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ABSTRACT 

Scattered failure frequency, variable and complex influencing factors, 
and a low accuracy in predicting inventory demand are characteristics 
of line replaceable unit (LRU) parts. Some high-priced repairable LRU 
(HR-LRU) parts have a considerable impact on the cost of aircraft spare 
parts.This study presents procedures to identify the optimal model for 
forecasting the demand for HR-LRU parts. First, a traditional prediction 
model, seven single measurement models, and four combined models 
were selected and used to predict failure data. Subsequently, evaluating 
indexes were selected for assessment to obtain the optimal model. 
Finally, we compared the actual and predicted values to verify the 
conclusions drawn during the previous evaluation step. The results 
indicated that, among the single models, the negative binomial 
regression model and the Holt-Winters model were most suitable for HR-
LRU parts. The SSE (sum of squares error) and MAE (mean absolute error) 
of the negative binomial regression were the lowest at 118.4114 and 
1.97352 respectively, and the Holt-Winters model’s MAE was the lowest 
at 1. 13270. The IOWA operator prediction model and the error 
reciprocal variable weight combination method produced predictions 
closest to the actual values among the combined models. In addition to 
constructing a set of processes to prediction, we also discuss the fit of 
different methods, the reasons for the change in the guaranteed rate, 
and the reasons for the occurrence of special years. We also compare 
the similarities and differences between this article and other papers. 

 OPSOMMING  

Verspreide mislukkingsfrekwensie, veranderlike en komplekse 
beïnvloedende faktore, en 'n lae akkuraatheid in die voorspelling van 
voorraadaanvraag is kenmerke van lynvervangbare eenheid (LRU) 
onderdele. Sommige duur herstelbare LRU (HR-LRU) onderdele het 'n 
aansienlike impak op die koste van vliegtuigonderdele. Baie lugrederye 
stel baie belang om die vraag na HR-LRU-onderdele te voorspel. Hierdie 
studie bied prosedures aan om die optimale model vir die voorspelling 
van die vraag na HR-LRU-onderdele te identifiseer. Eerstens is 'n 
tradisionele voorspellingsmodel, sewe enkelmetingsmodelle en vier 
gekombineerde modelle gekies en gebruik om mislukkingsdata te 
voorspel. Vervolgens is evalueringsindekse vir assessering gekies om die 
optimale model te verkry. Laastens het ons die werklike en voorspelde 
waardes vergelyk om die gevolgtrekkings wat tydens die vorige 
evalueringstap gemaak is, te verifieer. Die resultate het aangedui dat, 
onder die enkelmodelle, die negatiewe binomiale regressiemodel en die 
Holt-Winters model die mees geskikte was vir HR-LRU dele. Die SSE en 
MAE van die negatiewe binomiale regressie was die laagste op 118.4114 
en 1.97352 onderskeidelik, en die Holt-Winters model se MAE was die 
laagste op 1. 13270. Die IOWA operateur voorspellingsmodel en die fout 
wederkerige veranderlike gewig kombinasie metode het voorspellings   
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opgelewer wat die naaste aan die werklike waardes was onder die 
gekombineerde modelle. Die  voorspellingsfoute van die negatiewe 
binomiale regressiemodel en die IOWA-operateurmodel was slegs 0,169 
3 en 1,411 3 in 2018. Benewens die samestelling van 'n stel prosesse 
om die vraag na HR-LRU-onderdele te voorspel, bespreek ons ook die 
graad van passing van verskillende metodes, die redes vir die 
verandering in die gewaarborgde koers van HR-LRU-onderdele, en die 
redes vir die voorkoms van spesiale jare. Ons vergelyk ook die 
ooreenkomste en verskille tussen hierdie artikel en ander 
navorsingsartikels. 
 

1. INTRODUCTION 

The International Civil Aviation Organization (ICAO) has stated that global passenger traffic in 2019 was 
about 4.5 billion passengers. Affected by the COVID-19 pandemic, passenger traffic in 2020 dropped by 
more than 50%, with only 1.8 billion passengers flying in that year. The International Air Transport 
Association (IATA) believed that the net loss to the aviation industry in 2020 would be around 126.4 billion 
dollars. In addition, IATA announced that the aviation demand shrank to one-third of its pre-COVID-19 value 
by February 2021. As of October 2020, 43 commercial airlines worldwide had declared bankruptcy because 
of the effects of COVID-19. The civil aviation industry in mainland China had a cumulative loss of USD 11.49 
billion, most of which was lost by airline companies. As of October 2020, judging from the year-end reports 
of China’s four major airlines and various maintenance repair operation (MRO) companies, there was a 
sharp drop in both turnover and profits during 2020. 

Because of the weak demand, cost control has become a top objective for airlines. Among all the operating 
costs of an airline, maintenance costs account for about 20%–35%, and the consumption of aircraft spare 
parts accounts for 60%–70% of the maintenance costs. Airlines have begun to implement a series of measures 
for the storage and maintenance of aircraft spare parts. A Boeing 737 aircraft has at least 30,000 computer 
numerical control (CNC) parts of various sizes and types. Airplanes have two to four engines and tens of 
thousands of fasteners. They vary greatly in value. For example, the price of the Trent 900 engine is 
approximately USD 4.6 million, while a rivet used on the aircraft skin costs only USD 5. Thus, according to 
the Pareto principle[1], the vital few can be determined so that administrators can improve spare part 
management efficiency using ABC inventory classification management theory. In inventory management, 
the vital few, such as aircraft engines, can be managed based on demand. They can be purchased in small 
batches and in multiple batches, the lead times for orders can be shortened, and safety stocks can be set 
aside. The premise of scientific management is to determine the demand for on-demand management. 

A line replaceable unit (LRU) is a spare part that can be easily replaced on an aircraft with standard tools 
during routine flight maintenance. Some important LRU parts are technically repairable, including landing 
gear control units (LGCU) and flight data recorders (FDR); and it is cost-effective to do so. These LRU parts 
use funds belonging to category A in the ABC inventory classification. Category A items refer to high-priced 
aviation spare parts that account for only 20% of the number of aviation spare parts, but their procurement 
and storage costs can account for 80% of the airline's total costs. Therefore, on March 31, 2021, the Chinese 
Ministry of Finance and the General Administration of Customs jointly issued a notice supporting an import 
tax policy for aircraft parts and equipment for civil aviation maintenance use that would last from 2021 to 
2030. It noted that certain qualified aircraft parts for maintenance were exempt from import duties to 
alleviate the financial pressure on airline operations during COVID-19. Scientific demand forecasting for 
aircraft spare parts, especially accurate forecasting of the demand for high-priced repairable LRU (HR-LRU) 
parts, is an effective way for airlines to reduce their operating costs. 

In the past, domestic and foreign research on aircraft spare parts demand forecasting focused on two 
aspects: failure number forecasting and inventory demand forecasting. For failure number forecasting, 
aircraft spare parts are characterised by their high cost and their good quality, and there are many 
restrictions on the working environment. For example, aircraft spare parts must be safe and reliable, and 
the storage environment must be kept away from moisture and be kept enclosed, otherwise it would create 
safety hazards for the aircraft. The common failures of HR-LRU include oil leaks in airplane engines, 
excessive hydraulic pressure, and excessive wear. But these failures are intermittent. The Croston method 
[2, 3], GM (1, 1) [4], the support vector machine [5], and the time series method [6], among others, are 
commonly used to solve the problem of intermittent characteristics in the number of failures. In addition, 
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the system simulation method [7] and the reliability analysis method [8] have been used in other studies, 
such as those of military aircraft spare parts and unmanned aerial vehicle (UAV) spare parts, to provide 
reliable predictions for necessary aircraft spare parts. Inventory demand must be accurately predicted 
primarily to ensure the daily flights of aircraft, reduce the frequency of aircraft operating ground (AOG), 
and reduce the cost of aircraft spare parts. 

The inventory of aircraft spare parts has traditionally been studied by conducting simulations or 
mathematical modelling based on the guaranteed rate [9]. With the rapid development of the aviation 
industry, the number of aircraft types has increased, as has the cost of warehouse management. Airlines 
have begun to use predictions for the failure rates of spare parts and calculations for the consumption time 
of spare parts for inventory management. Prediction methods include the bootstrap method [10], binomial 
distribution [11], and the METRIC model [12]. 

The aircraft spare parts forecasting methods mentioned above are often limited to a single or a few 
forecasting models. Research on combined forecasting methods is not yet extensive enough. Only a few 
scholars have used combined models to predict the demand for aircraft spare parts [13-15]. Combined 
forecasts are used relatively frequently in other fields, such as forecasts for gross domestic product (GDP), 
consumption, power, and time [16-20]. Combined models are generally divided into the following types. 
Many scholars have combined the advantages of different single models, such as the ARIMA model [21], the 
BP neural network model, NEGM (1, 1), and support vector machines (SVM) [22], merging two or more 
methods together to form a new prediction method [23-27]. These types of model can overcome the 
shortcomings of single models and obtain better results than a single prediction model. In addition, most 
combined models are obtained using a weighted average of the prediction results of multiple models. 
Therefore, some fixed-weight and variable-weight combined models are also often used in forecasting [17; 
28-30]. Some scholars have used the induced ordered weighted averaging (IOWA) operator to build a new 
prediction model and to verify the effectiveness of the predictions. 

Most combination forecasting methods produce better forecasts than single-model methods. However, if 
there are large differences between the predictions, or if the error is large for certain situations but a large 
weight is assigned, the accuracy of a combined model may still be worse than that of a single model [31]. 
Therefore, for aircraft spare parts demand forecasting, especially for the demand forecasting of HR-LRU 
parts, the advantages of different forecasting methods need to be explored further. 

The objective of this research was to study the demand forecasting process for HR-LRU parts and the 
selection and comparison of demand forecasting methods. The paper is organised into five main sections. 
Section 2 primarily compares alternative prediction models and presents a model evaluation index; it also 
introduces the data sources. Section 3 presents empirical studies conducted for the HR-LRU parts case. A 
discussion of the empirical results is presented in Section 4, and Section 5 concludes the paper. 

2. METHODS AND DATA 

2.1. Parts selection and experiment design 

The primary focus of the experiment was to compare and discuss the applications, effects, and deficiencies 
of using various common forecasting methods for HR-LRU parts. 

To begin the experiment, the engine driver pump (EDP) was selected as the object of study by considering 
the technical characteristics of HR-LRU parts maintenance. As learnt from Airbus’s recommended spares 
list (RSPL), each aircraft requires two EDPs. The EDP’s item number is 3031863-001, and its unit price is 
about USD 35,549. There are several reasons for choosing the EDP: (1) the EDP is rotable, and the aircraft 
cannot take off without it; (2) the EDP’s mean time between unscheduled removals (MTBUR) is between 
25,000 h and 35,000 h. This time is in the middle of the MTBUR of most LRUs, which has great representative 
significance. The average leading times for LRUs are two to four weeks, and the EDP’s supplier leading time 
is less than ten days; (3) the EDP is required in multiple locations on a single aircraft. Large or small airlines 
all carry out inventory management for EDPs; (4) its high price; (5) the hydraulic brake valve and wing anti-
icing valve can also be selected under the same criteria. However, the EDP is a critical part of the engine, 
which is makes it more significant for any airplane. According to these characteristics, the EDP can replace 
most HR-LRU parts. By providing hydraulic power, EDPs can drive various systems on the airplane, including 
the rudder system, the brake system, and the retractable landing gear system.  
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In this experiment, we introduced seven time-series prediction models for EDPs based on the literature 
review. Table 1 shows the features, applicability, and assumptions of these seven models. The experiment 
was specifically designed in three stages: forecasting, evaluating, and comparing. The forecasting stage 
contained three steps: using the traditional model, using seven single models, and using combined models. 
Five indexes were selected to evaluate the effects of the single models and the combined models. The 
model predictions were also compared with the actual failures that occurred during 2018 and 2019. 

The whole experiment was designed to acquire an optimal prediction model for HR-LRU parts forecasting, 
as shown in Figure 1. 

Table 1: Model characteristics and assumptions 

Models Features or applicability Assumptions 

Zero-inflated 
regression 

Suitable for random events 
that contain excessive zero 
count data per unit of time 

Event is a small probability event; events occur 
independently and do not affect one another; the 
probability of occurrence is stable. 

Croston Advantageous for predicting 
intermittent demand 

Independent, and all obey the normal distribution 
when the demand is zero; the distributed demand 
intervals are independent of one another, and all 
obey the geometric distribution; the demand and 
the demand intervals are independent of one 
another. 

SBA Advantageous for predicting 
intermittent demand 

Independent, and all obey the normal distribution 
when the demand is zero; the distributed demand 
intervals are independent of one another, and all 
obey the geometric distribution; the demand and 
the demand intervals are independent of one 
another. 

ARIMA(p, d, q) Suitable for time series short-
term forecasting 

The data follow a stationary non-white-noise 
sequence. 

Negative 
binomial 
regression 

Suitable for counting data 
with excessive dispersion 

The result of each observation is whether a failure 
occurs; each test is independent; the probability of 
each failure is constant; the experiment continues 
until any number of failures. 

GM (1, 1) Applicable to small samples, 
poor information, and 
uncertain systems containing 
some known information and 
some unknown information 

—— 

Holt-Winters Suitable for non-stationary 
series with linear trends and 
periodic fluctuations 

—— 
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Figure 1: Process of the prediction experiment 

2.2. Forecasting models 

2.2.1. Traditional model 

The traditional forecasting method requires six sets of data, including the aircraft's flight hours, scale, 
turnaround time, and MTBUR. Calculations for the recommended number of HR-LRU parts can be based on 
Gaussian or Poisson distribution analyses. 

Equation (1) can be used to calculate the HR-LRU parts’ demand expectation, 𝐸:  

𝐸 =
𝐹𝐻 ∙ 𝑛 ∙ 𝑁

𝑀𝑇𝐵𝑈𝑅
∙ (
𝑇𝐴𝑇

365
) 

(1) 

In Equation (1), 𝐹𝐻  is the number of annual flight hours, 𝑁  is the number of aircraft in the fleet, 𝑛 
represents the quantity of parts per aircraft (QPA), 𝑀𝑇𝐵𝑈𝑅 is the average unplanned replacement interval, 
and 𝑇𝐴𝑇 represents the turnover time. 
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If the turnover time of the HR-LRU parts fluctuates normally, the average turnover time can be used to 
replace the turnover time. When a certain type of HR-LRU part has 𝑟 repairing records, the turnaround 
time, 𝑇𝐴𝑇𝑖(𝑖 = 1,2,… , 𝑟),for each repair can be expressed by Equation (2): 

𝑇𝐴𝑇̅̅ ̅̅ ̅̅ =
∑ 𝑇𝐴𝑇𝑖
𝑟
𝑖=1

𝑟
 

(2) 

Then the HR-LRU parts’ demand expectation,𝑟, can be calculated using Equation (3): 

𝐸 =
𝐹𝐻 ∙ 𝑛 ∙ 𝑁

𝑀𝑇𝐵𝑈𝑅
∙ (
𝑇𝐴𝑇̅̅ ̅̅ ̅̅

365
) 

(3) 

Using the demand expectation 𝐸, the Gaussian or the Poisson distribution can be used to calculate the 
recommended purchase quantity, 𝑚, for HR-LRU parts according to Equation (4): 

{
 
 

 
 𝑚 = (𝑎, 𝐸) = 𝑎𝐸1/2 + 𝐸,𝐸 ≥ 10, 𝑝(𝐸) =

1

√2𝜋
𝑒−

𝐸2

2

𝑚 = (𝑃𝐿, 𝐸), 𝐸 < 10, 𝑝(𝐸) = ∑ 𝑒−𝐸
𝐸𝑚

𝑚!

𝑥

𝑚=0

 

(4) 

In Equation (4), 𝑃𝐿 represents the required flight guaranteed rate. 

2.2.2. Measurement models 

This section describes the principles and calculation steps for each model. 

Zero-inflated Poisson regression model 

The zero-inflated Poisson regression model (ZIP model) [32] is usually used to predict data types for which 
the proportion of zero data far exceeds other values. Its basic principle is to use a mixed calculation of the 
distributed Bernoulli distribution and the ordinary counting distribution, as expressed in Equation (5): 

𝑃(𝑌𝑖 = 𝑦𝑖) = {
𝜔 + (1 − 𝜔)𝑓(0) 𝑦𝑖 = 0

(1 − 𝜔)𝑓(𝑦𝑖) 𝑦𝑖 > 0
 

(5) 

In Equation (5), 𝜔  represents the expansivity, which satisfies 0 ≤ 𝜔 < 1, and 𝑓(𝑦𝑖) is the distribution 
function. 

Let a random event, 𝑌, represent an HR-LRU part failure. The Poisson distribution calculates the number 
of random events that occur per unit of time, and assigns them as the number of HR-LRU part failures. 
Thus, the Poisson distribution can represent the distribution of HR-LRU part failures per unit time, and can 
be expressed using Equation (6): 

𝑃(𝑌 = 𝑦𝑖) = {
(𝜆𝑖)

𝑦𝑖

Γ(𝑦𝑖 + 1)
𝑒−𝜆, 𝑦𝑖 = 0,1,2,3,… ; 𝑖 = 1,2,3, … , 𝑛 

(6) 

In Equation (6), 𝑦𝑖  is the number of failures in the ith month, 𝜆𝑖  is the Poisson parameter, 𝜇  is the 

expectation parameter, 𝛿2is the variance parameter, 𝐸(𝑌) = 𝜇 = 𝜆𝑖, and 𝑉𝑎𝑟(𝑌) =  𝛿2 = 𝜆𝑖.  

When 𝑓(𝑦𝑖) in Equation (6) is calculated using the Poisson distribution, the zero-inflated regression model 
is expressed using Equation (7): 

𝑓(𝑦𝑖 , 𝜆𝑖 , 𝜔𝑖) = {

𝜔𝑖 + (1 − 𝜔𝑖)𝑒
−𝜆𝑖 𝑦𝑖 = 0

(1 − 𝜔𝑖)𝑒
−𝜆𝑖𝜆𝑖

𝑦𝑖

𝑦𝑖!
𝑦𝑖 > 0

 

(7) 
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Croston model 

Croston found that, if calculations were performed at a fixed time interval, inventory predictions were 
equal to twice the actual demand that would be generated. This is caused by intermittent demand. Croston 
proposed a model, called the Croston model [33], for intermittent demand based on exponential smoothing. 

If the demand, 𝜇, is in the period, 𝑝, then the demand, 𝑌𝑡, can be expressed using Equation (8): 

𝑌𝑡+1 = {
𝜇 𝑡 = 𝑛𝑝 + 1
0 else

 (8) 

In Equation (8), 𝑛 = 1,2, … , 𝑃 ≥ 1.  

The demand forecast value in each demand cycle, 𝐸(𝑌𝑡), can then be calculated using Equation (9): 

𝐸(𝑌𝑡) =
𝑢

𝑝

𝑝𝑎

1 − (1 − 𝑎)𝑝
=

𝑢𝑎

1 − (1 − 𝑎)𝑝
  (9) 

In Equation (9), 𝑎 is the smoothing index, and it satisfies 0 ≤ 𝑎 ≤ 1. 

The Croston model assumes that the demand and the demand arrival time interval follow random 
distributions, and it introduces the time interval and demand distribution on this basis. The separate 
average time interval from average demand and the discontinuous sequence are divided into two subsets. 
Simple exponential smoothing is used to predict the two sub-sequences separately, as shown in Equations 
(10) and (11): 

𝑃̂𝑡+1 = 𝑃̂𝑡 + 𝑎𝜀𝑡 = 𝑎𝑃𝑡 + (1 − 𝑎)𝑃̂𝑡 (10) 

𝑍̂𝑡+1 = 𝑍̂𝑡 + 𝑎𝜀𝑡 = 𝑎𝑍𝑡 + (1 − 𝑎)𝑍̂𝑡   (11) 

In Equations (10) and (11), 𝜀𝑡 is the forecast error for period 𝑡, 𝑃̂ is the demand interval after exponential 

smoothing, and 𝑍̂𝑡 is the demand after exponential smoothing. Then the demand forecast for the next 
period can be calculated using Equation (12): 

𝑌̂𝑡+1 =
𝑍̂𝑡+1

𝑃̂𝑡+1
  

(12) 

SBA model 

Syntetos believed that the prediction results of the Croston model were not unbiased estimates, and that 
the results should be adjusted. Therefore, the SBA model [34] was proposed. The SBA model uses the 
expression in Equation (13) to calculate the demand forecast: 

𝑌̂𝑡+1 = (1 −
𝑎

2
)
𝑍̂𝑡+1

𝑃̂𝑡+1
  

(13) 

ARIMA (p, d, q) model 

The core principle of the ARIMA time series model [35] is based on fixed time balanced series data or non-
stationary time series data. It reveals the laws that exist between target variables and time changes, and 
uses past and present laws as well as historical data to predict the situation at a future point in time. The 
ARIMA (p, d, q) model was used to develop a failure prediction model based on the number of historical 
failures of HR-LRU parts. Assuming that an HR-LRU part’s failure time is 𝑌𝑡, a new time series, 𝑋𝑡, can be 
obtained, as expressed in Equation (14): 

𝑋(𝑡) = 𝛽0 +∑𝛽𝑖𝑋(𝑡 − 𝑖) − 𝜖(𝑡) −∑𝑎𝑗𝜖(𝑡 − 𝑗)

𝑝

𝑗=1

𝑞

𝑖=1

   
(14) 
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In Equation (14), 𝑝 and 𝑞 are the autoregressive order and the moving average order respectively, 𝛽𝑖 and 
𝑎𝑗 are the parameters, and 𝜖(𝑡) is the white-noise sequence. 

Negative binomial regression model 

Many scholars believe that, when the average value and variance of a data set are not equal, or when zero-
point data appear too many times, the negative binomial regression model can better fit the over-dispersed 
data than the Poisson distribution regression model. Negative binomial regression [36] is often used to 
predict the probability of a failure, accident, or illness. The probability function of this model is given in 
Equation (15): 

𝑃(𝑌) =
Γ(𝑌 + 𝑎−1) (

𝜆
𝑎−1

)
𝑌

 

Γ(𝑌 + 1)Γ(𝑎−1) (1 + 
𝜆
𝑎−1

)
(𝑌+𝑎−1)

  

   

(15) 

In Equation (15), 𝑢 is the overall parameter, 𝑎 is the discrete parameter, and 𝑌 = 0,1,2,… . As for the 
Poisson regression model, 𝐵𝑖  is the regression coefficient and 𝜆  is the exponential function of the 
independent variable, which can be calculated using Equation (16): 

log(𝜆) = Β0 + 𝐵1𝑥1 + 𝐵2𝑥2 + …+ 𝐵𝑛𝑥𝑛   (16) 

GM (1, 1) model 

The GM (1, 1) model, also known as the grey prediction model [37], is the most common grey model. This 
model accumulates data to weaken the volatility caused by discrete data. Its original data sequence is 
given in Equation (17): 

𝑥(0) = (𝑥(0)(1), 𝑥(0)(2),… , 𝑥(0)(𝑛))   (17) 

Equation (18) shows the accumulation sequence generated after accumulation: 

𝑥(1) = (𝑥(1)(1), 𝑥(1)(2), … , 𝑥(1)(𝑛))     (18) 

The sequence generated by accumulation is: 

𝑥(1)(𝑘) =∑𝑥(0)(𝑖), (𝑘 = 1,2,3, … , 𝑛)

𝑘

𝑖=1

 

(19) 

The cumulative generating sequence can be used to establish cumulative generating linear differential 
equations, as shown in Equation (20): 

𝑑𝑥(1)

𝑑𝑡
+ 𝑎𝑥(1) = 𝑢  

(20) 

The grey predicted value of the cumulative generated sequence for Equation (20) can be obtained using 
Equation (21): 

𝑥̂(1)(𝑘 + 1) = (𝑥(0) −
𝑢

𝑎
) , (𝑘 = 1,2,3,… , 𝑛) (21) 

In Equation (21), 𝑎 and 𝑢 are model parameters. 

Holt-Winters model 

The Holt-Winters model [6] is essentially the third exponential smoothing based on the second exponential 
smoothing value. Its primary purpose is to find the most suitable smoothing coefficient and to improve 
prediction accuracy. The fitting effect of this model is better than that of the quadratic exponential 
smoothing method. The Holt-Winters model is also applicable to solving all problems involving time series.  
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𝑆𝑡
(1)
, 𝑆𝑡
(2)
, and 𝑆𝑡

(3)
 respectively represent the first, second, and third smoothing values at time 𝑡  . 𝑦𝑡 

represents the actual time series data at time 𝑡. The exponential smoothing values can be calculated using 
Equation (22):  

𝑆𝑡
(1)
= 𝑎𝑦𝑡 + (1 − 𝑎)𝑆𝑡−1

(1)
 

𝑆𝑡
(2)
= 𝑎𝑆𝑡

(1)
+ (1 − 𝑎)𝑆𝑡−1

(2)
 

𝑆𝑡
(3)
= 𝑎𝑆𝑡

(2)
+ (1 − 𝑎)𝑆𝑡−1

(3)
 

(22) 

In Equation (22), 𝑎 is the smoothing factor, and its value ranges between 0 and 1. 

𝑎𝑡 = 3𝑆𝑡
(1)
− 34𝑆𝑡

(2)
+ 𝑆𝑡

(3)
 (23) 

𝑏𝑡 =
2

2(1 − 𝑎)2
[(6 − 5𝑎)𝑆𝑡

(1)
− (10 − 8𝑎)𝑆𝑡

(2)
+ (4 − 3𝑎)𝑆𝑡

(3)
] 

(24) 

𝑐𝑡 =
𝑎2

2(1 − 𝑎)2
(𝑆𝑡

(1)
− 2𝑆𝑡

(2)
+ 𝑆𝑡

(3)
) 

(25) 

𝐹𝑡+𝑚 = 𝑎𝑡 + 𝑏𝑡𝑚 + 𝑐𝑡𝑚
2, (𝑚 = 1,2,3, … ) (26) 

In Equations (23)–(26), 𝑎𝑡, 𝑏𝑡, and 𝑐𝑡 are the forecast parameters of the time period, 𝑡; 𝑚 is the number of 
forecast periods; and 𝐹𝑡+𝑚 is the demand value in the future 𝑚 period. 

2.2.3. Combined models 

A weighted average of the above seven single models was conducted to form new combined forecasting 
models. Four common combined models were selected: the error reciprocal variable weight combination, 
the entropy method, the grey correlation method, and the induced ordered weighted averaging (IOWA) 
operator. 

Error reciprocal variable weight combination 

An error reciprocal variable weight combination was proposed to overcome the shortcomings of the 
weighted coefficient. If the single predication over-fitted, it could cause even larger errors in the combined 
predictions [38, 39].  

𝑒𝑖𝑡 = (𝑦𝑡 − 𝑦̂𝑖𝑡)
2 is the square of the prediction error of the ith method at time 𝑡. The weighting coefficient 

of the ith method at time 𝑡 can be calculated using Equation (27): 

𝑤𝑖𝑡 =
1

|𝑒𝑖𝑡|𝑑𝑡
=

1
|𝑒𝑖𝑡|

∑
1
|𝑒𝑖𝑡|

𝑛
𝑖=1

, 

(27) 

where 𝑖 = 1,2, … , 𝑛 and 𝑡 = 1,2,… , 𝑁.  

The coefficient vector is given as: 

𝑊𝐶 = [

𝑤𝑐1
𝑤𝑐2
⋮

𝑤𝑐𝑁

] 

(28) 

By substituting Equation (28) into Equation (27), the sum of squared errors in the error reciprocal variable 
weight combination forecast was obtained: 

𝑚𝑡 =∑
𝑒𝑖𝑡
|𝑒𝑖𝑡|

𝑛

𝑖=1

 
(29) 
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𝐶 =∑(
𝑚𝑡

𝑑𝑡
)
2

𝑁

𝑡=1

 
(30) 

Entropy method 

The concept of entropy is derived from thermodynamics, and is used to measure the uncertainty of a 
system’s state. The entropy method is now commonly used to evaluate the information utility in each plan. 
The greater the utility value of the information, the greater the weight of the indicator. 

According to the concept of entropy information, jth the multi-attribute decision matrix can be expressed 
using Equation (31): 

𝑀 =

𝐴1
𝐴2
⋮
𝐴𝑚

[

𝑥11 𝑥12
𝑥21 𝑥22

⋯
𝑥1𝑛
𝑥2𝑛

⋮      ⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

] 

(31) 

Equation (32) is used to calculate the contribution of the method under the ith attribute: 

𝑃𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

 
(32) 

Equations (33) and (34) are then used to calculate the total contribution of all methods: 

𝐸𝑗 = −𝐾∑𝑃𝑖𝑗ln (𝑃𝑖𝑗)

𝑚

𝑖=1

 
(33) 

𝐾 =
1

ln (𝑚)
 

(34) 

The weight of each attribute is given by Equations (35) and (36): 

𝑊𝑗 =
𝑑𝑗

∑ 𝑑𝑗
𝑛
𝑗=1

 
(35) 

𝑑𝑖𝑗 = 1 − 𝐸𝑗 (36) 

Grey relational analysis 

Grey system theory is used to analyse the grey correlation degree for each subsystem. It uses measurement 
methods to find numerical relationships between the subsystems in the overall system. In this research, 
the grey correlation method was used to determine the weights of the models. 

Equation (37) expresses the dimensionless processing of data: 

𝑋1 =
𝑥𝑙(𝑡)

𝑥𝑜(𝑙)
 

(37) 

In Equation (37), 𝑥0(𝑙) is the first value of the actual data set 𝑋0, 𝑥𝑙(𝑡) is the value of the predicted data 
sequence at time 𝑡, 𝑙 = 0,1,2, … ,𝑚 and 𝑡 = 1,2,3,… , 𝑛.  

Calculate the square difference between the dimensionless value of the actual data and the dimensionless 
value of the predicted data: 

Δ(𝑡) = |𝑥0
∗(𝑡) − 𝑥𝑙

∗(𝑡)| (38) 
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The correlation coefficient to transform the absolute difference data sequence is given by Equations (41) 
and (42): 

𝑞1 = max
𝑙
max
𝑡
Δ(𝑡) , 𝑞2 = min

l
min
𝑡
Δ(t) (39) 

𝜉(𝑡) =
𝑝𝑞1 + 𝑞2
Δ(𝑡) + 𝑝𝑞1

 
(40) 

Generally, 𝑝 = 0.5 in Equation (40). 

The grey correlation degree, 𝜉𝑙, and the weight coefficient, 𝑤𝑗, can be calculated using Equations (41) – 

(43): 

𝜉𝑙 =
1

𝑛
∑𝜉(𝑡)

𝑛

𝑡=1

 
(41) 

𝛾𝑙 = 1 −
1 − 𝜉𝑙

√∑ (1 − 𝜉𝑙)
2𝑚

𝑙=1

 
(42) 

𝑊𝑗 =
𝛾𝑙

∑ 𝛾𝑙
𝑚
𝑙=1

 (43) 

IOWA operator 

If (〈𝑎1, 𝑦1〉, 〈𝑎2, 𝑦2〉, … , 〈𝑎𝑚, 𝑦𝑚〉) are 𝑚 two-dimensional arrays, then 

IOWA𝜔(〈𝑎1, 𝑦1〉, 〈𝑎2, 𝑦2〉, … , 〈𝑎𝑚, 𝑦𝑚〉) =∑𝜔𝑖𝑦𝑎−𝑖𝑛𝑑𝑒𝑥(𝑖)

𝑚

𝑖=1

 
(44) 

where 𝑤 = (𝜔1, 𝜔2, … , 𝜔𝑚)
𝑇  is the weighted vector of IOWA𝜔 , ∑ 𝜔𝑖

𝑚
𝑖=1 = 1,𝜔𝑖 ≥ 0, 𝑖 = 1,2,… ,𝑚 , 𝑎 −

𝑖𝑛𝑑𝑒𝑥(𝑖) is the subscript of the largest number arranged from small to large in (𝑎1, 𝑎2, … , 𝑎𝑚) and IOWA𝜔 is 
the 𝑚-dimensional induced ordered weighted arithmetic average operator generated by (𝑎1, 𝑎2, … , 𝑎𝑚). 

Let the number of aircraft spare part failures during a certain period be represented by 𝑦𝑡(𝑡 = 1,2,… , 𝑛). 
In 𝑚 combined prediction models, the prediction value of the ith combined prediction model at time 𝑡 is  
𝑦𝑡(𝑡 = 1,2, … , 𝑛). Thus, the general expression of the model is given by Equation (45): 

𝑦𝑡𝑐 = 𝑓(𝑦𝑡1, 𝑦𝑡2, … , 𝑦𝑡𝑚) =∑𝜔𝑖𝑦𝑡𝑖

𝑚

𝑖=1

 
(45) 

where 𝜔𝑖 is the weight coefficient and 𝜔1 + 𝜔2 +⋯+ 𝜔𝑚 = 1. 

𝑎𝑡𝑖 = {

1 − |
𝑦𝑡 − 𝑦𝑡𝑖
𝑦𝑡

| , |
𝑦𝑡 − 𝑦𝑡𝑖
𝑦𝑡

| < 1

0                    ,      |
𝑦𝑡 − 𝑦𝑡𝑖
𝑦𝑡

| ≥ 1
 

(46) 

In Equation (46), 𝑎𝑡𝑖 represents the prediction accuracy of the ith single prediction model at time 𝑡, and 𝑎𝑡𝑖 
is the induced value of 𝑦𝑡𝑖. The induced value sequence of the model at time 𝑡 and its corresponding 
predicted value form a two-dimensional array: (〈𝑎𝑡1, 𝑦𝑡1〉, 〈𝑎𝑡2, 𝑦𝑡2〉, … , 〈𝑎𝑡𝑚, 𝑦𝑡𝑚〉) . The induced value 
sequence (𝑎𝑡1, 𝑎𝑡2, … , 𝑎𝑡𝑚) prediction models at time 𝑡 are arranged from large to small values of 𝑚.       𝑎 −
𝑖𝑛𝑑𝑒𝑥(𝑡𝑖) is the subscript of the ith largest induced value at time 𝑡. If 𝑒𝑎−𝑖𝑛𝑑𝑒𝑥(𝑡𝑖) = 𝑦𝑡 − 𝑦𝑎−𝑖𝑛𝑑𝑒𝑥(𝑡𝑖) and the 

minimum sum of squared errors, 𝑆, is set as the objective function, then the combined forecasting model 
based on the IOWA operator can be expressed using Equation (47): 
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{
  
 

  
 min 𝑆 =∑∑𝜔𝑖𝜔𝑗[∑𝑒𝑎−𝑖𝑛𝑑𝑒𝑥(𝑡𝑖)𝑒𝑎−𝑖𝑛𝑑𝑒𝑥(𝑡𝑗)

𝑛

𝑡=1

]

𝑚

𝑗=1

𝑚

𝑖=1

𝑠. 𝑡. {
∑𝜔𝑖 = 1

𝑚

𝑖=1

𝜔𝑖 ≥ 0

 

(47) 

2.3. Evaluation indexes 

Five evaluation indexes were selected to evaluate the effects of the single models and the combined 
models. The indexes are the sum of squares due to error (SSE), mean squared error (MSE), mean absolute 
error (MAE), symmetric mean absolute percentage error (SMAPE), and Theil inequality coefficient (TIC). 
The specific calculation formulas for these indexes are provided in Equations (48) – (52): 

𝑆𝑆𝐸 =  ∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑛

𝑖=1

 
(48) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 
(49) 

𝑀𝐴𝐸 =∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 
(50) 

𝑆𝑀𝐴𝑃𝐸 = 
1

𝑛
∑

|𝑦𝑖 − 𝑦̂𝑖|

|𝑦𝑖| + |𝑦̂𝑖|
2

𝑛

𝑖=1

 
(51) 

𝑇𝐼𝐶 =

√1
𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

√1
𝑛
∑ 𝑦𝑖

2𝑛
𝑖=1 + √

1
𝑛
∑ 𝑦̂𝑖

2𝑛
𝑖=1

 

(52) 

In Equations (48) – (52), 𝑦𝑖 and 𝑦̂𝑖 are the real observations and the predicted values respectively, and 𝑛 is 
the number of observations. 

The smaller the evaluation result, the smaller the gap between the fitted and the measured values. Small 
values indicate high prediction accuracy. 

2.4. Data analyses 

The top three airlines in China, which own the largest fleets and represent the first echelon of China’s civil 
aviation, are Air China, China Southern Airlines, and China Eastern Airlines. In 2019, they collectively 
transported nearly 400 million passengers, accounting for 60% of the total passenger traffic in mainland 
China. 

The EDP data used in this research were obtained from one of these top three airlines. The airline will be 
referred to as airline A due to privacy considerations. By December 31, 2019, there were 325 A320 series 
aircrafts within the fleet of airline A. There were 124 operating leases, 100 financial leases, and 101 self-
purchased aircraft From 2014 to 2018, the airline did not experience major technological changes or large-
scale model updates that made the time series data invalid. The airline had 72 aircraft with EDP failures, 
of which 34 were operating leases, 15 were financial leases, and 29 were self-owned aircraft. A total of 84 
EDPs were removed. The average aircraft age at the time of the EDP failure was 94 months, and the average 
repair time was 56 days. The specific data are shown in Table 2. 
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Table 2: EDP failure data for the fleet 

Observation period 2014/1/1 2018/12/31 

 1825 days 

EDP failures 88 times 

Number of aircraft 72  

Number of EDPs 84  

Aircraft ownership per year 
Number of EDP 
failures 

2014 240 22 

2015 250 12 

2016 261 25 

2017 271 13 

2018 299 16 

Mean time between failures (days) 20 

Average repair time (days) 56 

Mean age of aircraft at failure (months) 94 

The EDP failure situation for the airline’s A320 series aircraft fleet from 2014 to 2018 is shown in Figure 2. 

 

Figure 2: EDP failure data from 2014 to 2018 

To investigate the failure situation statistically, we calculated the frequency of failures (Figure 3), the 
number of annual failures (Figure 4), and the number of monthly failures (Table 3). The EDP failure data 
indicated that the failures were intermittent [40]. In the 60 months from 2014 to 2018, there were 19 
months without failures, accounting for 31.6% of the total observation time, and only one failure occurred 
in 15 months, accounting for 25%. On average, 1.47 EDPs failed each month. The number of failures was 
high in 2014 and 2016, with 22 and 25 failures respectively, accounting for 53% of the total failures. 
September and October had the highest number of EDP failures in all months, followed by March and May. 
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Figure 3: Frequency of EDP failures 

 

Figure 4: Annual EDP failures 

Table 3: Monthly EDP failures 

 Year  

Month 2014 2015 2016 2017 2018 Frequency 

January 2 0 2 0 1 5 

February 1 0 1 1 1 4 

March 2 1 1 5 2 11 

April 4 0 1 0 0 5 

May 3 0 3 2 3 11 

June 3 0 3 2 1 9 

July 0 0 1 0 1 2 

August 1 0 1 0 0 2 

September 3 2 4 0 3 12 

October 2 6 2 0 2 12 

November 1 0 2 1 2 6 

December 0 3 4 2 0 9 

Total 22 12 25 13 16 88 

0
2
4
6
8

10
12
14
16
18
20

0 1 2 3 4 5 6
q
u
a
n
ti

ty

failures

0

5

10

15

20

25

30

2014 2015 2016 2017 2018

fa
il
u
re

s

year



74 

3. EMPIRICAL RESULTS 

3.1. Traditional model results 

Table 4 lists the estimation results produced by the traditional model. According to the traditional model, 
the data from 2014 to 2015 were suitable for Poisson distribution, and the data from 2016 to 2018 were 
more suitable for Gaussian distribution. When the guaranteed rate was 95%, the demand forecasts for 2014 
and 2015 were both 15, and the forecasts for 2016 to 2018 were 15.61, 16.18, and 17.12 respectively. The 
five-year average failure forecast value was 15.64. Using traditional forecasting methods, when the annual 
demand from 2014 to 2018 was 15, it could meet the basic requirement of the airline’s guaranteed rate of 
95%. 

Table 4: Traditional model results 

3.2. Prediction results of the measurement models 

The prediction results of the measurement models and the combined models presented for each quarter 
from 2014 to 2018 are shown in Figure 5. 

 

Figure 5: Predicted values of EDP failures by quarter from 2014 to 2018 
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Actual failures Croston

Holt-Winters Arima(0,1,1)

 Negative binomial regression GM(1,1)

SBA Zero-inflated regression model

Error reciprocal variable weight Entropy

Grey relational analysis IOWA operator

Year Models 
Forecasting 
demand 

Total demand 

   𝑝(𝐸)% 

 90 95 98 

2014 Poisson 

distribution 

9.29 14 15 16 

2015 9.80 14 15 17 

 
𝑎(%) 

90 91 92 93 94 95 96 97 98 

2016 

Gaussian 
distribution 

10.32 14.44 14.63 14.84 15.07 15.32 15.61 15.95 16.37 16.92 

2017 10.78 14.99 15.19 15.40 15.63 15.89 16.18 16.53 16.96 17.53 

2018 11.54 15.89 16.09 16.31 16.55 16.82 17.12 17.48 17.93 18.51 

Average 10.35 14.47 14.66 14.87 15.10 15.35 15.64 15.98 16.40 16.96 
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3.3. Evaluation results of the models 

The evaluation results of the models are listed in Table 5. Under the evaluating indexes, the SSE values of 
the measurement models were between 118 and 134, and the SSE values of the combined model were 
between 104 and 126. The MSE values of most models in the measurement models were above 2, and only 
the MSE value of negative binomial regression was 1.97352. In the combined models, the MSE value of the 
error reciprocal variable weight combination was 1.86546 and the MSE of the IOWA operator was 1.74454. 
The MAE values of all models were between 1 and 1.23. Among the seven measurement models, the MAE 
values of Holt-Winters, the negative binomial regression, and GM (1, 1) were below 1.2. The values of 
SMAPE were between 53 and 64. The TIC values of most models were above 0.4. The TIC values of Holt-
Winters, the zero-inflated regression model, and the error reciprocal variable weight combination were 
lower than 0.4. 

Table 5: Evaluating index evaluation results 

 Croston SBA Holt-Winters Arima (p, d, q) 
Negative 
binomial 
regression 

GM (1, 1) 

SSE 130.46462 129.84225 123.55184 133.68373 118.41145 122.39286 

MSE 2.17441 2.16404 2.05920 2.22806 1.97352 2.03988 

MAE 1.20856 1.22711 1.13270 1.22832 1.15872 1.18523 

SMAE 63.63876 62.82903 57.71100 63.10820 58.16201 59.99608 

TIC 0.43893 0.42211 0.39931 0.42307 0.40107 0.41054 

 
Zero-inflated 
regression 
model 

Error reciprocal 
variable weight 
combination 

Entropy method 
Grey relational 
analysis 

IOWA operator  

SSE 130.89189 111.92759 125.22788 121.62876 104.67256  

MSE 2.18153 1.86546 2.08713 2.02715 1.74454  

MAE 1.22163 1.08735 1.18685 1.16820 1.02550  

SMAE 55.53821 54.48478 60.10969 58.86832 53.11692  

TIC 0.37404 0.36903 0.41552 0.40990 0.40565  

3.4. Prediction results of all models 

The prediction results of all models and the actual data from 2018 and 2019 are provided in Table 6. The 
differences between the predicted value of measurement models and the actual data in 2018 were 0.16 to 
6.78, which was a large gap. The differences of the combined model were between 1.4 and 2.78. The 
differences between the predicted results in 2019 and the actual data were mostly between 7-8. 

Table 6: 2018 and 2019 forecast results 

Year Models Croston SBA 
Holt-
Winters 

Arima (p, 
d, q) 

Negative 
binomial 
regression 

GM (1, 1) 

2018 

Predictive 
value 

16.9297 16.7942 12.0409 9.8236 15.8307 16.9430 

Difference 0.9297 0.7942 4.8888 6.1764 0.1693 0.9430 

2019 

Predictive 
value 

16.1741 16.0447 10.9057 15.5365 15.3850 16.0420 

Difference 8.1741 8.00447 2.9057 7.5365 7.3850 8.0420 
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Year Models 

Zero-
inflated 
regress-
ion 
model 

Error 
reciprocal 
variable 
weight 
combination 

Entropy 
method 

Grey 
relation-
al 
analysis 

IOWA 
operator 

 

2018 
Predictive 
value 

22.7706 13.2234 13.9058 13.8903 14.5886  

 Difference 6.7706 2.7765 2.0941 2.1097 1.4113  

2019 
Predictive 
value 

17.9633 14.7476 15.4767 15.3112 15.7044  

 Difference 9.9633 6.7476 7.4767 7.3112 7.70446  

4. DISCUSSION 

4.1. Shorter MTBF leads to a downward trend in guaranteed rate 

The traditional model indicated that, when the airline’s guaranteed flight rate was required to reach 95%, 
the total demand for EDPs was approximately 16, as shown in Table 4. In addition, when the inventory was 
16, the guaranteed rate was 98% in 2014, 96% in 2015 and 2016, 94% in 2017, and 90% in 2018. For the same 
number of spare parts, the guaranteed rate decreased year by year. The reason for this may be a shorter 

mean time between failure (MTBF), which increases the demand expectation, E , for HR-LRU parts. MTBF 
is a commonly used parameter to calculate the failure probability of spare parts. The reduced MTBF of HR-
LRU parts has several potential causes: 

1) In the past five years, maintenance personnel may have reduced maintenance capabilities and 
increased HR-LRU part failures for reasons such as slow updates in maintenance knowledge, few 
professional skills, and company layoffs. 

2) The same HR-LRU parts may be used from the beginning to the end of the product’s life cycle. HR-
LRU part performance decreases may be due to wear, material degradation, and sudden failures. 

3) HR-LRU parts are high-value and high-reliability products. They are limited by test cost and cycle 
time. The number of field tests and failure data are generally small. Classical mathematical 
statistics methods have difficulty in reflecting the actual reliability levels [41]. 

4) The storage environments for HR-LRU parts are demanding. In high humidity, salt sprays, or a 
polluted atmosphere, corrosion, deterioration, cracking, and other adverse conditions may cause 
the number of failures to increase. In addition, different suppliers have different manufacturing 
technologies and skills for fabricating HR-LRU parts, all of which may also be related to the 
decreasing MTBF. 

4.2. Model performance according to the fitting image 

Figure 5 shows the prediction results of the various models. The quarterly total failure value for the EDPs 
fluctuated significantly, and the difference between the maximum value and the minimum value was 15. 
Among all of these models, the Holt-Winters model predicted the value fluctuations best. The gap between 
the maximum and minimum values was the largest, which was about 8, and this model’s prediction was 
closest to the actual value. Among the measurement models, the values fitted by the Croston model and 
the SBA model were similar, and the fitted value of the negative binomial regression model was close to 
that of the GM (1, 1). For the combined prediction models, the fitted value of the error reciprocal variable 
weight model was similar to that of the IOWA operator. The results of the entropy method and the grey 
relational analysis were approximately equal. In addition, except for the zero-inflated regression model, 
most of the models’ predicted values fluctuated around the 7–11 range. The forecast value of the zero-
inflation regression tended to be 12 and was relatively stable, and had the largest deviation from the true 
value. 
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4.3. Model performance according to the evaluating indexes 

Table 5 indicates the key findings of this investigation: the Holt-Winters, the zero-inflated regression 
model, and the negative binomial regression models had the best prediction results of all of the 
measurement models. They had similar prediction accuracies under the five evaluations indexes, and their 
accuracies were higher than for the other models. Holt-Winters had the best results among the seven 
models of MAE, which were 1.13270. The negative binomial regression had the second-best effect at 
1.15872. The SSE and MSE indicators of negative binomial regression were the best, which were 118.4114 
and 1.97352 respectively. The SMAPE and TIC of the zero-inflated regression model were the lowest. Holt-
Winters and the negative binomial regression were the second and third best respectively: Their SMAPEs 
were 57.71100 and 58.16201 and their TICs were 0.39931 and 0.40107 respectively. Among the four 
combined models, the IOWA operator performed best, and the error reciprocal variable weight model 
followed. Moreover, these two combined forecasting models performed better than the single models. 

4.4. Comparison of actual and predicted values 

The forecasting results for 2018 and 2019 also supported the above findings. According to Table 6, in the 
year 2018, the gap between the actual value and the prediction result from the negative binomial regression 
model was the smallest at only 0.1693. The error of the IOWA operator was the smallest for all the combined 
models at only 1.4113. For the prediction of failures in 2019, the Holt-Winters model and the reciprocal 
error performed best among the single models and the combined models respectively. 

It was also observed that, when making predictions for EDPs, out of the single models, the Holt-Winters 
and the negative binomial regression models could be used. For the combined models, the IOWA operator 
and the error reciprocal variable weight could be selected. The comparison showed that some single models 
produced predictions much closer to the actual values than those of the combined models. The reason for 
this may be related to the weight of the single models in the forecast value for the year in the combined 
forecast. In addition, both the negative binomial regression model and the IOWA operator could meet the 
general requirements for airlines with a flight guaranteed rate of above 95% for HR-LRU parts purchasing. 

4.5. Comparison with other studies 

The methods or research objects adopted in this study were the same as those in some other studies[42]. 
Through comparison, we found some similarities and differences. Wang et al. [43] chose eight prediction 
models: the Poisson distribution model, the linear regression model, the AR model, the ARIMA (p,d,q) 
model, the automatic ARIMA model, the Holt-Winters model, the GM (1,1) model, and the SVR model. They 
used aviation spare parts data to make demand forecasts, and found the best forecasting method to be 
gray correlation and association rules mining. Among the eight prediction models, the support vector 
machine regression model performed best in December 2011 and the ARIMA (p,d,q) model outperformed 
other prediction models in December 2013. According to the association rules, the applicability of the 
automatic ARIMA model was better than other forecast models for spare parts. In our research, the Holt-
Winters model had a better predictive effect than the ARIMA (p,d,q) model. The reasons may be the 
following. (1) Different research objects. Although this study and the literature selected aviation spare 
parts for the research, this study focused on the prediction of HR-LRU parts, while the literature did not 
state the types of aviation spare parts for its research objects. It is possible that the research object did 
not focus on a certain kind of aviation spare part, so different research objects may cause different 
conclusions. (2) Different evaluation criteria. This paper mainly chose the comparison of evaluation 
indicators to make judgements, while the literature chose gray prediction and association rules mining to 
make judgements. (3) Different data sources. In the literature, the authors did not state whether the source 
of the data was the same type of aircraft from the same fleet. This was somewhat different from the 
uniformity of our data sources. And the data came from 2001 to 2013, which is a long and relatively old 
period, which was also different from our data. 

In another paper [6], the Holt-Winters method was found to be more suitable for long-term forecasting and 
monthly short-term forecasting by comparing 16 forecasting methods to predict heat load. Although the 
research objects were different, the data characteristics and research results were similar to those in this 
article. It can also be seen that our conclusions could be used for reference. 

 



78 

5. CONCLUSIONS 

Based on the failure data of EDPs from 2014 to 2018, among seven single measurement models, the negative 
binomial regression model and the Holt-Winters model produced better predictions than all of the other 
models. The SSE and MAE of the negative binomial regression were the lowest at 118.41145 and 1.97352 
respectively, and the Holt-Winters model’s MAE was the lowest at 1.13270. Under the evaluation of SMAPE 
and TIC, the performances of the Holt-Winters and negative binomial regression models were also the 
second- and third-best among all seven measurement models. Their SMAPEs were 57.71100 and 58.16201 
and their TICs were 0.39931 and 0.40107 respectively. Among the four combination models, the accuracy 
of the IOWA operator predictions was better than the others; the SSE was 104.672 5 and the SMAPE was 
53.116 92. The reciprocal error method also produced good results. Compared with real data in 2018, the 
prediction errors of the negative binomial regression model and the IOWA operator model were only 0.1693 
and 1.4113 respectively. In addition, the former model’s results could meet 95% of the airline's guaranteed 
requirements, and the latter model’s results could meet 97% of the actual needs of the guaranteed rate. 
There were eight EDP failures in 2019, and the predicted values of the Holt-Winters model and the error 
reciprocal variable weight combination model were closest to the actual values. The errors were 2.9057 
and 6.7476 respectively. 

This study’s results confirm that measurement models are good choices for airline cost control. Compared 
with traditional models, measurement models could avoid the shortcomings of collecting diverse data. The 
measurement models only had to count the number of failures, making it easier for airlines to control the 
cost of the HR-LRU parts. One limitation of these methods, however, is the time-series data failure. In the 
face of occasional emergencies (such as COVID-19), major technological changes, and large-scale model 
updates, start-up airlines can use traditional models with data from other airline allies or competitors. 

The study found that, in 2019, if calculated according to the 95% guaranteed rate, the traditional model 
needed to prepare 16 EDPs, while the Holt-Winters model required 11. The difference between the two 
calculation results was five EDPs. The purchase price of five EDPs is USD 177,745. In the A320 fleet, there 
are more than 500 aircraft spare parts with a price of more than USD 10,000 and an essentiality code 
(ESS)=2. When there are similar redundant purchases, the redundant expenditure can be as high as USD 300 
million, based on the average purchase price. It was found that the use of higher-precision forecasting 
methods had considerable effects on airline cost control. 

Regarding the prediction results, the prediction values of the traditional model and of the measurement 
models were higher than the actual value in 2019. There are two primary reasons for this. (1) The true 
value of failures in 2019 may have been significantly affected by the age of the aircraft in the airline’s 
fleet. The aircraft age factor was not considered in the above models. (2) The airlines’ aircraft maintenance 
capabilities may have been greatly improved in 2019, increasing the interval between the failures of EDPs 
currently operating in the aircraft. These specific reasons, among others, should be explored in the future.  

The concern about the experimental findings was that the features of the HR-LRU parts were different. As 
the complexity of aircraft systems increases, the number of aircraft HR-LRUs increases. The intricate cross-
linking relationship between them complicates the failure of HR-LRU parts. Whether the characteristics of 
EDP can replace all LRU parts, and whether EDP failure data can be used to predict the failure of LRU parts, 
is still controversial. This is worth further discussion. Owing to the outbreak of COVID-19, it is also difficult 
to obtain valid data to verify. In addition, emerging technologies, such as artificial intelligence, the big 
data industry, and the internet, might prove to be promising areas for future research. More alternative 
methods could also be tried. In future work, we plan to use these emerging technologies based on 
measurement models, combined with the predictive maintenance data of airlines, to improve the accuracy 
of HR-LRU part forecasting, and to use data from other fleets or time periods to validate our conclusions. 
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