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ABSTRACT 

Economic transformation and escalating market competitiveness have 
prompted manufacturers to adopt zero-defect manufacturing principles 
to lower production costs and maximise product quality. The key enabler 
of zero-defect manufacturing is the adoption of data-driven techniques 
that harness the wealth of information offered by digitalised 
manufacturing systems in order to predict errors. Multi-stage 
manufacturing systems, however, introduce additional complexity owing 
to the cascade effects associated with stage interactions. A generic 
modular framework is proposed for facilitating the tasks associated with 
preparing data emanating from multi-stage manufacturing systems, 
building predictive models, and interpreting these models’ results. In 
particular, cascade quality prediction methods are employed to harness 
the benefit of invoking a stage-wise modelling approach. The working of 
the framework is demonstrated in a practical case study involving data 
from a multistage semiconductor production process. 

 OPSOMMING  

Ekonomiese transformasie en toenemende markmededingendheid het 
vervaardigers aangespoor om zero-defek-vervaardigingsbeginsels toe te 
pas met die oog om produksiekoste te verlaag en produkkwaliteit te 
maksimeer. Die sleutelbemiddelaar van zero-defek-vervaardiging is die 
gebruik van data-gedrewe tegnieke om die magdom inligting wat deur 
gedigitaliseerde vervaardigingstelsels beskikbaar gemaak word, vir die 
voorspelling van foute te benut. Multi-stadium vervaardigingstelsels 
veroorsaak egter bykomende kompleksiteit as gevolg van kaskade-
effekte wat verband hou met stadiuminteraksies. ’n Generiese modulêre 
raamwerk word voorgestel vir die fasilitering van take wat verband hou 
met die voorbereiding van data wat uit multi-stadium 
vervaardigingstelsels voortspruit, die bou van voorspellende modelle en 
die interpretasie van hierdie modelresultate. In die besonder word 
metodes vir die voorspelling van kaskadekwaliteit toegepas om die 
voordeel van ’n stadium-gewyse modelleringsbenadering uit te buit. Die 
werking van die raamwerk word in ’n praktiese gevallestudie 
gedemonstreer wat betrekking het op ’n multi-stadium halfgeleier 
produksie proses. 
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1. INTRODUCTION 

Economic transformation, a heightened emphasis on sustainability, and escalating market competitiveness 
attributed to globalisation are placing increased pressure on manufacturers to reduce costs, maximise 
efficiency, and deliver products of superior quality [1]. This phenomenon has prompted manufacturers to 
direct their attention to improving product quality, with a view to minimising the expenses associated with 
scrapping, reworking, or repairing defective products, as well as using their manufacturing equipment and 
materials effectively. One quality management ideology that has gained popularity in recent years is zero-
defect manufacturing, which pertains to the continual pursuit of attaining the highest product quality 
achievable by eliminating defects and defect inducers from manufacturing systems [2]. The strategy 
encourages a ‘first-time-right’ approach, thereby promoting the avoidance of time and resource wastage. 

The key enablers of zero-defect manufacturing are the emergence of cutting-edge technologies and 
artificial intelligence (AI) systems, which have paved the way for so-called smart manufacturing [3]. The 
digitalisation of manufacturing systems owing to the proliferation of sensor technologies and information 
systems being employed has led to a plethora of available data, offering a wealth of information. By 
harnessing the intrinsic potential of the data related to these manufacturing systems, data-driven 
approaches such as machine learning may be employed to retrieve actionable insight from the data [4]. 
The exhaustive eradication of product defects in manufacturing may thus be pursued by employing machine 
learning models that are aimed at predicting the likelihood of defects with a view to preventing their 
occurrence altogether.  

As a result of the increasing complexity and multi-faceted nature of manufactured products, modern-day 
manufacturing systems are typically multi-staged, and characterised by sequential interconnected 
production stages [5]. Multi-stage manufacturing significantly increases the complexity of defect prediction 
owing to stage interactions and cascade effects (i.e., the propagation of defects induced during one stage 
to subsequent stages) [6]. An ability to analyse data emanating from multi-stage manufacturing systems, 
however, raises the possibility of detecting defects during the early stages of production. 

A generic modular framework is proposed in this paper for facilitating the tasks associated with pursuing 
zero-defect manufacturing in multi-stage manufacturing systems by preparing the data from such systems, 
building error prediction models, and interpreting the results returned by these models. The working of a 
proof-of-concept computerised instantiation of the framework is illustrated in the form of a case study 
involving a multi-stage semiconductor manufacturing process. 

The remainder of this paper is structured as follows. In Section 2, the literature related to the study is 
briefly reviewed. In Section 3, a multi-stage manufacturing defect analysis (MSM-DA) framework is 
proposed. This is followed in Section 4 by a proof-of-concept demonstration of the framework in the form 
of a real-world case study application. The paper closes in Section 5 with a summary of its contributions 
and some recommendations for future follow-up work. 

2. LITERATURE REVIEW 

This section contains a discussion of the literature pertinent to the topic of this paper, namely predictive 
quality, cascade quality prediction modelling, and framework development. A brief discussion of similar 
studies conducted in the field of multi-stage predictive modelling is also presented. 

2.1. Machine learning in predictive quality 

The prediction of the quality of manufactured products that is aimed at enabling proactive quality 
management is a concept referred to as predictive quality [7]. Predictive quality is achieved by extracting 
trends inherent in the product-related data emanating from manufacturing systems and relating these 
insights to quality measurements [8]. According to Tercan et al. [8], the application of predictive quality 
consistently incorporates the following three strategies: (1) the selection, collection, consolidation, and 
preparation of product-related manufacturing data; (2) the development of predictive machine learning 
models that take the aforementioned data as their input; and (3) the use of model outputs to facilitate 
decision-making in order to enhance product quality. The final point may be accomplished by invoking 
model interpretation techniques, including methods such as Shapley Additive exPlanations (SHAP) value 
analyses and feature importance analyses. A SHAP value analysis is a game theoretic approach to 
determining the contributions of features to existing coalitions or groups of features in a model’s outputs 
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[9]. A feature importance analysis, on the other hand, involves determining the contribution of each feature 
to a model’s predictions by evaluating the effect of shuffling the values of the feature [10]. 

Predictive quality in the manufacturing domain today often involves the use of machine learning models 
because they can uncover intricate patterns and insight from large amounts of data [11]. Machine learning 
models offer the potential to predict the likelihood of defects occurring in manufacturing systems, thereby 
encouraging a proactive approach to minimising defects, with the ultimate goal of attaining zero-defect 
manufacturing. In particular, supervised learning algorithms are primarily invoked for this purpose, with 
product quality serving as the label to be predicted. Some of the successful applications of predictive 
quality facilitated by machine learning are predicting the prevalence of cracks in a deep drawing 
manufacturing process [12], the prediction of porosity defects occurring during additive manufacturing 
[13], and the prediction of roughness in laser cutting [14], to name but a few. 

2.2. Cascade quality prediction modelling 

Defect prediction models for multi-stage manufacturing systems have traditionally taken the form of single-
point prediction models, as illustrated in Figure 1(a) [15]. Predicting the possibility of defects post-
production offers value by enabling the flagging of potentially defective products before they are released 
from production. This approach, however, offers limited assistance, since the product has already been 
manufactured at the point of prediction and requires reworking or scrapping if found to be defective. 
Multiple defect predictive models should instead be embedded within the manufacturing system to harness 
the potential of in-production quality monitoring, facilitated by multi-stage manufacturing systems, by 
predicting the product quality throughout the production process, as illustrated in Figure 1(b). The outcome 
of each stage’s prediction model is a binary classification value that indicates whether a product is likely 
to fail or pass that stage. This approach involves training each prediction model on the data emanating 
from the output of only a single production stage on the assumption that each stage is subjected to unique 
operating conditions and behaviours [16].  

 

Single-point prediction model 

 

Multi-point prediction models 

Figure 1: Single-point versus multi-point prediction models, adapted from [15] 

Although multi-point prediction models offer the advantage of each focusing all its attention on one stage 
of production, the approach fails to model the interactions between stages. As a result, cascade quality 
prediction models (CQPMs) have emerged to incorporate the cumulative effects that preceding (or 
upstream) production stages may have on the quality of any specific downstream stage of production, as 
illustrated graphically in Figure 2. By effectively modelling the stage interactions and incorporating the 
data from successive stages, the performances of CQPMs typically surpass those of multi-point prediction 
methods [15]. 

According to Kao et al. [17], the data from a multi-stage manufacturing system may be described in respect 
of three primary relationships, as shown in Figure 3, each of which warrants consideration when predicting 
product quality. The relationship 𝑅𝑅1 is indicative of an association which exists between the manufacturing 
variables within each manufacturing stage. The association between the subsequent stages of production, 
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denoted by 𝑅𝑅2, is indicative of the interaction between stages. Finally, the relationship denoted by 𝑅𝑅3 
portrays the relationship between the manufacturing variables and the final product quality.  

 

Figure 2: A cascade quality prediction model 

 

Figure 3: The relationships occurring in multi-stage manufacturing data 

The most rudimentary CQPM (referred to here as ‘the basic CQPM’) incorporates only the relationship 𝑅𝑅3 
between the stage-wise manufacturing variables and the total quality. This relationship may be learnt by 
employing machine learning models, since the objective of a machine learning model is to learn about the 
relationship between the input features (manufacturing variables in this case) and the target feature (the 
product quality). The prediction model for any stage 𝑗𝑗 is trained on an accumulation of all the 
manufacturing variables of the data sets 𝓧𝓧𝟏𝟏,𝓧𝓧𝟐𝟐, … ,𝓧𝓧𝒋𝒋 coming from the preceding manufacturing stages, 
thereby considering the effects that preceding stages of production may have on succeeding stages. 

Arif et al. [15] proposed the adoption of a CQPM that uses so-called latent variables (i.e., observations 
describing the partial quality) to account for the effect of the relationships between the manufacturing 
stages 𝑅𝑅2 and the relationships between the variables of a particular stage 𝑅𝑅1 on the final product quality. 
According to this approach, the partial quality 𝑞𝑞𝑗𝑗 at a specific stage 𝑗𝑗 is considered to be a function of the 
manufacturing variables emanating from that particular stage as well as the quality characteristic 𝑞𝑞𝑗𝑗−1 of 
the previous stage, expressed mathematically as 

𝒒𝒒𝒋𝒋 = 𝒇𝒇(𝒒𝒒𝒋𝒋−𝟏𝟏,𝓧𝓧𝒋𝒋)  

The total quality 𝑄𝑄 may be derived from the quality characteristics of the final stage. That is, 𝑄𝑄 =
𝑓𝑓(𝒒𝒒𝑛𝑛,𝓧𝓧𝑛𝑛), as 𝒒𝒒𝑛𝑛 encapsulates an accumulation of all the previous stages’ manufacturing variables and 
partial qualities. 

According to Arif et al. [6], the process of uncovering the relationships 𝑅𝑅1 between inter-correlated 
manufacturing variables may be achieved in the same manner as mapping those variables to a new set of 
dimensions. This may be achieved by performing a principal component analysis (PCA) on the manufacturing 
variables so as to attain a set of uncorrelated variables that represent the quality characteristics associated 
with those manufacturing variables. For each stage 𝑗𝑗, 𝑘𝑘 ∈ {1, 2,⋯ , 𝑟𝑟𝑗𝑗} PCs may be derived. The 𝑘𝑘𝑡𝑡ℎ partial 
quality characteristic of stage 𝑗𝑗 may then be determined as 
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𝑞𝑞𝑗𝑗,𝑘𝑘 = �𝑎𝑎𝑘𝑘,𝑖𝑖𝑥𝑥𝑗𝑗,𝑖𝑖 + �𝑎𝑎𝑘𝑘,(𝑚𝑚𝑗𝑗+1)𝑞𝑞𝑗𝑗−1,𝑖𝑖

𝑟𝑟𝑗𝑗−1

𝑖𝑖=1

𝑚𝑚𝑗𝑗

𝑖𝑖=1

 

where 𝑥𝑥𝑗𝑗,𝑖𝑖 represents the 𝑖𝑖𝑡𝑡ℎ value of the manufacturing variables related to stage 𝑗𝑗, and 𝑚𝑚𝑗𝑗 represents the 
number of manufacturing variables related to stage 𝑗𝑗. Moreover, 𝑎𝑎𝑘𝑘,𝑖𝑖 denotes the degree of contribution of 
𝑥𝑥𝑗𝑗,𝑖𝑖 to the partial quality characteristic 𝑞𝑞𝑗𝑗,𝑘𝑘 (i.e., the weights returned from the PCA analysis). This approach 
is referred to here as the CQPM-PCA method. 

2.3. Decision support frameworks 

The growing demand in the business domain for software solutions has raised the need to reduce 
development time in the software life-cycle [18]. The focus has shifted from developing models on a case-
by-case basis to using reusable generic frameworks with a view to minimising development time and 
improving the overall efficiency of software solutions. These frameworks encapsulate the general workflows 
and tools required for solving similar problems in a specific domain. The MSM-DA framework proposed in 
this paper, for instance, is applicable to any defect detection classification problems found in the domain 
of multi-stage manufacturing systems. The framework should be modularised into a collection of 
constituent building blocks to achieve the flexibility and reusability of a framework in a particular domain.  

Shim et al. [19] proposed that a typical decision support framework or tool has three main elements, 
namely a database for the storage of data sets required and generated by the analysis, a graphical user 
interface (GUI) for interaction with the user, and a central processing element comprising the modular 
executable components. Kazmaier [20] further suggested that a central processing element applicable to 
the data-mining or machine-learning frameworks should have three primary components, namely a 
processing component (to prepare the data), a modelling component (to build, apply, evaluate, and 
compare models), and an analysis component (to elicit insight and valuable information). 

2.4. Related work 

Various approaches to and frameworks for predictive quality in manufacturing systems have been proposed 
in the literature. Arif et al. [6] initially proposed the use of the CQPM-PCA stage modelling approach, and 
concluded empirically that CQPMs in conjunction with decision trees outperformed single-point models. 
Building on this, Kao et al. [15] proposed a methodology for the offline and online monitoring of 
manufacturing defects. In their approach, Kao et al. [15] utilised a combination of the CQPM-PCA method 
and association rule mining for the prediction of product quality and the analysis of root causes 
respectively. Ismail et al. [5] proposed a smart real-time quality monitoring and inspection framework, also 
incorporating the CQPM-PCA method. They, however, focused on building machine learning models and 
identifying the most influential manufacturing stages. In this paper, the research is focused on exploring 
the best preprocessing and modelling approaches with a view to developing machine learning models that 
achieve superior prediction outcomes. 

3. A NOVEL MULTI-STAGE MANUFACTURING DEFECT ANALYSIS FRAMEWORK 

The framework proposed in this paper is aimed at providing guidance to a user for the tasks associated with 
pre-processing the data obtained from manufacturing facilities, constructing machine learning models for 
defect prediction, and interpreting the outputs returned by these models. The overarching objective of the 
framework is to facilitate a flexible exploratory analysis of the best techniques for preparing, modelling, 
and analysing the available data with a view to extracting actionable insights. A high-level process model 
of the proposed MSM-DA framework is illustrated graphically in Figure 4. The remainer of the section is 
devoted to a discussion of the three main framework components, namely its preprocessing, classification, 
and model interpretation components. For the sake of brevity, the database and GUI elements are not 
discussed.  



159 

 

Figure 4: A high-level process model of the proposed MSM-DA framework 

3.1. Preprocessing component 

The preprocessing component is aimed at preparing raw input data with a view to ensuring that the data 
are suitable for the various analysis tasks to be performed in the subsequent components. The component 
takes raw manufacturing data (i.e., observations related to the product under consideration at the different 
manufacturing stages) as input, and the product quality data supplied by the user. The transformation 
process of these raw data into prepared data is done by invoking seven constituent sub-processes, referred 
to as modules. These embody standard procedures in the machine learning process, differing only in the 
final module, which partitions the data for stage-wise modelling purposes. 

The first module is responsible for the exploratory analysis conducted on the raw data. This analysis 
facilitates understanding of the data by examining the available data sets with a view to reporting on the 
data characteristics (typically by considering appropriate statistical measures). Moreover, the information 
gathered throughout the exploratory analysis is stored in the database for later use during the preprocessing 
processes. The resulting model is concerned with configuring the data into a suitable features-label pair 
table for each product instance. This ensures compatibility with subsequent machine learning algorithms. 

The data are then partitioned into training and testing data subsets. The training data serve as input to 
machine learning models with a view to approximating an underlying function between the data features 
and their corresponding labels. The testing data, on the other hand, are not included in the training process, 
and serve the purpose of an unseen data set that is kept aside for the evaluation of the overall performance 
and generalisability of the machine learning models. The next module is concerned with formatting the 
entries of the raw data. The primary function of the data formatting module is to process the raw data so 
as to obtain a data set that is complete (i.e., free of missing values), correct (i.e., error-free), relevant 
(i.e., has prediction power), and scaled (i.e., with features having similar ranges or means). 

Having undergone all the necessary formatting, the training data are passed to the feature selection 
module. One of the difficulties associated with manufacturing data is the presence of noise (i.e., irrelevant 
or redundant data) in the data set. Furthermore, if the feature set is large, the analysis may suffer from 
the so-called curse of dimensionality. Feature selection techniques take as input only the training data 
from which to select the relevant features, with a view to avoiding information leakage and bias during the 
later performance assessment of machine learning models. The testing set is also reduced to have the same 
features as the training set in order to evaluate the models’ performance during subsequent model-building 
stages. 
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In manufacturing, it is typically expected that the number of non-defective products will outnumber the 
number of defective products. Thus a significant imbalance may exist, leading to a class-imbalanced 
classification problem. Class imbalance should be addressed (typically by resampling), since class imbalance 
may jeopardise the results of a machine learning model.  

The final preprocessing module involves partitioning the data into stages. The framework is specifically 
designed for multi-stage manufacturing systems in which products are manufactured over a series of 
sequential stages. The number of stages depends on the nature of the manufacturing process, and should 
be either apparent from the data or known by the user as a result of domain knowledge. 

3.2. Classification 

The overarching purpose of the classification component is to construct a machine learning model that is 
capable of predicting product defects at various stages of production. The three constituent modules are 
responsible for modelling the stage interactions, building machine learning models, and finally evaluating 
the performances of these models. 

Modelling the stage interactions is aimed at attempting to capture the complex relationships between 
manufacturing variables, the sequential manufacturing stages, and the final product quality. The cascade 
effect in manufacturing systems epitomises the interactive nature of manufacturing stages, as defects 
induced during earlier production stages are propagated downstream to subsequent stages. This may be 
achieved by invoking the previously discussed basic CQPM, the CQPM-PCA method, or any alternative stage 
modelling approach. 

Thereafter, suitable models for the prediction of defective products are built for each stage in the 
manufacturing process in pursuit of a multi-model solution. This module takes the training data as input, 
and involves an iterative process during which the model’s hyperparameters are tuned with a view to 
finding model configurations that maximise the performances of the models. Finally, the evaluation module 
involves evaluating the trained models on the testing data to ascertain their degree of generalisability. 

In a manufacturing context, where new data continually emerge, it is important to reimplement the 
preprocessing steps outlined in Section 3.1 based on the new data. The models should then undergo 
retraining to ensure that they maintain optimal performance in detecting minority instances. By regularly 
retraining the models with relevant data, the models may better learn from the underlying patterns in the 
data. 

3.3. Model interpretation 

While the machine learning prediction models deployed at the various manufacturing stages may offer the 
capacity to detect and prevent the downstream propagation of defects early, an additional capacity to 
interpret these models holds the potential to contribute an additional dimension of value. The overarching 
motivation for model interpretation in this context is that explainable prediction results may aid 
manufacturers in discovering the root causes of defects. A SHAP analysis and a feature-importance analysis 
may serve as a means of model interpretation in this component. Their collective purpose is to shed light 
on the features that bear defect prediction power (i.e., have a high discrimination ability). The findings of 
the three model interpretation modules are consolidated in the final module, which is responsible for 
amalgamating the outcomes to form a unified list of pre-eminent features. 

4. DEMONSTRATIVE CASE STUDY IMPLEMENTATION 

A computerised proof-of-concept implementation of the framework is applied to a benchmark data set in 
this section to showcase the practical working of the proposed MSM-DA framework. This section is devoted 
to a walk-through of the application of each component in the framework, along with a presentation of the 
results obtained. In an attempt to demonstrate the efficacy and utility of the framework, the results are 
compared with those of Salem et al. [21] and McCann et al. [22]. 

The ‘no free lunch’ theorems suggest that the particular combination of techniques resulting in the best 
optimisation performance differ for each situation and are not known beforehand [23]. The framework 
modules were therefore implemented iteratively by invoking different variations of the preprocessing 
techniques to discover which techniques resulted in the best performances. 
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4.1. Case study background 

The freely available SECOM data set [24] was selected as a benchmark data set for demonstrating the 
working of the MSM-DA framework proposed in the previous section, as it has been studied both as a single-
stage and as a multi-stage manufacturing system by various authors [5, 17, 21, 22, 25, 26]. The SECOM data 
set is a collection of data entries emanating from a semiconductor wafer manufacturing process. A silicon 
wafer is a thin slice of crystal semiconductor produced in a circular form, and is an integral microelectronic 
component that is often used in integrated circuits [27]. The intricate process of producing semiconductor 
wafers is characterised by a series of highly specialised sequential processes, requiring a high level of 
precision. May et al. [28] described the modern semiconductor manufacturing process as “the most 
sophisticated and unforgiving volume production technology that has ever been practised successfully”.  

The wafer production processes may be described at different levels of abstraction. On the lowest level of 
abstraction, the process may be described as a series of more than 500 individual processes that have to 
be executed precisely so as to avoid defects. On a higher level of abstraction, the process may be defined 
as five sequential operations, namely oxidation, photolithography, etching, ion imputation, and 
metallisation, as illustrated graphically in Figure 5 [29]. 

Modern-day wafer manufacturing processes are characterised by constant surveillance as a result of the 
sensor technologies that are available to monitor the precise execution of the various production stages 
[22]. Sensor technologies are the key enabler for achieving a high level of precision during the production 
process, and so have the potential to improve production yield, minimise defects, and enhance the quality 
of the wafers produced.  

 

Figure 5: An overview of the semiconductor manufacturing process, adapted from [29] 

The SECOM data set comprises two raw text files. The first file contains a collection of 590 distinct sensor 
readings measured for each of 1 576 product instances. The second file contains the time-stamped results 
of a quality inspection conducted post-production. The product quality is represented as either a −1 or a 
1, respectively indicating a pass (i.e., no defect present) or a fail (i.e., defective).  

4.2. Preprocessing 

The preprocessing steps of the MSM-DA framework were applied to the SECOM data set with a view to 
preparing the data for the subsequent analysis tasks. During an initial exploratory analysis it was found 
that, of all possible 1 567 × 590 = 924 530 data entries, 41 951 entries were missing, corresponding to 4.52 
per cent of the entire data set. Moreover, 116 features (corresponding to sensor readings) had a cardinality1 
of 1, suggesting that these features had no discriminatory power in a classification problem. There was also 
a large target class imbalance, with a ratio of failed tests to passed tests of 1:14, corresponding to 104 
products having failed and 1 463 products having passed the quality test. 

 
1In the context of a relational database, cardinality is the number of distinct values a feature can potentially assume. 
A cardinality of 1 signifies that all the feature values are identical, suggesting that a machine learning model cannot 
derive meaningful insights from the feature for predicting the target feature. 
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After having explored the data set, the data set was configured into a collection of feature-label pairs by 
amalgamating the two data files. In order to set apart data for the purpose of the training machine learning 
models and testing their performances on unseen data, the data set was partitioned, using stratified 
sampling, into training data and testing data, with a partitioning ratio of training-to-testing data set to 
70%:30%. The partitioning process (and hence all the subsequent steps) was repeated for twenty different 
random splits to ascertain the degree of variability in the results returned by the machine learning models.  

The data were formatted to ensure that all data entries were complete, relevant, error-free, and re-scaled. 
Since machine learning algorithms typically cannot be trained on incomplete data sets, the features 
containing missing entries were formatted. For this purpose, a threshold for deleting features from the 
training data was set at 40 per cent, as illustrated graphically in the scatter plot in Figure 6. This led to 
the deletion of 32 features (represented by the red dots in Figure 6). The remainder of the missing values 
were imputed by subjecting the data set to multi-variate 𝑘𝑘-NN imputation [30]. Outlier errors (i.e., 
meaningless aberrations introduced into the data set) were identified using the 3σ-rule and removed from 
the data set so as to improve the quality of the data [31]. These values were also imputed using 𝑘𝑘-NN 
imputation. 

 

Figure 6: Deletion of features exceeding a deletion threshold of 40% 

Features having a cardinality of 1 were removed from the data set so as to remove irrelevant features from 
the data set. This led to the deletion of 116 features, represented by the red dots in Figure 7. All the 
feature values were then re-scaled by performing z-score standardisation so as to obtain feature vectors of 
a similar range scale [32]. 

 

Figure 7: Deletion of the features having a cardinality of 1 

The formatted data were passed on to the feature selection module with a view to filtering out noise and 
irrelevant and redundant features. It is typically not known beforehand which feature selection techniques 
would be most appropriate for eliminating redundant and irrelevant features from a particular data set. 
Thus seven feature selection techniques were employed and compared, namely an analysis of variance 
(ANOVA), mutual information (MI), the select false positive rate (SFPR), recursive feature elimination 
(RFE), the Pearson correlation, Kendall’s Tau correlation, and importance-based feature selection (IBFS). 
Detailed information on the implementation of each technique may be found in Table A.1 in Appendix A. 

The class imbalance problem was addressed by applying and comparing three different resampling 
techniques. These resampling techniques, namely random undersampling, random oversampling, and 
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SMOTE, were employed with a view to balancing the proportions of the minority and majority classes in 
order to attain an imbalance ratio of 1. 

The manufacturing process may be viewed as five sequential stages on the highest level of abstraction, as 
illustrated in Figure 5. The SECOM data set gives no indication of which features are part of which stage. It 
was only known that the features represent sensor readings associated with sequentially executed tasks. 
The assumption was therefore made that the process comprises five stages, and that each of these stages 
corresponds to an equal number of sensor readings. Other authors who have analysed the data set as a 
multistage manufacturing system have made the same assumption [5, 17, 29, 31]. The feature vectors were 
thus grouped into the stages shown in Table 1. 

Table 1: The features prevalent in each manufacturing stage 

 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Features 1 — 118 119 — 236 237 — 354 355 — 472 473 — 590 

4.3. Classification component 

The primary purpose of the classification component is to build and test machine learning defect prediction 
models for each stage in the manufacturing system. First, the stage interactions are modelled to capture 
the complex relationships in the stage-wise data. The two-stage modelling approaches considered during 
the analysis were the basic CQPM and the CQPM-PCA techniques. For each different combination of 
preprocessing techniques (i.e., the different feature selection and resampling techniques that were 
employed), models for the final stage were developed, evaluated, and compared so as to be in a position 
to select the best combination of preprocessing techniques for the data set. Having identified the best-
performing combination of preprocessing techniques for the data set, these techniques were employed 
during the development of multi-point models for all the preceding manufacturing stages. 

The supervised machine learning models considered during the analysis were a decision tree2 (DT), a 
random forest (RF), a support vector machine (SVM), logistic regression (LR), and the k-nearest neighbours 
(kNN) algorithm. These models were selected for their interpretability (i.e., LR and DT) and their 
computational efficiency (which may facilitate the ease of implementation and deployment). In an attempt 
to maximise the performance of each machine learning model, a subset of the hyperparameters for each 
model was tuned in respect of the training data. The tuning process took the form of either a grid search 
or a random search. Details of the hyperparameter tuning processes may be found in Table A.2 in Appendix 
A.  

Having determined the best combination of hyperparameter values for each machine learning model, the 
models were trained on the full set of training data, and then applied to the hold-out test set with a view 
to ascertaining the degree of generalisation of the models in respect of unseen data. 

In the context of semiconductor manufacturing, the primary aim of defect prediction is to maximise the 
number of true positives (TPs) (where the positive class is synonymous with the defective target class) and 
to minimise the number of false negatives (FNs). Thus recall was selected as the main performance metric 
for the analysis. In pursuit of a more comprehensive performance evaluation, additional performance 
metrics that are robust with respect to class imbalance, such as the area under the receiver operating 
characteristic curve (AUROC) and the true negative rate (TNR), were also employed. 

Each performance score represents the average performance that the model achieved for each of the 
twenty different random states selected during the train-test data partitioning. The results returned by the 
SVM machine learning model, which took as input the training data subject to different combinations of 
preprocessing techniques, may be found in Figure 8 for the basic CQPM stage modelling approach. 

The results returned by all five models show a similar trend with respect to the application of the different 
resampling techniques. In all cases, performing no resampling or performing random oversampling led to 

 
2While typically considered inferior to random forests in their predictive performance, decision trees were selected 
because they have notable advantages in interpretability. 
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excellent TNRs but to poor recall results. Performing no resampling resulted in the models being biased 
towards the majority class (i.e., non-defective products). In the case of random oversampling, the 
introduction of multiple duplicates of the minority class instances led to overfitting in respect of the 
training data. Applying random undersampling, on the other hand, enabled the algorithms to learn 
effectively from the minority class — which is evident as a result of the increase in the recall performance. 
This, however, came at the cost of misclassifying non-defective products as defective — as is evident as a 
result of the decline in the TNR. The same observation generally holds for applying SMOTE to the training 
data (i.e., introducing synthetically generated samples into the data set), although the SMOTE technique 
resulted in smaller recall values and slightly larger TNRs. 

When comparing the results returned by the algorithms after having applied different feature selection 
techniques, it is evident that the best feature selection technique in each case is affected by the resampling 
technique and by the machine learning algorithm selected. In general, the combination of random 
undersampling the data with ANOVA or the Pearson correlation feature selection performed well. 

Based on the exploratory analysis in search of the best combinations of preprocessing techniques, the best-
performing models (referred to as Models A1-A5 for the basic CQPM) were identified with respect to recall 
performance for each machine learning algorithm. The results of these best-performing models are 
presented in Table 2. The best-performing models were trained in respect of the entire data set, and were 
thus representative of the final manufacturing stage. The best combination of the identified preprocessing 
techniques was then applied to all five manufacturing stages, and models were built and evaluated for each 
stage. The results returned by the SVM model produced for each stage are illustrated graphically in Figure 
9. The large variance in the results witnessed for the Stage-1 and Stage-5 models suggests that these models 
are sensitive to the noise still present in the data and are overfitting in respect of specific subsets of data. 
Adjusting the model’s complexity or applying regularisation techniques may yield more robust models. 

  

(a) No resampling (b) Random undersampling 

  

(c) Random oversampling (d) SMOTE 

Figure 8: The basic CQPM results returned by the DT classifier with input data subjected to three 
resampling techniques (a)–(d), the inclusion of outliers, and the application of seven feature-

selection techniques 
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Table 2: The best-performing models for each of the algorithms, achieved by applying the basic CQPM 
method 

 Classifier Feature 
selection Sampling Recall AUROC TNR 

Model A1 DT Pearson Under 66.13 54.52 41.27 

Model A2 RF None Under 65.48 66.98 60.51 

Model A3 LR Pearson Under 72.58 67.13 54.20 

Model A4 kNN MI Under 64.35 64.48 56.66 

Model A5 SVM Anova Under 76.77 63.49 48.10 

One would generally expect the prediction performances of the stage-wise models to increase per stage as 
more features are included in the data set and as one progresses through the production stages. This is 
because the basic CQPM takes an accumulation of all the data prior to a particular stage as input when 
training a particular stage’s prediction model. The average stage-wise performance (indicated by the black 
triangles in the box plots of Figure 9) exhibits this general trend, with the final stage, Stage 5, achieving 
the largest average recall of 76.77 per cent.  

 

Figure 9: The average recall achieved by SVMs for each of the manufacturing stages 

‘By applying the alternative stage modelling technique, namely CQPM-PCA, a new set of best-performing 
models (referred to as Models B1–B5) was obtained. For these models, only the random undersampling 
technique was considered, since this technique outperformed the other resampling techniques. During the 
implementation of the CQPM-PCA method, the principal components were generated such that 95 per cent 
of the variance in the data was retained. The results returned by these best-performing CQPM-PCA models 
are presented in Table 3. 

Table 3: The best-performing models for each of the algorithms, achieved by applying the CQPM-PCA 
method 

 Classifier Feature 
selection Recall AUROC TNR 

Model B1 DT SFPR 64.87 62.21 56.84 

Model B2 RF Anova 66.90 71.29 67.66 

Model B3 LR Pearson 71.92 67.01 56.41 

Model B4 kNN None 68.04 67.47 61.43 

Model B5 SVM Anova 77.52 62.33 49.66 

The performance results for the SVM algorithm according to the two distinct stage modelling techniques 
are compared in Figure 10. Overall, the application of the CQPM-PCA method to the final stage models 
outperformed the basic CQPM for all the models and for the majority of feature selection techniques. This 
may be attributed to the fact that the CQPM-PCA takes into account all three relationships 𝑅𝑅1, 𝑅𝑅2 and 𝑅𝑅3 
that are prevalent in a manufacturing data set, and therefore captures the stage interactions more 
effectively. This also alludes to the fact that the appropriate modelling of stage-wise interactions results 
in superior performances when compared with the results returned by single-point prediction models (the 
final-stage model of the basic CQPM is the same result as that returned by a single-point prediction model). 
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(a) SVM basic CQPM (b) SVM CQPM-PCA 

Figure 10: A comparison of the performances achieved by the SVM algorithm during application of 
the basic CQPM and the CQPM-PCA methods 

4.4. Comparison with the work of other authors 

In order to establish the credibility of the proposed framework in the domain for which it was designed, its 
performance should be validated [33]. This may be achieved by comparing the results returned by the 
models with those of other authors who have conducted analyses of the SECOM data set. The best results 
returned by applying both the basic CQPM and the CQPM-PCA methods were achieved by SVM algorithms. 
These results are presented in  

Table 4, along with the results achieved by Salem et al. [21] and McCann et al. [22].  

By comparing the results of Model B5 with those returned by the model of Salem et al. [21], it is evident 
that there is only a small difference of 0.36 per cent between the recall performances obtained. Although 
the AUROC and TNR achieved by the model of Salem et al. [21] slightly outperformed those of Models A5 
and B5, the results still compare well with those of Salem et al. [21]. 

Models A5 and B5 both outperformed the model of McCann et al. [22] with respect to the recall. The TNR 
of those authors, however, were significantly larger than any of those achieved by Model A5 and Model B5. 
The difference between the two sets of results may be accounted for by the fact that Models A5 and B5 
were tuned and selected primarily based on recall, with a primary focus on maximising the TPs and 
minimising the FNs. This, however, comes at the cost of achieving a smaller TNR. 

Table 4: A comparison of our analysis results with those of other authors 

 Classifier Feature 
selection Recall AUROC TNR 

Model A5 SVM Anova 76.77 63.49 48.10 

Model B5 SVM Anova 77.52 62.33 49.66 

Salem et al. [21] kNN SVM L1 77.88 65.96 50.07 

McCann et al. [22] Naïve Bayes t-Test 59.60 ― 73.00 

A number of other authors also performed analyses on the SECOM data set, although in each of these cases 
data leakage occurred. Moldovan et al. [25], for instance, reported that data partitioning took place after 
data cleaning and feature selection. In order to evaluate fairly the generalisability of a model, the testing 
set should not be available for use during pre-processing decisions and model training so as to prevent the 
return of overly optimistic performances. Other authors applied resampling techniques to the entire data 
set [5, 17, 26]. Unfortunately, the results of the validation analysis cannot be compared with the results of 
these models, as they produce deceptively good results. 
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4.5. Model interpretation 

In the context of the wafer manufacturing process, the interpretation of the machine learning defect 
prediction model results may offer significant insight to manufacturers. The model interpretation 
component was implemented with the aim of helping manufacturers to discover the root causes of defects 
by pinpointing manufacturing stages that are potentially inducing defects. Although Models B1–B5, resulting 
from the application of the CQPM-PCA method, yielded better classification results than Models A1–A5, the 
transformation of the feature space to principal components led to a loss of ability to interpret the pre-
eminent features meaningfully. Thus Models A1–A5 were considered for interpretation purposes.  

Interpretation of the results of the best-performing models was performed by two approaches, namely a 
permutation-based feature importance analysis and a SHAP value analysis. The results obtained when 
implementing these model interpretation techniques to the outputs returned by the LR model are shown 
in Figure 11. 

  
(a) SHAP value analysis (b) Feature importance analysis 

Figure 11: The SHAP value scores and feature importance scores for the LR model 

Model interpretation applied to different algorithms typically results in different sets of features being 
identified as significant, since these algorithms employ distinct methods for classifying data instances [34]. 
Furthermore, the various model interpretation techniques may also offer different results, because the 
manner in which they rate features as significant differs. Thus the interpretation of the results returned by 
the various models and model interpretation techniques was consolidated into a unified list of pre-eminent 
features. Figure 12 contains those features that were identified as important (i.e., ranked among the top 
ten) by at least two techniques applied to the five models. Feature 60 was the most frequently detected 
as influential, followed by features 104 and 424. 

 

Figure 12: Top ten features ranked as important by at least two techniques applied to the five 
models 
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5. CONCLUSION 

The primary research aim in this paper was to propose a generic modular framework for facilitating the 
tasks associated with preparing the data from multi-stage manufacturing systems, building machine 
learning models to predict the occurrence of product defects, and interpreting the results returned by 
these models. The efficacy and utility of the proposed framework was demonstrated by implementing a 
computerised proof-of-concept in respect of the SECOM data set. The implementation yielded satisfactory 
classification results that compared well with those achieved by other authors who conducted analyses of 
the data set. Moreover, the superior results returned by the final-stage CQPM-PCA modelling approach, as 
opposed to the basic CQPM (whose final stage model is equivalent to the single-point prediction method), 
suggested that there is an advantage in considering the data emanating stage-wise from a manufacturing 
system. 

Potential avenues for future research include applying the framework to an additional data set and 
expanding the framework into a comprehensive decision support system that is capable of the real-time 
prediction of product defects. This would facilitate the deployment of trained models into a manufacturing 
system. Moreover, automation of the model retraining process based on data-driven techniques, such as 
detecting concept drift, may be pursued. Finally, further investigation of unstructured data, such as 
images, videos, or textual data, may hold promise for enriching defect detection capabilities. 
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APPENDIX A 

This section contains detailed information about the application of the MSM-DA framework to the SECOM 
data set. 

Table A.1: The implementation details of the various feature selection techniques 

Feature selection 
technique Implementation Specifications 

Anova SelectKbest() function of the SciKit-Learn library. K = 46 
scoring = Anova F-value 

MI SelectKbest() function of the SciKit-Learn library. K = 68 
scoring = MI 

SFPR SelectFpr() function of the SciKit-Learn library. scoring = Anova F-value 
α = 0.1 

RFE RFECV() function of the SciKit-Learn library. model = LR 
5-fold cross validation 

Pearson corr() function of the Pandas library. deletion threshold = 
0.8 
method = Pearson 

Kendall’s Tau corr() function of the Pandas library. selected features = 40 
method = Kendall 

IBFS SelectFromModel() function of the SciKit-Learn 
library. 

model = LR 
threshold = mean 

Table A.2: The hyperparameters and their values, and the tuning method applied to each of the 
machine learning algorithms 

Algorithm Hyperparameters Hyperparameter values Tuning method 

DT 

max_depth 
min_samples_split 
max_features 
min_samples_leaf 

[2:10, None] 
[2:10, None] 
[2:10, None] 
[2:10, None] 

Random search 
(100 trials) 

RF 
estimators 
max_depth 
min_samples_split 

[10:100] 
[2:6] 
[2:6] 

Random search 
(100 trials) 

SVM 
C 
gamma 

[0.001, 0.01, 0.1, 1, 10] 
[1, 0.1, 0.01] 

Grid search 

LR 
penalty 
C 
solver 

l1 or l2 
[0.001, 0.01, 0.1, 1, 10] 
liblinear or lbfgs 

Grid search 

kNN 
n_neighbours 
weights 
p 

[0:20] 
uniform or distance 
[1, 2] 

Random search 
(100 trials) 
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