, Y and Z. The second line initialises the domain of each of the variables to all 
integer values between, and including, 1 and 3.  The next two lines of the procedure state the 
constraints of the problem.  The hash symbol instructs the system that the constraint is an 
active constraint (i.e. it will be stored in memory and will become awoken by constraint 
propagation). The forall command iteratively initiates V to contain each of the variables in 
Vars, and is actually a macro defined by the Eclipse system.    In pure Prolog code, the 
functionality of loops such as these is achieved by using recursive  
 
 

       
              Figure 2.  Full search tree for                      Figure 3.  Search tree before the  
                     example problem                                                   start of labelling 

example_solved :- 
        Vars = [X,Y,Z], 
        Vars :: [1..3], 
        X #> Y, 
        Y #<> Z, 
        forall(V, Vars) { 
            indomain(V)   
         }. 

http://sajie.journals.ac.za



 

 6

       
       Figure 4. Search tree after iteration 1                    Figure 5. A solution to the  
                        and 2 of labelling                                            example problem 
 
procedures.  The indomain command instantiates a variable to contain the smallest value of its 
domain.  The forall loop and the indomain command contained in it represent the labelling 
function of the program.  Figure 2 is a search tree for the problem. The important steps in the 
solution of the problem are now described in more detail. 
 
Domain Reduction before labelling 
 
Consistency checks take place as soon as constraints are stated, and constraint propagation 
will occur if any domains are reduced.  When the first constraint is encountered, it is 
evaluated for consistency and the domains of variables X and Y are reduced, and the new 
variable domains become 
 

{ } { } { }.3,2,1,2,1,3,2 === ZYX DDD  
 
After evaluating the next constraint, no new domain reductions are made.  Both of the 
constraints still have un-instantiated variables, and they therefore return to a dormant state in 
memory, until they are again awakened by constraint propagation. Figure 3 shows the reduced 
search tree for the problem  
 
Domain Reduction during iteration 1 of labelling 
 
The indomain command assigns the value of 2 to X, being the smallest value of Dx. The first 
constraint (X #> Y) awakens and the domain of Y is consequently reduced by removing the 
value 2.  This domain reduction is propagated to the other constraint (Y#<>Z), resulting in the 
removal of the value 1 from its domain. The new domains are given by 
 

{ } { } { }.3,2,1,2 === ZYX DDD  
 
The domains of both X and Y have therefore been reduced to one value.  The new search tree 
is shown in Figure 4. 
 
Domain Reduction during iteration 2 of labelling 
 
The value of the variable Y has already been deduced, and no new information is determined 
during this step.  The search tree stays the same as that of Figure 4.  Note that if the domain of 

http://sajie.journals.ac.za



 

 7

any of the variables becomes empty at any point during the procedure’s execution, the system 
will backtrack to the nearest point where it can make an alternative choice and try another 
option.  During labelling this implies that the indomain command will be executed again to 
assign a different value to the variable being labelled.  If all values have been tried, the system 
will backtrack even further, to the previous variable, and try to label it again.    During 
backtracking, all domain reduction that took place since the last time that the variable was 
labelled is reversed. 
 
Domain Reduction during iteration 3 of labelling 
 
During this iteration, the variable Z is assigned the value of 2.  The problem is now solved 
because all of the variables have been assigned values.  Figure 5 shows the final solution.   
 
This section has described the principles of constraint programming and constraint logic 
programming.  The next section presents a university timetabling application of constraint 
logic programming. 
 
3. Timetabling System 
 
The timetabling system was developed to determine timetables for the Industrial Engineering 
Department of Stellenbosch University.  The task of finding timetables manually is a 
cumbersome duty that the system was expected to alleviate.  The system attempts to schedule 
a fixed number of classes in a way that no constraints are violated.  Each subject has a fixed 
duration (in periods), and this value is specified beforehand. The system also accepts “soft” 
constraints, which should preferably be satisfied, though this is not a requirement.  The soft 
constraints are accommodated through the use of a branch-and-bound optimisation procedure.   
 
3.1. Problem Model 
 
The problem is modelled as a constraint satisfaction problem.  The following integer 
constants are defined.  

 
D : Number of days in a week 
A : Number of periods in an afternoon 
M : Number of periods in a morning 
S : Number of subjects to timetable 
R : Number of available rooms 
Sk : First domain value for day k 

 
The following variables are used 
 

xi : starting time of class i  
ri : room assigned to class i. 

 
In addition, the following expressions are defined 
 

dur(xi) : duration of subject i, in time slots.  
min(

ixD ) : minimum value in the domain of xi 

http://sajie.journals.ac.za



 

 8

The variables xi and ri are the problem variables, and their domains are given by 
 

( ) ( )( )








−++≤≤+∪−+≤≤∈=
=UD

j jjjjx AMSxMSMSxSNxD
i 1

11|  









≤≤∈= RxNxD
ir

1|  

 
The values of S are chosen so that the number of integer values separating the starting value 
of any day and the ending value of its preceding day is a constant value.  Let s denote this 
constant.  Hence, 
 

( ) DkAMSSs kk ≤≤+++−= − 2,11  
 
The reason for separating the domain values of consecutive days is to simplify the use of hard 
constraints that schedule subjects on either separate or the same days (see Section 3.1.1).  For 
these constraints to function properly, the value of s must be greater than the total number of 
time slots in a day.   
 
3.1.1. Hard Constraints 
 
The system supports a large number of hard constraints.  These can be divided into unary 
constraints that operate on a single variable, removing values directly from its domain, and 
more complicated constraints involving several variables.  The latter group are specified as 
specialised constraint procedures, which behave as ordinary constraints (i.e. they are 
suspended in memory and awaken by constraint propagation through their variables).  The 
hard constraints supported by the system are now described. 
 
 
Unary Constraints 
 
These types of constraints involve directly reducing the domain of a single variable before 
labelling occurs. 
 

• xi occurs in period P: Px i =#  

• xi does not occur in period P:  Px i <>#  

• ri occurs in room R: Rri =#  

• ri does not occur in room R: Pri <>#  

• xi occurs in a morning: ( )








−++≤≤+−=
=UD

j jjxx AMSxMSxDD
ii 1

1|  

• xi occurs in an afternoon: ( )








−+≤≤−=
=UD

j jjxx MSxSxDD
ii 1

1|  

http://sajie.journals.ac.za



 

 9

Subjects that may not overlap 
 
The majority of constraints belong to this category.  For example, all subjects that share at 
least one lecturer or that belong to the same year group may not overlap.  The no_clash 
constraint procedure, described in the pseudo-code listing of Figure 6, enforces this constraint.  
The procedure accepts the starting time variables of two subjects, X and Y, as input 
parameters. 
 
 
 
 
 
 
 
 
 
Figure  6. The no_clash constraint procedure. 
 
The constraint procedure tests if the earliest possible starting times of either of its two input 
subjects is later than the latest possible ending time of the other.  If this is the case then an 
appropriate constraint is introduced to ensure that the subjects do not overlap.  If these 
conditions cannot be deduced, then the procedure is instructed to suspend itself in memory, 
until it can again be awakened by constraint propagation.  Note that this procedure introduces 
more constraints into the problem during labelling, because generally only during labelling 
will enough information become available for one of the two conditions to be satisfied.  This 
procedure would be awkward to formulate in an integer program, and would require the 
introduction of auxiliary variables.  
 
Subjects that must occur on the same day 
 
The same_day constraint procedure, listed in the pseudo code of Figure 7, enforces this 
constraint. 
 
 
 
 
 
 
 
 
Figure 7.  The same_day constraint    
 
The procedure introduces a constraint forcing the number of domain values separating its two 
input variables to exceed the value of s (defined earlier), depending on the domain 
information available.  
 
 
 

no_clash(X,Y) ≡ min(Dx) + dur(X) > max(Dy) ⇒ Y + dur(Y) # ≤  X 
OR 
min(Dy) + dur(Y) > max(Dx) ⇒ X + dur(X) # ≤ Y 
OR 
(SUSPEND) 

same_day(X,Y) ≡ min(Dx) ≥  max(Dy) ⇒ X-Y #> s 
                            OR 
                            min(Dy) > max(Dx) ⇒ Y-X #> s 
                            OR 
                            (SUSPEND) 

http://sajie.journals.ac.za



 

 10

Subjects that must occur on different days 
 
The different_day constraint procedure, listed in the pseudo-code of Figure 8, enforces this 
constraint. 
 
 
 
 
 
 
 
Figure 8.  The different_day constraint. 
 
Its operation is similar to the same_day constraint. 
 
Room constraints 
 
No two subjects may simultaneously share the same room.  This requirement is enforced by 
the room_no_clash constraint procedure, listed in Figure 9. The procedure accepts two subject 
starting time variables, X and Y, as well as the respective room variables, A and B, of the 
subjects.   
 
 
 
 
 
 
 
 
 
 
 
Figure 9. The room_no_clash procedure 
 
The procedure operates as follows:  If the two subjects cannot overlap no constraint is 
generated, and if they are known to overlap, then a constraint forcing the rooms to be unequal 
is introduced, and if the rooms are already known to be unequal then no new constraint is 
introduced.   
 
3.1.2. Soft Constraints 
 
Soft constraints are optimised using a branch-and-bound algorithm, as was mentioned earlier.  
The branch-and-bound method has a long history in the field of operations research, and is 
traditionally used with the simplex method to solve integer-programming problems.  Modern 
integer programming systems, however, use more efficient algorithms than branch-and-
bound.  Most CLP systems provide a packaged branch-and-bound algorithm.  Several types of 
soft constraints are supported by the timetabling system 
 

different_day(X,Y) ≡ min(Dx) ≥  max(Dy) ⇒ X-Y #> s 
                            OR 
                            min(Dy) > max(Dx) ⇒ Y-X #> s 
                            OR 
                            (SUSPEND) 

room_no_clash (X,Y,A,B) ≡ (  max(Dx) + dur(X) ≤ min(Dy)  
                                                     OR max(Dy) + dur(Y) ≤ min(Dx) ⇒ true ) 
                                              OR 
                                              (  min(Dx) + dur(X) ≥ max(Dy) 
                                                     AND min(Y) + dur(Y) ≥  max(Dx) ⇒ A #<> B) 
                                               OR 
                                               A <> B ⇒ true 
                                               OR 
                                               (SUSPEND) 
                                               

http://sajie.journals.ac.za



 

 11

• Subjects that should not overlap 
• Preferred starting times for subjects 
• Times at which a subject should preferably not be scheduled in 
• Preferred number of days separating subjects 

 
The objective function used by the branch-and-bound algorithm is expressed as a sum of the 
total number of soft constraint violations, weighted according to the type of constraint being 
violated.  The weights, as well as termination criteria, are specified by the user.   
 
3.1.3. Labelling 
 
The system labels all starting time (xi) variables before the room variables (ri), the reason 
being that it is usually more difficult to find a feasible subject timetable than to allocate 
rooms.  Note that although the room variables are labelled later, the room_no_clash procedure 
can affect the search beforehand, because of the fact that it has starting time variables as 
arguments.  When choosing variables to label, the remaining variable with the smallest 
domain is selected during each iteration.  
 
3.2 Results 
 
The system solves the timetables of the Industrial Engineering Department of Stellenbosch 
University near instantaneously, when using an Intel Pentium 600MHz personal computer.  If 
soft constraints are included, the execution time increases to between 30 seconds and 5 
minutes, depending on termination choices.  It solves the whole engineering faculty’s 
timetables, consisting of 150 lessons, in under a minute when using only hard constraints.  
These times compare favourably to other implementations [1,5] of similar size.  It is however 
dangerous to make straightforward comparisons of execution time based on the size of the 
problems being solved.  Different implementations not only make use of other hardware and 
software, but the solution time of timetabling problems do not grow according to a 
polynomial function of the size of the input problem.  Without taking these factors into 
account, the nature of the constraints can also be an important factor governing execution 
time.  Certain scenarios may cause a lot of backtracking, causing a seemingly small problem 
to take a long time to execute.   
 
4.  Conclusions 
 
This paper has attempted to convey the principles of constraint satisfaction techniques in 
constraint programming through the description of a constraint logic programming application 
for timetabling problems.  An important benefit of problem solving in constraint 
programming is its flexibility and expressiveness: constraints with complicated behaviour are 
natural to express, and programs are easy to maintain because new constraints can be easily 
incorporated without changing much code.  The timetabling application presented greatly 
facilitates the task of generating timetables and seems to have a good execution speed.      The 
system differs from existing timetabling applications due to the large number of constraint 
types that it supports. The technical characteristics and behaviour of the application are 
equally relevant to the broader field of constraint programming as to constraint logic 
programming. 
 

http://sajie.journals.ac.za



 

 12

5. References 
 
[1]   Abdennadher et al. University Timetabling using Constraint Handling Rules, 

Proceedings of the French speaking seminar on Logic Programming and Constraint 
Programming, Nantes, France (1998) 

[2]   P. Baptiste & C. Le Pape.  Disjunctive Constraints for Manufacturing Scheduling: 
Principles and Extensions, Proceedings of the Third International Conference on 
Computer Integrated Manufacturing, Singapore (1995) 

[3]   R. Bartak.  Constraint Programming: In Pursuit of the Holy Grail, in: Proceedings of 
WDS99, Prague (1999) 

[4]   A. Borning. The Programming Language Aspects of ThingLab, A Constraint-Oriented 
Simulation Laboratory, in: ACM Transactions on Programming Languages and 
Systems, 3 (4), pp. 252-387 (1981) 

[5]   T. Chase et al. Centralized Vehicle Scheduler: An application of Constraint 
Technology, in: Proceedings of INFORMS conference, Montreal (1998) 

[6]   Frangouli et al.  UTSE: Construction of Optimum Timetables for University Courses - 
A CLP Based Approach, Proceedings of the 3rd International Conference on the 
Practical Applications of Prolog, Paris (1995) 

[7]   H. Gallair. Logic Programming: Further Developments, in: IEEE Symposium on 
Logic Programming, Boston (1985) 

[8]   J. Jaffar & M.J. Lassez. Constraint Logic Programming, in Proceedings of the ACM 
Symposium on Principles of Programming Languages (1997) 

[9]   R.M. Haralick & G.L. Elliot. Increasing tree search efficiency for constraint 
satisfaction problems  Artificial Intelligence, 14, pp. 263-314 (1980) 

[10]   C. Le Pape. Constraint-Based Programming for Scheduling: An Historical 
Perspective, Working Notes of the Operations Research Society Seminar on Constraint 
Handling Techniques, London (1994) 

[11]   I.J. Lustig & J. Puget. Program Does Not Equal Program: Constraint Programming 
and its Relationship to Mathematical Programming, Interfaces, 31 (6), pp 29-53 
(2001) 

[12]   B. Nadel. Tree Search and Arc Consistency in Constraint Satisfaction Algorithms, in: 
Search in Artificial Intelligence, Springer-Verlag, New York (1998) 

[13]   I. Sutherland. Sketchpad: a man-machine graphical communication system, in: 
Proceedings of the IFIP Spring Joint Computer Conference (1963) 

[14]   D.L. Waltz. Understanding line drawings of scenes with shadows, in: Psychology of 
Computer Vision, McGraw-Hill, New York (1975) 

http://sajie.journals.ac.za




