http://sajie.journals.ac.za

CONSTRAINT PROGRAMMING AND UNIVERSITY TIMETABLING
G.W. Grovesand W. van Wijck
Department of Industrial Engineering

Universty of Stellenbosch
WVYW@Iing.sun.ac.za

ABSTRACT

The technology of Condrant Programming is ragpidly becoming a popular dterndive for
lving large-scde industry problems. This paper provides an introduction to Condraint
Programming and to Condrant Logic Programming (CLP), an enabler of condraint
programming. The use of Condraint Logic Programming is demondrated by describing a
system deveoped for scheduling universty timetables Timetabling problems have a high
degree of dgorithmic complexity (they are usudly NP-Complete), and share festures with
scheduling problems encountered in industry. The system dlows the declaration of both hard
requirements, which must aways be sdisfied, and soft condraints which need not be
satisfied, though this would be an advantage.

OPSOMMING

Hierdie atikd beskryf 'n familie van probleem-oplossngstegnieke bekend as “Constraint
Programming”, wat d hoe meer gebruik word om groot-skadse industriéle probleme op te
los. Die nut van hierdie tegnieke word gedemonstreer deur die beskrywing van 'n
keduleringgdsteem om die rooders vir 'n univerdteit te genereer. Rooster-
skeduleringsprobleme is in praktiese gevdle NP-volledig en ded bae denskgppe met
industriéle skeduleringsprobleme. Die Ssteem wat hier beskryf word maak gebruik van beide
harde beperkings (wat atyd bevredig moet word) en sagte beperkings (bevrediging hiervan is
wel voorddig maar dit is opsioned.)

http://sajie.journals.ac.za

1. Introduction

In the last few years condraint programming has attracted much aitention as an dterndive to
solving, paticulaly, combinaorid problems aisng in industry. The importance of
condraint programming is emphasised by the fact that the ACM (Association for Computing
Machinery) has identified it as one of the drategic directions in computer research [3]. The
god of this paper is both to serve as an introduction to the field, and to present an application
of condrant programming to a universty lecture-timetabling problem. Universty
Timetabling problems share common characteristics with many resource scheduling problems
encountered in industry, and are known to be NP-Complete for mogt practica cases. NP-
Complete problems have the property that no dgorithm cgpable of solving them in a time
bounded by a polynomia function of the input sze of the problem is thought to exis. The
execution time of agorithms solving these problems therefore grows extremely quickly as the
gze of the problem increases. Condrant programming has been successfully gpplied to many
NP-Complete problems associated with the field of Operations Research, notably including
scheduling problems [25]. Condraint Programming offers severa advantages as a solution
method, and is a good method to use on problems that need to be expressed in integer
variables and that have many logical dependencies between the variables.

Condraints arise in many aress of human activity. They formdise the dependencies in the
physca world and are used to guide common-sense reasoning. If | say "I will be busy from
five to sx odock", then |1 canot be scheduled to atend a meeting during that time. In
mathematical terms, a condraint can be defined as a logicd reation among severa variables,
each taking a vdue in a given domain. The condrant redricts the possble vaues that
vaiables can teke. Usudly, we do not solve one condraint only, but a collection of
congraints that are seldom independent.

Constraint programming is the sudy of computationd sysems based on condraints. The
fundamental principle behind condraint programming is that of dating the condraints about
the problem and finding a solution sidying dl of the condrants This highlights an
important festure of condraint programming, namely its declarative nature, i.e. the condrants
gpecify what relationship must hold without specifying a computational procedure to enforce
the rdationship. In this sense it is Smilar to usng liner programming, where a solver
operaing in the background determines a solution to a set of condrants. ~ While condraint
programming is declardtive, the human programmer must however sill specify aspects of the
solution procedure to be followed. The term “programming’ in “constraint programming'
therefore refers to the act of programming a computer, wheress in the fiddd of mathematical
programming the word has its origins in the United States of Americas defence department,
and was used to describe programs of activities (i.e. plans) for conflict Stuations. Condraint
programming is done in a condraint programming system, which conssts of a condraint and
a progranming comporent. The congraint component performs reasoning over the set of
condraints, whereas the programming component guides the overdl way in which the
congraint component will operate. A constraint program is therefore not a statement of a
problem, as it is for a mathematica program, but rather a computer program that specifies a
method for solving a particular problem.

http://sajie.journals.ac.za

2. Congtraint Programming and Constraint Logic Programming

Condraint programming has its origins in research done in the fied of atifidd intdligence in
the 1960's and 1970's. Early gpplications such as Waltz's scene labelling application [14], as
well as the Sketchpad [13] and Thinglab [4] graphics systems contributed toward techniques
used in condraint programming systems today. An important step in the development of the
fidd occurred with the integration of condraint techniques and Logic Programming
languages [7, 8], giving birth to so-cdled Condrant Logic Programming (CLP) languages.
Logic programming languages are decladtive, and dl program information is expressed as
logic statements, on which the logic programming system operaies. The execution of a logic
program is not explicitly specified in the code, by usng indructions for loops and conditions
for example, bu is ingead controlled by the method tha the logic programming system uses
to evduae the logic datements. Condraint Logic Programming languages are usualy based
on the Prolog programming language, a language in which dl program information is
expressed in first order logic form. Program execution in Prolog is controlled according to
depth-first search (i.e. tree search). During execution, the system proceeds to evauate the
truth of logic satements until an expresson evauaes to false. At this point the Prolog system
will return to a previous choice point and try another option. This is refered to as
backtracking, and this depth-fird gpproach is an inefficent way of solving problems when
used by itsdf. Condrant Logic Programming systems augment logic programming Systems
with the ability to ded with condraints and a look-ahead fegture to improve the efficiency of
depth-fird search. Condrant Programming is however not limited to CLP in Prolog, and
congraints have aso been integrated into languages such as C++ and Java.

2.1. Branchesof Constraint Programming

There ae two branches of condrant programming, namey the branches of constraint
satisfaction and constraint solving. The vast mgority of industry gpplications belong to the
branch of condraint satisfaction [3] and it is therefore the focus of this paper. The branch of
condraint satisfaction deds with the so-called Congraint Satisfaction Problem (CSP). A CSP
is defined as a problem conssting of:

- Asatof vaiables X ={X; ..., X, }
- Foreachvariable X, afiniteset D, of possible values (its domain), and
- A st of condraints regtricting the vaues that the variables can Smultaneoudy take

The vaues of the variables need not be a st of consecutive integers (dthough they often are),
and need not even be numeric. A solution to a CSP is an assgnment of a vaue from its
domain to every variadle, in such a way that dl condraints are satisfied a once. The god of
the problem may be to ether find a single solution (with no preference as to which one), al
solutions, or one which is optima (or saisfactory) with respect to some objective function
defined in terms of some or dl of the variables.

The branch of condraint solving is amilar to condraint satisfaction in that a set of condraints
is stated, which are then solved. The condraints, however, are defined over infinite or more
complex domans. The solution methods followed dso differ. Intead of using
combinatorid methods as in condrant sdisfaction, here the dgorithms ae based on
techniques such as automatic differentiation, Taylor series or the Newton method.

http://sajie.journals.ac.za

2.2. Consistency Techniques

Congraint Programming operates by reducing the domains of each of a problem’s variables
until each domain is reduced to a sngle dement. This is done by usng so-cdled consstency
techniques, condraint propagation methods, and a search drategy. Consstency techniques
have the function of deducing domain-rdaed information from condraints, and will atempt
to reduce the domains of a condrant’s variables by evauating the rdationships imposed by
the condraint and removing inconsstent values from the domains. For example, given the
congraint

X, <X, +3

with varigble domains D, ={x1 N|1£x£10} and D, ={x1 N|1£ x £10}, a consistency
technique operating on it deduces the new domain vaues D, :{xT N|1£x £10} and Dx2

= D,, ={xI N|1£x£8}. In this example, some of the remaining values clearly cannot

exig smultaneoudy in the domains of both variables. Conggency techniques differ in the
amount of information that they extract from condrants, and some techniques will attempt to
deduce more informetion relating to the combinations of domain vaues that are compatible.
The most effective techniques, however, do not deduce too much informaion and reman
purposefully incomplete due to benefits in efficency. Condstency techniques are agpplied
automatically by the condraint programming system, just as the truth testing of logicd
expressons is applied automaticaly by a logic programming sysem. The encounter of an
incondgent condraint is equivdent to deducing a false result when evauating a logicd
expression, and will result in a backtrack when using a depth-first search Strategy.

2.3. Constraint Propagation and Search

Consggency techniques do not usudly solve a problem when used done dthough it is
theoreticaly possble that they can reduce the domains of each of a problem's variables to a
gngle vaue, given an unlikedy combination of condraints. In practice, some form of search is
required to find variable assgnments that are compatible with dl condrants. The task of
searching for vaues for variables once the condraints have been specified is referred to as
labelling. It is possble to use ordinary depth-fird search, done in combinaion with
conssency checks on variables thus indantiated, to peform labeling. However, as
mentioned earlier, this is an inefficent way to search. Although the efficiency of a program
can be improved by using backward checking methods (see Hardick et a. [9]), CLP systems
usudly make use of constraint propagation techniques to achieve a degree of forward-
looking ability. Congrant propagation techniques differ in the amount of forward looking
that they achieve. The mgority of techniques perform smple consistency checks on variables
that have recently had their domains reduced, i.e. if the doman of a variable is reduced,
condraint propagation triggers consgtency checks on al condrants involving that varigble,
in turn reducing the domains of more variables and triggering further constraint propageation.
More complicated methods can remove more inconsstencies [9,12], but these methods are
computationdly expensve and are not used by most gpplications. As is the case with
conggtency techniques, condraint propagetion is automaticadly initisted by the condrant
programming sSysem. It is however possble to specify user-defined consstency and
propagation behaviour with some systems (e.g. ILOG Solver, Oz, and Eclipse).

http://sajie.journals.ac.za

The order in which variables are ingantiated (the process of assgning a vaue to a variddle is
termed instantiation in condrant programming) can influence solution time, and solution
time can usudly be reduced by labdling variables with smdler domans sooner. These
vaiables are more likely to yidd backiracking, and it is beneficid to limit backtracking to the
ealier pats of the search. The example presented in the next section demondrates the
concepts of condraint satisfaction in constraint programming.

Simple Example

The principles of condraint saisfaction in Congraint Programming are demondrated through
an example problem defined by the code fragment in Figure 1. The code is written in the
(Prolog based) Eclipse CLP language. The code of other congraint programming languages
(e.0. ILOG Solver) isvery amilar to Eclipse code.

example_solved :-
Vars= [X,)Y,],
Vars:: [1..3],
X#>Y,
Y#<> Z,
forall(V, Vars) {
indomain(V)

1.

Figure 1. Example constraint satisfaction problem

The program makes the datement that the logic term example_solved is true if each of its
lines is true (i.e. the comma after each line represents an AND dtatement). The firdt line of the
procedure (note that the word procedure used here is not technicaly correct in Prolog, and is
used here for convenience) defines the data Structure Vars, which is a list containing the three
vaiables X, Y and Z. The second line initidises the doman of esch of the variables to dl
integer vaues between, and including, 1 and 3. The next two lines of the procedure sate the
condraints of the problem. The hash symbol indructs the sysem that the condraint is an
active condraint (i.e. it will be sored in memory and will become awoken by condrant
propagetion). The forall command iterdtively initistes V to contain each of the variables in
Vars, and is actudly a macro defined by the Eclipse system. In pure Prolog code, the
functiondity of loops such astheseis achieved by using recursve

L ? T 1 : =
Y e i ko ST RO i i,
J__(z.l \3'.\ j‘_- \".‘-]v.zé 3l‘ o
g \ ’ !
f i EED P G N e o
I R KR & R |' |". P
JI ﬁ L] h Illllili i L J l“k lni-- -i- -ii » Illll- i ln -i-- i l'.. l-i-l- -i-
Figure 2. Full search treefor Figure 3. Search treebeforethe
example problem gart of labelling

http://sajie.journals.ac.za

¥

e e i e
B 1 I

L1k,

T " ra
..!’.:_..___'!._ ._.[_ __.$.__ ._:_. __;.__.._?.._.._!__
1458 & A N i i i i i
1 O O | | O £ SO S 10 S | [N 1
Voadd akd ek ale wly

Bda sk dda s
2

—_—— e — — __";!:_ i
Jvi‘i .i'-._
- ! i

rl.'.___.!. _..r_ :

: I"".i'."" _':I__..__!.'__._..:'t___'_!.__
1 3 a ifi i+ i i D B

Pl L il ::'!I.'. it o Bl St bk
SEE BEE BaE S8E SEE BeE BB BhE SEE
1

Figure 4. Search tree after iteration 1
and 2 of labdlling

Figure 5. A solution tothe
example problem

procedures. The indomain command indantiates a variable to contain the smdlest vadue of its
domain. The forall loop and the indomain command contained in it represent the labdling
function of the program. Figure 2 is a search tree for the problem. The important steps in the
solution of the problem are now described in more detall.

Domain Reduction before labelling

Congstency checks take place as soon as condraints are stated, and constraint propagation
will occur if any domans ae reduced. When the fird condraint is encountered, it is
evauated for consstency and the domains of variadbles X and Y are reduced, and the new
variable domains become

D, ={23, D, ={12}, D, ={123.

After evduating the next condraint, no new doman reductions are made. Both of the
condraints dill have un-ingantiated variables, and they therefore return to a dormant state in
memory, until they are again awakened by congraint propagation. Figure 3 shows the reduced
search tree for the problem

Domain Reduction during iteration 1 of labelling
The indomain command assgns the value of 2 to X, being the smdlest vaue d Dy. The firg
condraint (X #> Y awakens and the domain of Y is consequently reduced by removing the

vaue 2. This domain reduction is propagated to the other congtraint (Y#<>2Z), resulting in the
remova of the vaue 1 from its domain. The new domains are given by

D, ={2, D, ={1, D, ={23

The domains of both X and Y have therefore been reduced to one vaue. The new search tree
isshown in Figure 4.

Domain Reduction during iteration 2 of labelling

The vaue of the variable Y has dready been deduced, and no new information is determined
during this step. The search tree Says the same as that of Figure 4. Note that if the domain of

http://sajie.journals.ac.za

any of the variables becomes empty a any point during the procedure' s execution, the system
will backtrack to the nearest point where it can make an dternative choice and try another
option. During labdling this implies that the indomain command will be executed again to
assgn a different vaue to the varidble being labelled. If dl vaues have been tried, the sysem
will backtrack even further, to the previous varidble, and try to labe it agan. During
backtracking, dl domain reduction that took place since the last time tha the varigble was
labelled is reversed.

Domain Reduction during iteration 3 of labelling

During this iteration, the varidble Z is assgned the vdue of 2. The problem is now solved
because dl of the variables have been assgned vaues. Figure 5 shows the fina solution.

This section has described the principles of condraint programming and condrant logic
progranming. The next section presents a universty timetabling application of condraint
logic programming.

3. Timetabling System

The timetabling system was developed to determine timetables for the Industrid Engineering
Depatment of Stedlenbosch Universty. The task of finding timetables manudly is a
cumbersome duty that the system was expected to dleviate. The sysem atempts to schedule
a fixed number of classes in a way that no condraints are violated. Each subject has a fixed
duration (in periods), and this vaue is specified beforehand. The sysem aso accepts “soft”
condraints, which should preferably be satidfied, though this is not a requirement. The soft
congtraints are accommodated through the use of a branch-and-bound optimisation procedure.

3.1. Problem Moddl

The problem is moddled as a condrant satisfaction problem. The following integer
congtants are defined.

D Number of daysin aweek

A Number of periodsin an afternoon
M Number of periodsin amorning
S Number of subjects to timetable

R Number of available rooms

S Firs domain vaue for day k

The following varidbles are used

Xj . datingtimeof dassi
ri . roomassignedtoclassi.

In addition, the following expressions are defined

dur(x;) : durationof subjecti, intimedots.
min(D,) : minimum vauein the doman of X

http://sajie.journals.ac.za

The variables x; and r; are the problem variables, and their domains are given by

The vdues of S are chosen 0 that the number of integer vaues separaing the darting value
of any day and the ending value of its preceding day is a condant value. Let s denote this
congtant. Hence,

s=S.-(S.,+M+A+1), 2£kED

The reason for separating the domain vaues of consecutive days is to smplify the use of hard
congraints that schedule subjects on either separate or the same days (see Section 3.1.1). For
these condraints to function properly, the vaue of s must be greater than the totd number of
timedotsin aday.

3.1.1. Hard Condgraints

The sysem supports a large number of hard condraints. These can be divided into unary
condraints that operate on a sngle vaiable, removing vaues directly from its doman, and
more complicated condraints involving severa vaiables The later group are specified as
gpecidised condraint procedures, which behave as ordinary condraints (i.e. they are
sugpended in memory and awaken by condraint propagation through their variables). The
hard congtraints supported by the system are now described.

Unary Congtraints

These types of condraints involve directly reducing the doman of a single varigble before
labelling occurs.

X; occursin period P: x,#= P

X; does not occur in period P: x,#<> P

ri occursinroom R r, #=R

ri does not occur inroom R r, #<> P

Xi occursinamorning: D, =D, - ix|UjDﬂ(Sj +MEXES +M +A- 1) [3)
| =

Xi occursin an afternoon: D, =D, - ix|U?_l(Sj EXES +M - 1) t\l:J/)
| =

http://sajie.journals.ac.za

Subjectsthat may not overlap

The mgority of condraints belong to this category. For example, adl subjects that share at
least one lecturer or that belong to the same year group may not overlgp. The no clash
constraint procedure, described in the pseudo-code listing of Figure 6, enforces this condraint.
The procedure accepts the darting time variables of two subjects, X and Y, as input
parameters.

no_clash(X,Y) © min(D,) + dur(X) > max(Dy) P Y+ dur(Y) #£ X
OR

min(Dy) + dur(Y) > max(D,) P X+ dur(X) #£Y
OR

(SUSPEND)

Figure 6. Theno_clash constraint procedure.

The condraint procedure tests if the earliest possble garting times of ether of its two input
subjects is later than the latest possble ending time of the other. If this is the case then an
appropriate condraint is introduced to ensure that the subjects do not overlap. If these
conditions cannot be deduced, then the procedure is indructed to suspend itsdf in memory,
until it can again be awakened by congraint propagation. Note that this procedure introduces
more condrants into the problem during labdling, because generdly only during labdling
will enough information become available for one of the two conditions to be saisfied. This
procedure would be awkward to formulate in an integer program, and would require the
introduction of auxiliary varigbles.

Subjectsthat must occur on the same day

The same day condraint procedure, lised in the pseudo code of Figure 7, enforces this
condraint.

same_day(X,Y) © min(D,) 3 max(D,) P X-Y#> s
OR

min(Dy) > max(D,) P Y-X#> s
OR

(SUSPEND)

Figure7. Thesame day constraint

The procedure introduces a condraint forcing the number of domain vaues separating its two

input varidbles to exceed the vaue of s (defined ealier), depending on the doman
information avallable.

http://sajie.journals.ac.za

Subjectsthat must occur on different days

The different_day congraint procedure, lised in the pseudo-code of Figure 8, enforces this
congraint.

different_day(X,Y) © min(D,) 3 max(D,) P X-Y#>s
OR
min(Dy) > max(D,) P Y-X#> s
OR

(SUSPEND)

Figure 8. Thedifferent_day congraint.

Its operation issSmilar to the same_day congtraint.

Room congtraints

No two subjects may sSmultaneoudy share the same room. This requirement is enforced by
the room_no_clash constraint procedure, listed in Figure 9. The procedure accepts two subject

garting time variables, X and Y, as wdl as the respective room variables, A and B, of the
subjects.

room no_clash (X,Y,AB) © (max(D,) + dur(X) £ min(D,)
ORmax(Dy) + dur(Y) £min(D,) P true)
OR
(min(Dy) + dur(X) 3 max(D,)
AND min(Y) + dur(Y) 2 max(D,) P A#<> B)
OR

A<>B P true
OR
(SUSPEND)

Figure 9. Theroom_no_clash procedure

The procedure operates as follows. If the two subjects cannot overlap no condraint is
generated, and if they are known to overlap, then a condraint forcing the rooms to be unequa
is introduced, and if the rooms are dready known to be unequa then no new condrant is
introduced.

3.1.2. Soft Congraints

Soft condraints are optimised usng a branch-and-bound agorithm, as was mentioned eerlier.

The branch-and-bound method has a long history in the field of operations research, and is
traditionaly used with the smplex method to solve integer-programming problems. Modern
integer programming Systems, however, use more efficient agorithms than branch-and-
bound. Most CLP systems provide a packaged branch-and-bound agorithm. Severd types of
soft congraints are supported by the timetabling system

10

http://sajie.journals.ac.za

Subjects that should not overlap

Preferred starting times for subjects

Times at which a subject should preferably not be scheduled in
Preferred number of days separating subjects

The objective function used by the branch-and-bound agorithm is expressed as a sum of the
totd number of soft condraint violations, weighted according to the type of condrant being
violated. The weights, aswell astermingtion criteria, are specified by the user.

3.1.3. Labdling

The sysem labds dl starting time (x;) variables before the room variables (r;), the reason
being that it is usudly more difficult to find a feasble subject timeteble than to dlocate
rooms. Note that dthough the room variables are labelled later, the room _no_clash procedure
can affect the search beforehand, because of the fact that it has darting time variables as
aguments. When choosng variables to labe, the remaning variable with the smalest
domain is sdlected during each iteration.

3.2 Results

The system solves the timetables of the Indudrid Engineering Department of Stellenbosch
Univergty near indantaneoudy, when using an Inte Pentium 600MHz persond computer. |If
soft condraints are included, the execution time incresses to between 30 seconds and 5
minutes, depending on termination choices. It solves the whole engineering faculty's
timetables, consging of 150 lessons, in under a minute when usng only hard congrants.
These times compare favourably to other implementations [1,5] of smilar sze. It is however
dangerous to make draightforward comparisons of execution time based on the sze of the
problems being solved. Different implementations not only make use of other hardware and
software, but the solution time of timetabling problems do not grow according to a
polynomia function of the sze of the input problem Without teking these factors into
account, the nature of the condraints can adso be an important factor governing execution
time. Cetan scenarios may cause a lot of backtracking, causng a seemingly smdl problem
to take along time to execute.

4. Conclusons

This paper has atempted to convey the principles of condraint satisfaction techniques in
condraint programming through the description of a condraint logic programming gpplication
for timetabling problems. An important benefit of problem solving in condrant
programming is its flexibility and expressveness condraints with complicated behaviour are
natural to express, and programs are easy to maintain because new condraints can be easly
incorporated without changing much code. The timetabling application presented gresatly
facilitates the task of generating timetables and seems to have a good execution speed. The
sysem differs from exiging timetabling applications due to the large number of condrant
types that it supports. The technicd characterigics and behaviour of the agpplication are
equaly rdevant to the broader fidd of condraint programming as to condrant logic

programming.

11

http://sajie.journals.ac.za

5. References

[1]

[2]

[3]
[4]

[3]
[6]

[7]
[8]
[9]
[10]

[11]

[12]
[13]

[14]

Abdennadher et d. University Timetabling using Constraint Handling Rules,
Proceedings of the French spesking seminar on Logic Programming and Condraint
Programming, Nantes, France (1998)

P. Baptiste & C. Le Pape. Digunctive Constraints for Manufacturing Scheduling:
Principles and Extensions, Proceedings of the Third Internationd Conference on
Computer Integrated Manufacturing, Singapore (1995)

R. Bartak. Constraint Programming: In Pursuit of the Holy Grail, in: Proceedings of
WDS99, Prague (1999)

A. Borning. The Programming Language Aspects of ThingLab, A Constraint-Oriented
Smulation Laboratory, in. ACM Transactions on Programming Languages and
Systems, 3 (4), pp. 252-387 (1981)

T. Chase et a. Centralized Vehicle Scheduler: An application of Constraint
Technology, in: Proceedings of INFORMS conference, Montrea (1998)

Frangouli et d. UTSE: Construction of Optimum Timetables for University Courses -
A CLP Based Approach, Proceedings of the 3rd Internationa Conference on the
Practical Applications of Prolog, Paris (1995)

H. Gdlar. Logic Programming: Further Developments, in: IEEE Symposum on
Logic Programming, Boston (1985)

J Jaffar & M.J. Lassez. Constraint Logic Programming, in Proceedings of the ACM
Sympaosium on Principles of Programming Languages (1997)

RM. Hadick & G.L. Elliot. Increasing tree search efficiency for constraint
satisfaction problems Artificid Intelligence, 14, pp. 263-314 (1980)

C. Le Pape. Constraint-Based Programming for Scheduling: An Historical
Perspective, Working Notes of the Operations Research Society Seminar on Constraint
Handling Techniques, London (1994)

[.J. Lugtig & J. Puget. Program Does Not Equal Program: Constraint Programming
and its Relationship to Mathematical Programming, Interfaces, 31 (6), pp 29-53
(2001)

B. Naddl. Tree Search and Arc Consistency in Constraint Satisfaction Algorithms in:
Search in Artificid Intdligence, Springer-Verlag, New Y ork (1998)

I. Sutherland. Sketchpad: a man-machine graphical communication system, in:
Proceedings of the IFIP Spring Joint Computer Conference (1963)

D.L. Wdtz. Understanding line dawings of scenes with shadows in: Psychology of
Computer Vison, McGraw-Hill, New Y ork (1975)

12

