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ABSTRACT 

This study examined the possibility of a strong relationship between ICD-
10 codes and the panel of clinical laboratory tests requested. Decision-tree 
learning principles were used to determine whether requisition event 
attributes had a useful relationship with laboratory tests. A recommender 
system was designed and tested using ICD-10 codes as a core predictor. 
The results showed an average requisition accuracy upwards of 74 per cent. 
If such a system were to be deployed, health professionals would be able 
to draw from a vast and accessible pool of knowledge when selecting 
clinical laboratory tests, improving the effectiveness of clinical laboratory 
operations. 
 

OPSOMMING 

Hierdie studie het die moontlikheid ondersoek van ’n sterk verband tussen 
ICD-10-kodes en die paneel kliniese laboratoriumtoetse wat gevra word. 
Besluitboom-leerbeginsels was gebruik om vas te stel of eienskappe van 
rekwisisiegebeurtenisse ’n nuttige verband met laboratoriumtoetse gehad 
het. ’n Aanbevelingstelsel was ontwerp en getoets deur die gebruik van 
ICD-10-kodes as ’n kernvoorspeller. Die resultate het ’n gemiddelde 
rekwisisie-akkuraatheid van 74 persent getoon. As so ’n stelsel 
geïmplementeer word, kan gesondheids-werkers uit ’n wye en toeganklike 
poel kennis trek wanneer hulle kliniese laboratoriumtoetse moet kies, wat 
die doeltreffendheid van kliniese laboratorium-bedrywighede sal verbeter. 
 
 
 
 
 

 

1 INTRODUCTION 

Modern healthcare relies on laboratory diagnostic services such as clinical pathology and radiology [1]. The 
complexities of integrating health and laboratory information systems pose a significant obstacle to the 
efficient use of diagnostic services. Major system overhauls are often required, which are expensive and 
unattractive. A common integration issue in healthcare is the barrier between handwritten patient health 
records and large-scale data processing [2]. Out-dated principles for how data should be captured and 
transmitted in the healthcare industry commonly result in the separation of data capturing and processing 
units. Smarter data management systems should capture data in a way that can be smoothly integrated in 
processing and reporting diagnostic tests. 
 
The efficient use of laboratory services to diagnose and manage disease should ideally be governed by 
evidence-based medicine. According to pathologists interviewed for this study, various guidelines and 
results of clinical trials reported in the literature are often insufficient for the variety of cases encountered 
in clinical practice, and are not validated against the local disease profile and specific economic needs. 
The validity of international evidence-based guidelines in a local setting may be questioned, as the 
variability among disease profiles around the world means that not every location would see the same 
volumes in particular clinical tests [3]. A patient presenting the same condition on two different continents 
may be treated differently because of distinct local disease profiles and available resources. Data generated 



 

17 

locally may therefore provide guidance that is more appropriate to a specific setting. Thus guidelines for 
practice could be evident in the combined knowledge and experience of local clinicians, as manifested in 
data generated from the requisition of specific diagnostic tests by a large sample of practitioners.  
 
Recommendation systems such as those used regularly in the retail industry are examples of data used to 
formulate usage guidelines. These systems use machine learning to identify trends in data and to leverage 
that information in order to recommend products to individual customers. Although recommendation 
systems are not routinely used in healthcare, they could give a medical professional a firm reference point 
from which they could make informed decisions [4]. An example of a successful medical recommender is 
one built on the idea that a specific patient will prefer particular traits and expertise that certain physicians 
possess [5]. This system allows patients to contact the doctor who is best suited to treat their specific 
illness. In a similar way, a test profile validated for a specific diagnosis may be used as the reference 
standard for a laboratory test recommendation.  
 
Typical laboratory requisitioning relies on clinicians to select diagnostic tests from laboratory requisition 
forms (LRF) on which tests are organised according to broad criteria such as pathology discipline (e.g., 
chemistry, haematology, or serology). Requisitions are then captured in the laboratory information system, 
together with patient demographics and an ICD-10 code to denote the diagnosis. In a paper-based system, 
the list of tests provided on LRFs is not comprehensive, and additional laboratory tests are often 
handwritten by clinicians. A previous study demonstrated that the presentation of an LRF has a significant 
impact on which tests are conducted [6]. Guidance about the types of test requested may allow laboratories 
to improve utilisation through more appropriate resource management and allocation. An electronic 
recommender system can enable a more structured offering of tests that can be organised according to 
diagnostic algorithms or pre-formulated test profiles. It is conceivable that laboratory requisitioning could 
be more intelligent if, using pattern-recognition techniques, these profiles were dynamically structured 
around the symptoms or signs that the patient presents. Electronic requisitioning may be the first step 
towards a better integration of pre-analytical data capturing; but, to reduce the integration issues of a 
solution, it is necessary to identify a common denominator that can link healthcare data to diagnostic tests. 
 
The ICD-10 code system is used universally to index clinical diagnosis [7], and is already a popular variable 
for hospital groups and funders to analyse and regulate health care expenditure. ICD-10 coding could act 
as an integration key, allowing organisations to benchmark their internal key performance indicators (KPIs) 
and global results. This common factor means that any system developed alongside ICD-10 coding will be 
easily integrated into the laboratory diagnostics [8]. This paper investigates the validity of standard test 
profiles occurring for specific diagnostic codes, such as the ICD-10 system, as a possible way to recommend 
suitable diagnostic tests in electronic requisitioning formats. If these profiles could be validated, they could 
also serve as a benchmark to monitor and evaluate requisitioning patterns.  
 
At the point of test requisitioning, doctors already have to supply an ICD-10 code that denotes a diagnosis 
or working diagnosis. The premise of this study is that tests associated with a particular code can be 
electronically recommended. This study aims to contribute towards increasingly effective and efficient 
laboratory operations by evaluating whether a standard profile of laboratory tests can be validated for 
selected ICD-10 diagnostic codes. The study thus further aims to provide the foundation for a solution that 
offers a readily accessible and integral method of smart test requisitioning.  

2 METHODS 

As a proof-of-concept study, simple data analysis methods were chosen ahead of complex pattern analysis 
techniques. Test requisition data was supplied by a large pathology group. Each feature (listed in Table 1) 
was analysed in detail with specific reference to its usefulness as a laboratory test predictor. Useful 
features were then employed as a foundation for the predictive model with which the effectiveness of an 
ICD-10-based recommender system was evaluated. 

2.1 Data gathering 

Retrospective data of test requisitions was obtained from a large private pathology organisation. This data 
included basic patient demographics such as age and gender, along with event-based information such as 
ICD-10 code, region, doctor type, and requested laboratory tests. The primary focus of this study was to 
explore the relationship between ICD-10 codes and the requested clinical laboratory tests; however, it was 
necessary to identify whether other event-based indicators could be used to improve the results further. 
The raw dataset contained roughly four million records, and covered the period from October 2019 to 
February 2020. COVID-19-related regulations caused inconsistencies in the collected data, so records 
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collected after February 2020 were not considered. As the dataset represented information processed by 
the organisation’s data capturers, only a handful of cases contained missing information. A thorough 
analysis of the data was conducted before proceeding to evaluate the features, including cleaning and 
preparing the data with oversight from medical professionals. 

2.2 Feature evaluation 

This phase is concerned with evaluating whether each feature has any correlation with the target feature: 
laboratory tests. According to Senthilanathan, the identification of correlation is important for two reasons 
[9]: (i) an association may imply that one feature is a good predictor of another, and (ii) highly correlated 
features may imply that one of the features is a redundant predictor of another. Table 1 shows a brief 
description of each of the features examined in the dataset. 

Table 1: Feature descriptions 

 
 

It is important to identify which features, apart from ICD-10 code, could be used in the laboratory test 
recommendation system. As more features are added, it is expected that the accuracy of the 
recommendation based on the training dataset would increase. The risk is that some feature attributes may 
have a low representation, and thus not provide the recommendation accuracy that is needed. This is 
especially true for ICD-10 codes that appear in low volumes, as the variety of laboratory tests associated 
with these codes is likely to be low, which would incorrectly portray a high level of recommendation 
accuracy. Some features may be more sensitive to certain input parameters than others; for example, it 
may only be valuable to include gender as a predictive feature if there is a significant difference in testing 
volumes and types between male and female patients, meaning that the features would need to be ranked 
on usefulness on a case-by-case basis. Ranking was conducted using the information gain (IG) method — a 
model used to describe the informativeness of a feature in terms of Shannon’s entropy model, which is a 
method of quantifying the level of impurity of elements within a set [10]. This method is routinely adopted 
when deploying a decision tree. The entropy 𝐻(𝑡, Ɗ) of a dataset can be calculated using Shannon’s entropy 
model as follows [10]: 
 

 𝐻(𝑡, Ɗ) =  − ∑ (𝑃(𝑡 = 𝑙) × log2(𝑃(𝑡 = 𝑙)))𝑙∈𝑙𝑒𝑣𝑒𝑙𝑠(𝑡)        (2.1) 

 

The probability 𝑃(𝑡 = 𝑙) represents the fraction of outcomes in which element t of the set is of target set 
level l (laboratory test) in dataset Ɗ. Entropy is measured in bits. When using IG as a tool for feature 
selection, it is often referred to as mutual information (MI). A value for a feature’s IG, or MI, can be 
calculated as follows [10]: 
 

 𝐼𝐺(𝑑, Ɗ) = 𝐻(𝑡, Ɗ) − 𝑟𝑒𝑚(𝑑, Ɗ) (2.2) 

 

In this case, 𝑑 represents a feature variable. The relationship is symmetrical. The remaining entropy, 
denoted as 𝑟𝑒𝑚(𝑑, 𝐷) after feature 𝑑 has been tested, is considered to be a partition-wise weighted sum 
of entropy — that is, smaller partitions do not influence 𝑟𝑒𝑚(𝑑, 𝐷) as much as large counterparts do. To 
calculate 𝑟𝑒𝑚(𝑑, Ɗ) we apply the following formula [10]: 
 

 Feature Description 

Generate region Region of South Africa in which the requisition originates. 

Provider ID Unique identifier for a specific clinician. 

Doctor type Classification of type of doctor initiating the requisition. 

Unique patient Identification code assigned to each case. 

Patient class Defines whether each case occurred in a hospital or not. 

Patient birth date Year in which the patient was born. 

Patient gender Gender identifier for each case. 

Form ID Unique identifier for the specific LRF. 

ICD-10 ICD10 codes assigned to the LRF. 

Transaction description Name of the test conducted. 
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 𝑟𝑒𝑚(𝑑, 𝐷) =  ∑
Ɗ𝑑=𝑙

Ɗ
× 𝐻(𝑡, Ɗ𝑑=𝑙)

𝑙∈𝑙𝑒𝑣𝑒𝑙𝑠(𝑑)

 (2.3) 

 

The entropy for the dataset was calculated using Eq. 5.5. Values for 𝑟𝑒𝑚(𝑑, Ɗ) were also calculated using 
the method described by Eq. 2.3. A drawback of this calculation is that entropy is an impurity-based metric, 
and some of the features have many more levels than others; for example, there are two gender levels, 
and just under 2 000 laboratory tests. To combat this bias, the information gain ratio (GR) can be used to 
evaluate all features directly against each other, and is calculated as follows [10]: 
 

 𝐺𝑅(𝑑, Ɗ) =  
𝐼𝐺(𝑑, Ɗ)

− ∑ (𝑃(𝑑 = 𝑙) × log2(𝑃(𝑑 = 𝑙)))𝑙∈𝑙𝑒𝑣𝑒𝑙𝑠(𝑑)
 

 
(2.4) 

    

Features that showed higher GR values were selected as input parameters for the predictive model. It was 
recognised that the MI and GR calculations could be repeated for each recommendation, as some 
relationships could benefit from tailored parameters; but uniform parameters was considered as sufficient 
for a proof-of-concept study. 

2.3 Data modelling 

To test the results uncovered in the 2.2 Feature evaluation, it was necessary to build a rudimentary 
recommender system. The case-based recommender (CBR) system relies on a specific set of input 
parameters to operate. This input set is treated as a query Q within the dataset Ɗ, and each record in the 
set is considered to be a ‘case’. The constraints triggered by the query initiate a filtering process that 
returns the query set AQ. Ranking features based on MI and GR is not a comprehensive indicator of predictive 
performance, but it does allow for a comparative analysis of the importance and influence of each feature.  
 
The CBR algorithm was constructed as follows: 

 

1. Input event-related features that will assist in filtering the dataset. 

2. Filter the dataset based on the input parameters. 

3. Count the number of unique patients in the dataset. 

4. Calculate the average number of tests per patient; multiply that figure by the pre-determined constant 

to get n (number of tests per patient). 

5. Rank the tests in order of occurrence. 

6. Fill a list of recommended tests by using the ranked top n tests. 

7. Evaluate the event-based performance, using metrics outlined below under ‘2.4 Model evaluation’. 

 
The algorithm was tested on a population of 472 sets (Q), each containing more than 1 000 individual cases. 
These frequently occurring sets were selected because limited data was available.  

2.4 Model evaluation 

Once a predictive model had been developed, the generated solutions were evaluated. The results were 
assessed using the following performance-based metrics [11], where 𝑢 ∈ 𝑄: 
 

(i) Precision   (Pu) 𝑃𝑢 =  
ℎ𝑖𝑡𝑠𝑢

𝑟𝑒𝑐𝑠𝑒𝑡𝑢

 (2.5) 

 

(ii) Recall (Ru) 
𝑅𝑢 =  

ℎ𝑖𝑡𝑠𝑢

𝑡𝑒𝑠𝑡𝑠𝑒𝑡𝑢

   (2.6) 

 

where hitsu represents the number of correctly predicted recommendations, recsetu represents the size of 

the recommended set, and testsetu represents the size of the test set. Pu and Ru have certain trade-offs, 

which means that direct comparison for different cases is often not the most effective way to evaluate the 
performance. The F1 metric should, in theory, enhance the comparability of results, and is calculated as 
follows [11]: 

 𝐹1 =  
2𝑃𝑅

𝑃 + 𝑅
 

 

(2.7) 
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A metric was derived to measure the mean for the proportion of a patient’s test profile captured by the 
recommendation set. This is an important measure of the effectiveness of the algorithm, as it describes 
the typical contribution of the recommendation system. The relationship was termed ‘recommendation 

contribution’ (RC) and is shown in Eq. 2.8, where 𝑒𝑣𝑒𝑛𝑡𝑢 represents the size of each event’s (linked to a 

unique patient) test set. 
 

𝑅𝐶 =  
∑

ℎ𝑖𝑡𝑠𝑢

𝑒𝑣𝑒𝑛𝑡𝑢

𝑄
𝑢=1

𝑢
, 𝑢 = 1, . . . , 𝑄 

(2.8) 

Metrics 2.5 and 2.6 can be evaluated by generating a recommendation based on input parameters and by 
comparing this set with patient samples containing the same parameters. A ‘hit’ occurs for each 
recommended test that appears in the unique patient test sample. A set of P and R values can then be used 
with the F1 metric to determine a standard value that represents the accuracy of the recommendation 
[11]. 

3 RESULTS 

A thorough analysis of the features was conducted by making use of the decision-tree learning principles 
set out in Section 0. The performance of the rudimentary algorithm was tested using the parameters set 
out in Section 0. The intricacies of feature selection and algorithm performance were then evaluated to 
conclude the results analysis for this study. 

3.1 Feature analysis 

The results displayed in Figure 1 show that ICD-10 code and Provider ID offer the most significant MI when 
splitting the dataset on its features. The GRs for Patient class and Doctor type show that the bias caused 
by their individual entropy was reducing their performance in the MI comparison. The values calculated for 
GR show that these features are important predictors for laboratory tests. The MI and GR for Patient gender 
reveal an extremely weak relationship between this feature and the target set. The conclusion drawn from 
this information is that, typically, the gender of the patient will have little to no relevant influence on the 
type of test that is requested by the clinician. There are clear instances when the gender might have an 
influence on the selected laboratory test, but those will likely be related to gender-specific testing 
procedures. The MI and GR values for Generate region indicate that the region where the test is conducted 
has a very low correlation with the test selection. 
 

 

Figure 1: Mutual information compared with associated gain ration. 

Doctor type and Provider ID both provide useful information, as certain medical fields may be more prone 
to selecting specific tests. This is also true for individual clinicians (Provider ID), as they may operate in an 
environment in which they consult with a principal disorder or illness. Likewise, individuals may be more 
likely habitually to request similar tests, which could also create a higher level of MI. These assumptions 
appear to hold true, as the GR for clinician categories is higher than that for individual clinicians. This 
indicates that, despite having a lower MI, the Doctor type feature holds greater potential as a generalised 
predictor than Provider ID.  
 
Patient class compared extremely well with other features when using the GR and MI values. The 
comparatively high GR indicated that Patient class would be an important feature to consider when building 
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a recommendation model. This feature provides a practical example of the importance of considering GR, 
as the low number of levels in the data lead to inconclusive and unrepresentative MI results. It may be that 
the class of patient — that is, whether in or out of hospital — is strongly correlated with the severity of 
illness; and that will often influence the type of test that is requisitioned. This theory manifests in the MI 
and GR results for the Patient class feature, indicating that certain tests are strongly associated with either 
in or out patients. 
 

Patient age did not provide significant MI or show a high GR. A possible explanation for this is that the 
patient age may moderate the ICD-10 codes selected for a patient, rather than act as a predictor for 
laboratory tests. This theory was tested by calculating the MI and GR between Patient age and the ICD-10 
codes. The result is shown in Table 2, and indicates an association between the two features. A similar 
phenomenon occurs between the ICD-10 code and the testing region. Although these relationships could be 
a valuable area to explore, they do not fall within the scope of this study. The results and assumptions 
drawn from the analysis indicate that the following features best point to the appropriateness of a 
generalised recommendation of laboratory tests, and should be selected for further modelling: (i) ICD-10 
code, (ii) Doctor classification, (iii) Patient class. 
 
For this study, the CBR algorithm was developed to query the existing dataset using set Q, defined as Ɗ ∈(IQ, 
DQ, PQ), where IQ represents the input ICD-10 code, DQ represents the type of clinician, and PQ represents 
the patient class. To allow similarity metrics to influence this system, the results are evaluated using both 
the full (provided) ICD-10 code and a shortened version that accounts for only the primary classification 
(for example, R52.9 becomes R52). This adjustment means that the diagnostic information is less exacting, 
but it provides the opportunity to examine similar cases. Once the set ƊQ has been defined, each identical 
case is grouped in a frequency calculation. These groups are then assigned values representing their group 
size. At this point, the system makes it possible to provide the highest n values as a recommendation set. 
The n value is determined by referring to the UniquePatient classifications associated with the set ƊQ. The 
mean testing volume per patient is calculated and used as the n value for the recommendation. This value 
can be fine-tuned by including accuracy measures in the solution algorithm. As a standard for this study, 
the n value was set to 150% of the mean testing volume for the case Q1. 

 
Table 2: MI and GR between ICD-10 codes and insignificant laboratory test predictors 

Feature comparison (with ICD-10) Age Region Gender 

MI 0.569 0.251 0.137 

GR 0.145 0.108 0.138 

 

3.2 Algorithm performance 

The algorithm’s performance was measured using the metrics outlined under ‘2.4 Model evaluation’. The 
results of the algorithm and the model evaluation are summarised in Table 3. Precision values were typically 
low, which is consistent with a recommended set larger than the mean testing volume. It is necessary to 
note that the current LRF employed by South Africa pathology groups has an average precision of around 
0.0125, based on the number of tests it offers and the average number of tests per LRF. The F1 values 
showed a linear correlation with ‘Precision’, but not with ‘Recall’ or ‘Recommendation contribution’ (RC). 
The metric was so heavily influenced by Precision that the use case for this study was focused on relative 
values rather than absolute ones.   

Table 3: Summary of algorithm’s performance 

Metric Mean 
Standard 
deviation 

Minimum 
25th 

quartile 
50th 

quartile 
75th 

quartile 
Maximum 

Recommendation 
contribution 

0.74 0.12 0.31 0.66 0.74 0.82 1.00 

Recall 0.72 0.13 0.35 0.63 0.70 0.82 1.00 

Precision 0.36 0.10 0.12 0.27 0.36 0.44 0.62 

 
1 It is important to recognise that the size of the recommendation set is determined using tests per patient rather than tests per 

LRF; this is likely to yield a comprehensive set of tests that are most applicable to the particular patient. 
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F1 Value 0.42 0.10 0.19 0.34 0.41 0.49 0.73 

 

RC is arguably the most valuable metric, as it represents the proportion of a unique patient’s testing profile 
that is recommended to the clinician. The data summary in Table 3 indicates that 74% of every patient’s 
testing profile is recommended using the CBR algorithm. Recall is a metric that is closely correlated with 
RC, as shown in Figure 2. The Recall values indicate how much of the set-filtered population is represented 
by a specific recommendation for laboratory tests. Interestingly, several of the lower Recall values are 
supported by relatively high RC values, while the inverse was significantly less common. 

 

Figure 2: Scatter plot showing RC values against respective Recall values 

The distribution of RC values is shown in Figure 3. As supported by Figure 3, more than 61% of the samples 
return RC values of higher than 70%.  
 

 

Figure 3: Histogram showing the distribution of RC values across all samples 

 

3.3 Evaluation of feature selection 

Features were selected on the basis of their relative measure in gain ratio and mutual information. Features 
with higher values were better predictors than features with low values. Four of the features showed mutual 
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information scores that were significantly higher than the others, indicating the likelihood that they would 
be more useful for analysis. One of the four shortlisted features was Provider ID, a unique code assigned to 
each medical professional. Part of the purpose of this study was to promote the idea that a community of 
medical professionals make consistent and valuable decisions; therefore, the Provider ID would not be 
selected as a feature for development. 
 
Mutual information is a valuable tool of analysis in modelling a recommendation system. The method 
unpacked the relationship between the target and the descriptive features, and allowed the contrast 
between good predictors and poor predictors to be defined.  

3.4 Evaluation of the recommendation system 

The high dimensionality and limited population in the dataset added too many constraints for algorithms 
such as nearest neighbour. It must be noted that, for this study, the performance of the specific 
recommender system is secondary to defining the utility of the relationship between ICD-10 codes and 
clinical laboratory tests. Once the utility of this relationship has been defined, a performance comparison 
between different recommender algorithms may be a useful follow-up study. The CBR algorithm was limited 
by two primary factors: the size of each set (that is, how many records were associated with a particular 
set of inputs) and the relative usefulness of the input features for each set (that is, although ‘Patient class’ 
is a good descriptor for which a laboratory test is selected, that may not be the case for every set of inputs). 
As an introduction to the opportunity for a laboratory test recommendation system, it was determined that 
the primary limitations of the CBR were not enough to prevent a satisfactory analysis of the concept. 

4 CONCLUSION 

Smart laboratory test requisition would require the rollout of a fully electronic requisition system to support 
the process. This would include point-of-care technology to support the requisition process. However, 
significant costs are associated with such a system. The cost benefits would be most clear when examining 
the savings related to data processing labour, and the cost of poor quality. Still, there are benefits beyond 
labour that must be considered. 
 

Leveraging ICD-10 codes as a point-of-reference for test requisition could be a key component in the shift 
to smarter data management in pathology groups. The results achieved using a rudimental laboratory test 
recommender system indicate that ICD-10 codes could be used as a reference to make informed decisions 
about clinical laboratory test selection. Furthermore, these decisions would reflect the combined 
knowledge and experience of a multitude of clinicians, with specific reference to local disease profiles.  
 
External-facing features, such as a recommender system, could facilitate improved decision-making by 
clinicians. These improved decisions would be likely to improve clinical operations further by optimising 
the utilisation of clinical laboratories. Pathology groups would be able to manage their resources better by 
maintaining a degree of influence over the effectiveness of each requested laboratory test. If modern 
pathology groups are to remain technologically relevant, developing a smarter laboratory test requisition 
system is crucial. Leveraging powerful and consistent universal references, such as the ICD-10 code, could 
be integral to effective and efficient future laboratory test requisition systems.  
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