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ABSTRACT 
 

Artificial neural networks are powerful tools for time series forecasting. The problem 
addressed in this article is to do multi-step prediction of a stationary time series, and to find 
the associated prediction limits. Artificial neural network models for time series are non-
linear. However, results that are applicable to linear models are sometimes mistakenly applied 
to non-linear models. One example where this is observed is in multi-step forecasting. A 
bootstrap method is proposed to calculate one- and multi-step predictions and prediction 
limits. The results are applied to an electricity load time series as well as to a pure 
autoregressive time series.  
 

OPSOMMING 
 
Kunsmatige neurale netwerke is kragtige instrumente vir tydreeksvoorspelling. In hierdie 
artikel word multistap-vooruitberaming van ‘n stasionêre tydreeks en die gepaardgaande 
vertroueinterval behandel. Resultate wat slegs geldig is vir lineêre modelle word soms 
verkeerdelik op neurale netwerkmodelle toegepas. ‘n Voorbeeld hiervan kom in multistap-
voorspelling voor. ‘n Skoenlusmetode, word voorgestel waarvolgens eenstap- en multistap- 
voorspellings en vertroueintervalle bereken kan word. Die resultate word op ‘n 
elektrisiteitslastydreeks en op ‘n suiwer outoregressiewe tydreeks toegepas. 
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1.  INTRODUCTION 
 
Artificial neural networks are powerful tools for time series forecasting. See [10], [6], [8] and 
[17] for various applications. The problem addressed in this article is to do multi-step 
prediction of a stationary time series, and to find the associated prediction limits. 
 
Artificial neural network models for time series are non-linear. However, results that are 
applicable to linear models are sometimes mistakenly applied to non-linear models. One 
example where this is observed is in multi-step forecasting. Let  represent a 
stationary time series. Suppose that the observation at time t can be described by the 
following model: 

nZZ ,,1 K

 
tptttt aZZZZ += −−− );,,,( 21 θη K         (1) 

 
where )(;η  is a linear or non-linear function,  
p is the autoregressive order of the model, in other words  can be explained by p previous 
observations  which will be used as inputs of the neural network,  

tZ

pttt ZZZ −−− ,,, 21 K

θ  is the parameter vector and 
KK ,,, 1 tt aa −  are uncorrelated and identically distributed random variables with mean zero 

and variance . 2
aσ

 
The minimum mean square error forecast of a future observation is the expected value of the 
future value, given the observed time series [1]. Let the vector represent the n 
observations  At time n (which is the number of terms in the time series), the h-
step forecast of , given observations is the conditional expected value  

 nZ
).,,( 1 nZZ K

hnZ +  nZ
 

)|()( nhnn ZEhZ Z+=           (2) 
 
From (1) it follows that 
 

hnphnhnhnhn aZZZZ +−+−+−++ += );,,,( 21 θη K        (3) 
 
The notation h is used to indicate the number of time steps of the forecast. It is assumed that 
forecasts are made from time n, in other words, the observed time series is used up to its last 
value to produce forecasts. is, for instance, the forecast of the future value  which 
is unknown at time n, and likewise, is the forecast of the future value  at time n. 
The number of previous time series observations used to explain the current observation is 
denoted by p and it also corresponds to the number of input terms in a neural network. If this 
model is used for electricity load forecasting on an hourly basis, p previous hours’ loads will 
be used to forecast the current load.  

 )1(nZ 1+nZ

2 )2(nZ +nZ
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Therefore, using (2) and (3) the forecast of , given observations is hnZ +  nZ
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In the case of a linear model, forecasts can be calculated recursively, by using forecasts 
calculated in previous steps, since the expected value of a linear function is the linear function 
of the expected values: 
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It follows from (2) that   
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Therefore, from equations (4), (5) and (6), the h-step forecast in the linear case can be written 
as 
 

))(,),2(),1((

]|);,,,([)( 21

phZhZhZ

aZZZEhZ

nnn

nhnphnhnhnn

−−−=

+= +−+−+−+

K

K

η

θη Z
     (7) 

 
It can be seen that the forecast  depends on forecasts of the preceding time points, 

. In neural network terminology, outputs from the neural 
network are fed back as inputs to produce subsequent forecasts.  

)(hZ n

))(,),2(),1( phZhZhZ nnn −−− K

 
However, if the function defined by the neural network architecture, );,,,( 21 θη pttt ZZZ −−− K , 
is non-linear, equation (5) is not true. Even so, it is often seen in neural network literature that 
forecasts produced by the network are used as inputs for subsequent forecasts [8]. A number 
of different approaches to obtain one-step and multi-step forecasts for non-linear models are 
discussed by [11]. One of the methods, namely the bootstrap, is used in this article to produce 
multi-step forecasts.  
 
Since no forecast is complete without standard error and prediction limits, it is also shown 
how these quantities can be calculated with bootstrap methods. In [13] confidence intervals 
for linear models based on bootstrap methodology are proposed. The results are extended to 
non-linear models in this article. Confidence intervals are derived for a time series that is 
generated by an autoregressive process. The results are also applied to find predictions and 
confidence limits for an electricity load time series.  
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2.  FORECASTING WITH AUTOREGRESSIVE MODELS 
 
In the case of an autoregressive model of order p or AR(p) model (see [1]), which is linear, 
 

tptpttt aZZZZ ++++= −−− φφφ K2211 ,       (8) 
 
the h-step forecast (see equation (7)) is 
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            (9) 
Note that it is possible that pjjh ,,2for   0 K=≤− .  In that case, the observed time series 
value is used. Using the property of conditional expectation, it follows that  
 

nnnn ZZEZ == )|()0( Z ,   

11 )|()1( −− ==− nnnn ZZEZ Z  ,  
and in general . 0 if )( <= − jZjZ jnn

 
The forecasts are calculated recursively, and converge to the mean of the time series for large 
values of  h. 
 
Assuming that the distribution of K  is normal, the distribution of   is 

normal with mean  and variance 
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1(2

nhnZ Z|+

)(hZn )1

1
2∑ −

=

h

j jθ+aσ  where the s'jθ  are the weights in the 

moving average representation of   (see reference [1]): tZ
K++++= −− 22110 tttt aaaZ θθθ         (10) 

 
Approximate α−1  probability limits for  are given by nhnZ Z|+
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where 
21 α−z  is the )1( 2

α−100 -th percentile of the standard normal distribution. 

 
3.  MULTI-STEP FORECASTS AND CONFIDENCE INTERVALS FOR NEURAL 
     NETWORK MODELS 
 
Neural network models are non-linear, and the expected value of a non-linear function is 
generally not of a simple form. In the case where the model in equation (1) is non-linear, the 
observation at time n+1 is  
 

1111 );,,,( +−+−+ += npnnnn aZZZZ θη K ,       (12) 
 
and the minimum MSE single-step (h=1) forecast (from equation (4)) is 
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since the expected value of a function of known values (in this case )  is 
equal to the function of  the known values. The maximum likelihood estimator of  is  

pnnn ZZZ −+− 11 ,,, K

)1(nZ
 

)ˆ;,,,()1(ˆ
11 θη pnnnn ZZZZ −+−= K         (14) 

 
where  is an estimator of θ̂ θ  which is obtained by maximising the likelihood function of the 
observations, or in neural network terminology, the vector  represents the weights of the 
trained network.  

θ̂

 
The 2-, 3-, … step forecasts are not of such a simple form, since they depend on the future 
time series observations that are unknown. Consider   
 

2212 );,,,( +−+++ += npnnnn aZZZZ θη K  ,       (15) 
 
with  minimum MSE forecast 
 

]|);,,([)2( 21 npnnn ZZEZ Zθη −++= K                               (16) 
 
which is the expected value of a non-linear function. Instead of calculating this expected 
value, which may be a complex integral, bootstrap methodology can be used to estimate the 
minimum MSE forecasts.  
 
Bootstrapping is a resampling method introduced by Efron [4]. Different methods have been 
proposed for bootstrapping in the context of time series [2],[7],[9],[14],[15]. In this article, the 
method based on residuals is used ([3],[9] and [5]). The residuals of the neural network are 
the difference between observed time series values and the corresponding values predicted by 
the neural network.  The idea is to generate a large number of time series from the same 
population as the observed time series, called bootstrap time series. For each bootstrap time 
series, some statistic of interest is calculated. In this way, a large sample of possible 
realizations of the statistic is obtained, called the empirical distribution of the statistic. The 
empirical distribution of the statistic is an estimator of the true sampling distribution. The 
variance of the statistic is for instance estimated by using the variance of the empirical 
distribution.  
 
In this application, the statistic is a future value of the time series. The residuals of the neural 
network and the trained network are used to produce many different realizations of the time 
series from the point n+1 onwards. It is possible to generate a whole distribution of possible 
values at each time point. The mean of the empirical distribution is an estimate of the forecast 
and the percentiles are used as confidence limits.  
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The two-step forecast in equation (16) depends on . Since Z   is 
unknown, it has to be estimated.  

pnnn ZZZ −++ 21 ,,, K 1+n

 
1111 );,,,( +−+−+ += npnnnn aZZZZ θη K  

 
A number, m, of possible realizations of Z , denoted by Z , can be 
obtained by using the one-step forecast and adding a typical error term to it. Recall from (12) 
and (13) that  
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A possible realization of  is given by: 1+nZ
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The error terms, denoted by , j=1,2,…, m are observations (drawn randomly with 
replacement) from the residuals of the model, , with 
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1
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nptZZZa ptttt ,,1   ),ˆ;,,(ˆ 1 KK +=−= −− θη        (18) 

 
The outputs of the neural network corresponding with the m input sets  
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are averaged to get the two-step forecast: 
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This approach can be extended to three steps, four steps, and so on. Suppose one-step, two-
step, up to h-step forecasts are required. Following the above procedure, the j-th  bootstrap 
(j=1,2,…m) time series is generated as follows (see (17)): 
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A total of m bootstrap series is required. In general, the forecast of a future observation  
is the average network output associated with the p most recent observations which may be 
only bootstrap time series values (if h>p): or a combination of bootstrap time series and actual 
observations (if h≤p) across the m bootstrap time series:  

hnZ +
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where  
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and   
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j
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Various methods have been proposed for the calculation of bootstrap confidence intervals. 
See [16] for a review. The method based on percentiles is used in this application. The 

100( α−1 )% confidence limits for  are the hnZ + )
2

(100 α th and )
2

1(100 α
− th percentiles of the 

empirical distribution of . hnZ +

 
The procedure can be summarized in a number of steps: 
 
• Train the neural network on the time series, in other words, fit the model (1) to the time 

series . nZZ ,,1 K

• Calculate estimates of the residual terms (using (18)): 
. nptZZZa ptttt ,,1   ),ˆ;,,(ˆ 1 KK +=−= −− θη

• Calculate  conditional on :    

where  and   is an observation (drawn randomly with 
replacement) from .   

**
1 ,, hnn ZZ ++ K
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For instance, 
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• Repeat the previous step m times, where the minimum value for m is 1000.  A minimum 

of 1000 observations is required for the calculation of the percentiles. The 2.5th and 97.5th 
percentiles are on the left and right extremes of the distribution. The generated bootstrap 
time series values will tend to be close to the mean, with only a few extreme values. A 
relatively large sample is therefore required to estimate values in the extremes of the 
distribution more accurately. There are therefore m bootstrap time series with possible 
values for . nhnnn ZZZ Z|,,, 21 +++ K

 
• The h-step forecast is given by (21). 
 
• The 2.5th and 97.5th percentiles of  are the 95% 

confidence limits associated with the h-step forecast.  
KK ,2,1for  ,,, )*()2*()1*( =+++ hZZZ m

hnhnhn

 
4.  EMPIRICAL RESULTS 
 
Example 1 
 
The time series considered is total electricity load demand measured in kilowatt hours 
accumulated hourly by Eskom (the largest electricity supplier in South Africa). The data were 
scaled between –1.0 and 1.0. A time plot of two weeks’ data is given in Figure 1. Four weeks’ 
data, a total of  n=672 observations, were used to train the network. Input variables included 
periodic terms to take care of the 168-hour, 24-hour and 12-hour consumption patterns 
present in the data, as well as electricity load values of previous time points. A feed forward 
neural network with one hidden layer and a sigmoidal activation function on the hidden layer 
was trained to predict the next load value, given the set of inputs. Bootstrap methodology was 
used to predict the electricity loads for 1 to 24 hours ahead, together with their standard errors 
and a 95% confidence interval. The results are presented in Figure 2. The notation L95 and 
U95 on the graph indicates the lower and upper 95% confidence limits respectively.  
 
A linear regression model was also used to predict the electricity load. The same set of 
explanatory variables (inputs) was used. In this case, the prediction limits are based on the 
assumption that the prediction errors follow a normal distribution. The predictions and 95% 
prediction limits for the linear model are given in Figure 3. It can be seen that the forecasts 
obtained by the neural network and linear model compares well. 
 
It can be seen that the predictions are quite smooth and that the width of the interval gradually 
increases with the forecasting period in the case of the linear model.  The same is not true for 
the confidence interval obtained by the bootstrap method, especially towards the end of the 
forecasting period. This is due to the fact that the bootstrap method is essentially data driven 
and does not rely on any assumptions of the probability distribution of the data. 
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Figure 1:  Hourly electricity load demand time series 
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Figure 2:  Predicted hourly electricity load 

(Bootstrap approach applied to neural network) 
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Figure 3: Predicted hourly electricity load (linear regression model) 
 
Example 2 
 
The data used for this example were 200 computer-generated values of a stationary 
autoregressive model of order 2 (AR(2)) process as given by equation (8). The generating 
process is linear, and it can therefore not be expected that a neural network model would 
produce better prediction results than a linear model. A feed forward neural network with two 
input nodes for two past values of the time series and one hidden layer with a sigmoidal 
activation function was trained. Bootstrap methodology was used to calculate predictions and 
prediction limits. The prediction results are given in Figures 4 and 5. As in the previous 
example, the results for the neural network, where bootstrap methods were used, and the 
linear model correspond more or less. 
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Figure 4:  Autoregressive time series: predictions and 
95% prediction limits (neural network) 
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Figure 5: Autoregressive time series: predictions and  

95% prediction limits (linear regression model) 
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5.  CONCLUSIONS 
 
It is shown that bootstrap methodology can be used to calculate multi-step predictions of 
neural networks and their associated prediction limits.  
 
Effective algorithms are essential for network training, since the bootstrap approach is very 
computer intensive. In order to derive prediction limits, a minimum of 1000 time series 
should be resampled from the observed time series. Considering the ever increasing speed of 
computers and the development of more effective algorithms for network training, this is not 
viewed as a real problem. 
Two examples are given. In both cases, neural networks, as well as linear regression models, 
are used to model the time series, and predictions and prediction limits are calculated. The 
results compare reasonably well. Further research is required to establish whether the 
bootstrap results can be improved by, for instance, increasing the number of bootstrap 
replications.  
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