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ABSTRACT 

 
In practice, there are many quality control situations where a product under consideration may 
have two or more interrelated quality characteristics and observations of each characteristic 
are serially correlated.  One of the objectives of management is to investigate whether or not 
all these characteristics of the product simultaneously satisfy the required specifications. 
 
To the author's best knowledge, no concrete attempts have been made so far to construct the 
control charts for such situations, particularly when the data arise from vector autoregressive-
moving average (VARMA) processes.  It is this problem that has been addressed in this paper.  
A few methods are suggested for constructing the control charts. When assumptions about 
independence and normality break down, a bootstrap method, perhaps for the first time, is 
suggested to attack the problem.  Some illustrative examples are discussed. 
 

OPSOMMING 
 
In die praktyk is daar vele kwaliteitbeheersituasies waar 'n betrokke produk een of twee 
onderling verbonde kenmerke kan hê en waarnemings van elke kenmerk serie gekorreleer is.  
Een van die doelwitte van bestuur is om te ondersoek of hierdie kenmerke van die produk 
gelyktydig aan die vereiste spesifikasies voldoen al dan nie. 
 
Na die outeur se beste wete, is daar tot dusver geen daadwerklike pogings aangewend om die 
beheergrafieke vir sodanige situasies op te stel nie, veral waar die data ontstaan uit vektor 
outoregressief bewegende gemiddelde (VARMA) prosesse.  Hierdie probleem geniet in 
hierdie artikel aandag.  'n Aantal metodes vir die opstel van die beheergrafieke word 
voorgestel. Wanneer aannames oor selfstandigheid en normaliteit faal, word 'n 
skoenlusmetode voorgestel om die probleem die hoof te bied.  'n Aantal voorbeelde ter 
toeligting word bespreek. 
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1.  INTRODUCTION 
  
In many quality control situations, especially in modern industries, the product under 
examination may have two or more interrelated quality characteristics and, furthermore, 
observations of each characteristic may be autocorrelated.  The objective of the management 
is to investigate whether or not all these characteristics simultaneously satisfy the required 
specifications.  For instance, a cylinder has both an inner diameter (X1) and an outer diameter 
(X2) which together determine the usefulness of the item.  If both characteristics are 
uncorrelated and the observations of both are independent, the process may be controlled by 
applying the well-known Shewhart charts.  However, if the variables are interdependent, the 
use of the Shewhart charts would be misleading. 
 
In particular, a standard multivariate quality control problem is to consider whether or not an 
observed vector of measurements X = (X1, X2, ..., Xp)’ of a certain item exhibits any evidence 
of a location shift from a set of given mean values :0 = (:1, ..., :p)’.  When the vector variables 
are correlated and the observations of them are independent, the multivariate control charts 
have been developed by several authors, including Hotelling [7], Jackson [8], Montgomery 
[9] and Hayter et al. [6] (see References).  However, for most processes, it is unrealistic to 
expect the observations to be independent.  Instead, the quality measurements Xi1, Xi2, ..., Xin 
of the i-th variable Xi, i = 1, ..., p may be autocorrelated (see Montgomery [9]).   
 
It has been found in practice that if observations of quality characteristics exhibit even low 
levels of correlation, the conventional control charts mislead in the form of too many false 
alarms.  Examples include chemical processes where consecutive measurements of product 
characteristics are often highly correlated for a variety of reasons.  In fact, in all 
manufacturing processes, when the interval of sampling is narrowed down, observations of 
the process become correlated over time. 
  
In the univariate case, the effect of autocorrelated observations of control charts has been 
studied by several authors (see Wardell et al. [11]).  In the multivariate situation, however, no 
concrete results are available as yet, to the author's best knowledge (see Alt [1,2]).  It is this 
problem which is studied in this paper and some interesting results are obtained.  Three 
approaches are suggested, namely 
  
(i) X  charts for dependent observations of correlated quality characteristics. 
(ii) Fitting of a model to the data and application of traditional methods of residuals. 
(iii) Bootstrap methods. 
  
The plan of the paper is as follows: 
  
Section 2 gives a brief account of multivariate control charts when observations of each 
variable are independent.  In Section 3, we state and prove some useful theorems.  In Section 
4, we discuss the problem and suggest X  charts for autocorrelated observations of correlated 
quality characteristics.  Section 5 deals with the fitting of a vector ARMA model to the data 
and studying residuals.  When the usual normality assumptions do not hold good, a bootstrap 
method is suggested in Section 6.   
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2. REVIEW OF MULTIVARIATE CONTROL CHARTS WHEN OBSERVATIONS     
      ARE INDEPENDENT 
  
In the univariate case when a single quality characteristic X is assumed to be normally 
distributed with mean µ0 and variance , the Shewhart control chart has the following 
control limits: 

2
0σ

nZ /0
2

0 σµ α±                                                       (1) 

where n is the sample size and 
2
αZ  is the Z percentile corresponding to 

2
α .  For the successive 

random samples of size n, this control chart can be viewed as the repeated tests of significance 
of the null hypothesis 0: µµ =H  vs 0: µµ ≠H .  It may be noticed that the region above the 

upper control limit (UCL) n/Z0µ + 0
2

σα  and the lower control limit (LCL) nZ /0
2

0 σµ α−  

corresponds to the likelihood ratio test rejection region.  This equivalence of hypothesis 
testing and the control chart methodology lays the necessary foundation for extending the 
univariate to the multivariate. 
  
Suppose that the p-quality characteristics are jointly distributed as a p-variate normal with a 
known mean 0µ  and covariance matrix 0∑  and that a random sample of size n is available 
from the process.  The likelihood ratio test 0: µµ =H  vs 0: µµ ≠H   specifies that the null 
hypothesis H0 be rejected if 
 

( ) ( ) 2
,0

1

0 ' αχµµ pXXnQ >−−= ∑
−

                                     (2) 

 
where ( )pXXXX ,...,,' 21=  is the 1×p  vector of sample means and is the χ2

,αχ p
2  percentile 

corresponding to the significance level α with p degrees of freedom.  Then the control chart is 
formed by plotting the values of Q on the chart with UCL =  and LCL = 0.  If a value 
falls above the UCL, the process is considered to be out of control and the assignable causes 
are sought.  This is referred to as a χ

2
,αχ p

2-chart. 
 
If  µ and Σ are unknown, they can be estimated from preliminary samples taken when the 
process was in control.  Let there be m such samples each of size n.  The sample means 
variances and covariances can be calculated from these m samples as usual.   Let X  and S 
denote respectively the pooled estimates of the vector mean µ and the covariance matrix Σ.  
Then the test statistic is 
 

( ) ( )XXSXXnT −−= −12 '                                           (3) 
 
which is the Hotelling T 2-statistic, X  is the sample mean of new observations.  The control 
chart formed by this statistic is known as the T 2 chart.  If µ and Σ are estimates using large 
samples (say n ≥25), it is customary to use the UCL = as the upper control limit on the  2

,αχ p
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T 2 chart, otherwise the UCL and LCL are based on the F-distribution which is closely related 
to the T 2-distribution by 
 

pnpF
pn

p
n
T

−−− ,

2

~
1

                                                  (4) 

 
where p  and n-p denote the degrees of freedom for the statistic F.  In that case, the (1-α)100% 
UCL is given by 
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and the LCL by 
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3.  MULTIVARIATE CONTROL CHARTS WHEN OBSERVATIONS  
     ARE INTERDEPENDENT 
 
We notice from §2 that the multivariate quality control methodology is based on the 
assumption that the serially generated data are independent and multinormally distributed.  If 
these assumptions are relaxed, the presence of serial correlation in observations greatly affects 
the distribution of statistic Q in (2) and/or T 2 in (3).  A great deal of data in business, 
economics, engineering and the natural sciences occur in the form of time series where 
observations are no longer independent.  The presence or absence of autocorrelation in a time 
series or cross-correlation between two time series can be tested using the well-known test 
statistics available in the literature.  Then the problem is what to do once the dependence 
among observations is confirmed.  In answering this, let us first consider the following 
theorems to be used later. 
  
Theorem 3.1 (A Central Limit Theorem for Dependent Variables) 
  
Let Y1, Y2, ..., Yn be a sequence of variables from a multidimensional stationary stochastic 
process such that for every integer n and integers t1, t2, ..., tn (0 < t1 < … < tn).   Y , ..., Y  are 
distributed independently of  Y

1t nt

1, …, Y  and Y .  If YE11 −−mt 1++mtn t = 0 and EYtYt' < ∞, then 

t

n

t
Y

n ∑=1

1  has a limiting normal distribution with mean zero and covariance matrix 

 
{ }''...''' 1111122111 YYYYYYYYYYE mm ++ +++++                                (7) 

 
 
For proof, see Anderson  [3, p.429]. 
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Theorem 3.2 
 
Let {Yt} be a zero-mean, stationary p Η 1 vector process and let Y1, Y2, ..., Yn be a sequence 
of random observations from this process.  Then the autocovariance function of the mean 
  
For simplicity, we develop the control charts for vector MA(1) and vector AR(1)  processes in 
§4.1 and §4.2 respectively.  It is worth pointing out at this stage that most of the univariate, as 
well as the multivariate, time series in practice are very well represented by lower-order 
ARMA processes such as MA(1), AR(1) or ARMA(1,1)  processes. 
 
4.  Control charts for the vector MA(1) process 
 
Example 4.1  For simplicity, let {Xt}denote a bivariate MA(1) process defined by 
 

Zt = µ + δt + Θ εt-1                                                  (11) 
 

where 
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It is assumed that Θ and Σ are known.  Suppose that z1, ..., zn is a realization of size n.  Then 
from Theorems 3.1 and 3.2, it follows that 
 

( ) ( ) 21' pzznQ χµµ ∆−Ω−= −                                           (12) 

 
where ∆  stands for “distributed approximately as”, 
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Numerical example 4.1 
Consider the model (11) with µ = 0, 









−

−
=Θ

3.05.0
7.04.0

 and . 







=Σ

45.0
5.01

 
Two hundred values of Zt’ = (Xt,Yt), t = 1, …, 200 were generated using model (11)  and the 

GENSTAT so that .  Taking 5 values, i.e. n = 5, each time, 20 values 

of χ

( ) 







=

45.0
5.01

,cov tt ue

2 were calculated using (12) from these (skipping a few values) 200 observations.  Note 
that the autocorrelations at lags higher than one are all equal to zero.  Hence one group of n = 
5 values can be treated as uncorrelated with either the preceding or the succeeding group. 
  
The calculated twenty χ2 values were plotted in the χ2 chart given below with UCL = χ2

2,0.05 = 
5.99. 
 

99.52
05.0,2 == χUCL  

 

 
 

Fig 4.1:  The -chart for data following model (11) 2χ
 
It may be noted that all points fall within limits, suggesting that the process is under control. 
 
Example 4.2  
Consider a vector AR(1) model defined by 
 

ttt ZZ εδ +Φ+= −1                                         (13) 
 

where δ = (δ1, δ2) is a vector of constants, Φ is the coefficient matrix, Zt and εt have been 
defined earlier.  It can easily be seen that 
 

1,1 ≥ΦΓ=Γ − kkk                                             (14) 
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0,0 ≥ΓΦ=Γ kk
k                                             (15) 

 
Let z1, z2, ..., zn be a realization of size n.  Then from Theorems 3.1 and 3.2, it follows that 

( ) ( ) 21
02 ' pzznQ χµµ ∆−Ω−= −                                      (16) 

 
where the process mean µ is given by µ = (I - Φ)-1δ, z  is the sample mean and 
 

( ) ( jj

n

j n
jz Γ+Γ





 −+Γ==Ω −

−

=
∑ 1cov

1

1
00 )                           (17) 

 
 Σ+ΦΦΓ=Σ+ΦΓ=Γ − '' 010 , from (14) and (15). 
  

For given Φ and Σ , Γ0 may be obtained from 
 

( ) [ ] ( )ΣΦ⊗Φ−=Γ − VecIVec 1
0                                       (18) 

 
where Vec(B) is a vector made up of the columns of B stacked one over the other in 
succession, starting with the first column and Φ⊗Φ is the Kronecker product. 
  
Numerical example 4.2 
Suppose that we are given 
 









−

−
=Φ

2.05.0
6.03.0

 and  







=Σ

45.0
5.01

 
For given Φ and Σ , two hundred values were generated from VAR(1) model (13) using 
GENSTAT.  Assuming δ = 0 and n = 5 twenty values of Q2 were calculated for twenty groups 
skipping a few observations each time so as to apply Theorem 3.1.   These values are then 
plotted in Figure 4.2 with UCL = χ2

2,0.05 and LCL equal to zero. 
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99.52
05.0,2 == χUCL  

 

 
 

Fig 4.2:  The -chart for data generated from model (13) 2χ
 
It may be noticed from Figure 4.2 that only one point falls outside the 95% upper limit which 
is, of course, expected. 
 
Remark 4.1  
The numerical examples 4.1 and 4.2 are based on the simulated data for illustrative purposes.  
However, the methodology can very well be applied with equal ease to any real-world data.  
 
Remark 4.2  
When Φ and Σ are unknown, they can be replaced by their estimates (see Jenkins and Alavi 
(1981)).  
 
5.  MODELLING OF VECTOR TIME SERIES 
 
Suppose that we are given a bivariate time series. When we plot the individual values on a 
three-dimensional graph, they may display systematic nonrandom patterns reflecting common 
causes which may be present throughout the data.  In such a case, a casual inspection would 
not be able to separate the special and common causes. 
 
A natural solution to this problem would be to model the systematic nonrandom patterns by a 
bivariate model (see Jenkins and Alavi [5], Singh and Peiris  [10]).  After fitting an optimum 
bivariate model to the given data, residuals may be determined.  To these residuals, all the 
traditional methods such as the Hotelling T²-charts can be applied.  If they are consistent with 
the randomness, the process may be considered to be in control and there is no need to look 
for any special causes. 
 
Note 5.1  Since the higher-than-two-dimensional time series cannot be plotted, we can 
immediately proceed to modelling the series and then the corresponding residuals can be 
determined to which any traditional method of §2 can be applied. 
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Practical emphasis should be placed on trying to gain a better understanding of the process.  
The process can be improved by identifying the model and understanding the common causes 
making for autocorrelated and cross-correlated behaviour.  Fitting a VARMA model would 
enable us to study the residuals and isolate the departures from control that may be attributed 
to special cases, otherwise these departures would be confounded with the dominant 
autoregressive behaviour of the data (ITSM can be used for fitting VAR(1)and 
VMA(1)models). 
 
6.  BOOTSTRAP SAMPLING METHODS 
 
We noticed from Sections 4 and 5 that the upper and lower control limits are determined 
under the normality assumption.  However, in practice, this assumption seldom holds good 
and many data display abnormality.  In such cases, we advocate the use of bootstrap sampling 
methods for developing the control charts for nonnormal multivariate time series, particularly 
in view of the advent of fast computers.  A procedure described below considers a bivariate  
AR(1) model for illustrative purposes.  The procedure can easily be extended to vector 
ARMA models of higher orders, if required. 
 
Let z’ = (x, y) = {(x1, y1), (x2, y2), …, (xm, ym)} be a preliminary sample from the recent past 
from a bivariate AR(1) process under control defined at (13), that is, 
 

Zt = Φ zt-1 + εt + δ                                                    (19) 
 

To generate a bootstrap realization of the time series, we arrange for convenience the 
preliminary sample  z′ = (x, y) of size, say, m vertically (or horizontally) and consider all 
possible contiguous moving blocks of size, say,  l, (l « m).  In all, there will be m - (l - 1) 
blocks.  We then sample with replacement from these blocks and arrange them together as 
they occur to form a bootstrap time series.  Just enough blocks are sampled to obtain a series 
of roughly the same length as the original series.  That is, if the block length is l, we choose k 
blocks so that  m ≈ lk (see Efron and Tibshirani  [4]).  An illustrative example is given below: 
 
Consider a bivariate AR(1) time series of length m = 15 arranged vertically (can be arranged 
horizontally as well) and divided into contiguous moving blocks each of size 5.  There are 11 
blocks in all.  We then choose a random sample of three blocks with replacement, say 2, 9 and 
7 and arrange them together vertically as they occur (see Table 6.1). 
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Original Sample Random Block Bootstrap Time Series 
z = (x, y) Samples 2, 9, 7 z* = (x*, y*) 

1 2 3 
(x1, y1) (x2, y2) (x*

1, y*
1) 

(x2, y2) (x3, y3) (x*
2, y*

2) 
(x3, y3) (x4, y4) (x*

3, y*
3) 

(x4, y4) (x5, y5) (x*
4, y*

4) 
(x5, y5) (x6, y6) (x*

5, y*
5) 

(x6, y6) (x9, y9) (x*
6, y*

6) 
(x7, y7) (x10, y10) (x*

7, y*
7) 

(x8, y8) (x11, y11) (x*
8, y*

8) 
(x9, y9) (x12, y12) (x*

9, y*
9) 

(x10, y10) (x13, y13) (x*
10, y*

10) 
(x11, y11) (x7, y7) (x*

11, y*
11) 

(x12, y12) (x8, y8) (x*
12, y*

12) 
(x13, y13) (x9, y9) (x*

13, y*
13) 

(x14, y14) (x10, y10) (x*
14, y*

14) 
(x15, y15) (x11, y11) (x*

15, y*
15) 

 
Table 6.1:  Bootstrap time series in column (3)  

generated from the original sample in column (1) 
 
7.  JUSTIFICATION FOR MOVING BLOCK BOOTSTRAP  
 
Since the observations are not independent, we cannot simply resample randomly from the 
individual observations in the original sample, as this would destroy autocorrelations (even at 
smaller lags) which we are trying to retain.  With the moving block bootstrap, the idea is to 
choose a block size, say l, large enough so that the observations  l  units apart will be nearly 
independent (Theorem 3.1).  By sampling the blocks of size l, one can retain the correlation 
present in observations less than l units apart.  Another advantage of moving block bootstrap 
is that it is less mode-dependent, unlike the bootstrapping of individuals. 
 
8.  PROCEDURE FOR CONSTRUCTING UPPER AND LOWER CONTROL LIMITS  
 
Having obtained a moving block bootstrap realization  z* = (x*, y*), we can determine the 
upper and the lower control limits.  There are two cases, viz.  (i) the parameters  ψ = (Φ, Σ) in 
model (19) are known and (ii) ψ = (Φ, Σ) are unknown.  In either case we assume that the 
process (19) is zero-mean and stationary. 
 
(i) When ψ = (Φ, Σ) are known. 
 
      In this case we define 
 

Q
*1

0

'* ˆ zzn −Ω=1                                                  (20) 
 

where  Ω0 is defined at (17).  For a given bootstrap realization  z* = (x*, y*) and known  Ω0, Q1 
can be calculated using (20).  The entire procedure of generating the bootstrap sample from 
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the original sample and then calculating Q1 from (20) can be repeated a large number of times 
on any fast computer, say, 1 000 times or so and then the empirical distribution of Q1 can be 

determined, which will give us Q1 percentiles corresponding to %100
2

1 





 −

α  and %100
2
×

α  

levels of significance which will be the upper and lower control limits respectively. 
 
(ii)  When  ψ = (Φ, Σ) are unknown. 
       For a given preliminary sample, these parameters can be determined using a package such   
       as S-plus or ITSM and then we calculate 
 

*1
0

'*

2
ˆ zznQ −Ω=                                             (21) 

 
where  is an estimate of Ω0Ω̂

Γ̂

0 defined at (19) which is obtained by replacing Γj by its 

estimate   Then following the procedure outlined in (i) above, the UCL and 
LCL may be obtained. 

,...2,1,0, ±±=jj
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