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ABSTRACT 

Agile methodologies were created for small co-located teams; but their 
benefits are now needed for projects with multiple, geographically 
dispersed teams. This raises the issue of scaled Agile — the modification of 
Agile to suit grander endeavours. This article introduces a fin-tech 
company which is building a digital banking platform and is already running 
Scrum, with the crucial need to scale its Agile approach because numerous 
globally distributed development teams are working on this project. A 
systematic inquiry at the enterprise, using interviews and surveys, raised 
issues about inter-team communication, collaboration, and dependencies, 
all of which link to issues in the literature about scaling Agile. Using a 
systematic process of extracting knowledge on Agile-at-scale frameworks 
from the literature, a comparison of existing frameworks (SAFe, Less, DAD, 
and Nexus) was used to determine which was best suited, with Nexus being 
suggested for the enterprise. We conclude by suggesting case study 
research to experiment further with Nexus. 

OPSOMMING 

Ratse metodologieë is geskep vir klein, naby-geleë spanne, maar hul 
voordele is nou nodig vir projekte met meerdere, geografies verspreide 
spanne. Daar is dus ŉ behoefte om ratse metodologieë aan te pas om 
grootskaalse projekte te akkommodeer. ŉ Finansiële-tegnologie 
maatskappy wat ŉ digitale bankplatform ontwikkel, en reeds van Scrum 
gebruik maak, word in die artikel bekendgestel. Die maatskappy het ŉ 
dringende behoefte om sy bestaande ratse benadering op te skaal omdat 
daar veelvuldige, globaal verspreide ontwikkelingspanne aan dié projek 
werskaf. ŉ Sistematiese navraag by die maatskappy, deur middel van 
onderhoude en vraagstukke, het uitdagings met die tussenspan-
kommunikasie, samewerking en afhanklikheid uitgelig. Hierdie uitdagings 
is bekende tekortkominge van grootskaalse ratse benaderings. Deur middel 
van ŉ sistematiese proses om die kennis van grootskaalse ratse 
metodologieë vanuit die literatuur te onttrek is daar ŉ vergelyking getref 
tussen bestaande raamwerke (SAFe, Less, DAD en Nexus). Nexus is 
identifiseer as die mees geskikte raamwerk. Laastens word ŉ gevallestudie 
voorgestel om die saak verder, met die gebruik van Nexus, te ondersoek. 

 

1 INTRODUCTION 

With the ever-increasing demand for the world to stay connected, software development is becoming a 
necessity for business in today’s market [1]. This industry is ever-changing, and conventional development 
methodologies, such as the waterfall methodology, are diminishing [2]. Their long-term planning and 
structure rendered projects useless, because the market had already changed between the time that 
planning had started and when development was initiated [3]. Traditional methods, based on hierarchy and 
bureaucracy, slow down decision-making [1]. Agile, created to combat problems associated with traditional 
methods, has been in the workplace since the 1990s [3, 4]. Quick adaptability and the ‘fail-fast’ approach 
made Agile popular in software development [1]. 
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Agile encourages face-to-face interaction between team members (including customers), rather than using 
tools and technology [1, 3]. It emphasises development and product quality over extensive documentation, 
self-organising teams using their members’ strengths, and the adaptability to change using constant 
iteration [1, 3]. Agile has changed since its inception, it was initially created around ideologies such as 
software before documentation; now taking into account more practical aspects and considering business 
factors, such as governance [4], it has been the base for frameworks such as Scrum, Kanban, and Extreme 
Programming (XP) [1, 5]. Agile projects are ideal when teams are small, self-organising, co-located, and 
where customers are on-site; any issues can be communicated and dealt with almost immediately [5]. In 
2002 the scalability factor within Agile was raised, becoming a focus topic [3]. In a consistently changing, 
technologically driven world with a high demand for software development, the reality is that large globally 
distributed teams working on major projects need Agile methodologies to optimise their project 
management [4]. Some scaled Agile frameworks have been developed, such as Scrum of Scrums (SoS), 
Scaled Agile Framework (SAFe), and Nexus [1, 6, 7].  
 
This study was initiated by its principal researcher, a business analyst working at a highly tech-driven fin-
tech company (referred to as FinTechEnterprise), working on their biggest product development project in 
the last three years. This product, their digital banking platform (DBP), raised the need to evaluate the 
way in which Scrum was implemented and how to scale it, using FinTechEnterprise’s environment and this 
project as a ‘real-world’ case study. This paper focuses on the challenges of adapting Scrum to suit a large 
group involving globally distributed teams; using literature-based scenarios and results, as well as using the 
interview results of experts in the field. The study extracts factors to be considered when selecting a scaling 
Agile framework, indicating their contribution to elevating the issues within the DBP project. 
 
The article is structured as follows. Section 2 presents the research method, which used problem instance 
validation and a systematic literature review (SLR). Section 3 inquires into FinTechEnterprise and issues 
regarding the project, with Section 4 using the SLR results to propose a solution. Section 5 summarises the 
article, looking at a way forward. Section 6 provides the acknowledgements, and Section 7 provides the 
references. 

2 RESEARCH METHOD 

Yin’s [8] guidance on case study research states that using method and data triangulation increases the 
validity of claims — e.g., using both qualitative and quantitative methods, and using multiple data sources. 
This section elaborates on the qualitative and quantitative research methods that were followed in 
gathering data, which were chosen after research and analysis of the various methods that are commonly 
used. The chosen methods were used to analyse the problem instance at FinTechEnterprise, and to perform 
a systematic review of the existing literature, in the search for a solution. 

2.1 Problem instance validation 

Diagnosis techniques are not well-established for Agile frameworks, with no commonly used methods to 
evaluate the chosen method [9]. Therefore, two generic problem diagnosis strategies were used for this 
study: (1) root-cause analysis (RCA), and (2) systems dynamics using a causal-loop-diagram (CLD). An RCA 
identifies, analyses, and assists in understanding the underlying reason for the issues being faced, leading 
to the creation, testing, and monitoring of a solution [10, 11]. There are various RCA methods [10]. The 
five whys was chosen owing to its quick and efficient evaluation of the current enterprise and identification 
of the root causes. A CLD visually demonstrates the effects that certain variables have on each other [12], 
using arrows to show links and direction, with symbols of polarity, for either a positive or a negative 
influence [13]. Several data-gathering strategies were used to triangulate the analysed results, including 
interviewing, participant observation, and a survey.  
 
Observation was used because the primary researcher was working on the DBP (digital banking platform) 
project and was therefore able to benefit, as stated by Kawulich [14] — i.e., to detect nonverbal cues, such 
as emotions, that might not be communicated in a confrontation-avoiding interview. This allowed for a 
deeper understanding from the interviews, relating and critically assessing what was said, as there was a 
better sense of the environment.  
 
Interviews conveyed multiple viewpoints — i.e., both business and development perspectives. Interviewing 
is a qualitative data collection method that follows the general process of a pre-interview contact to ask 
and inform the interviewee about the interview, drafting questions, conducting the interview, and 
transcribing [15]. Interviews assist in understanding personal opinions and experiences within the 
environment [16]. The one-on-one interviews between the researcher and the interviewees were conducted 
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in closed rooms for privacy. Following Guest, MacQueen and Namey’s [17] guidelines on thematic analysis, 
a structural codebook was used to cover themes such as the work environment, pros and cons, concerns, 
and suggested solutions for the DBP project. Several project participants were interviewed, including 
leading employees from both business and development. For a business perspective, the first interviewee 
was the product development lead; the second was the lead technical manager who heads the technical 
side of the project. These individuals were responsible for making key decisions in this project, and so 
understood the project in its entirety. The senior business analyst who was interviewed exercised the role 
of connecting business requirements with development during the system and process design. Two scrum 
masters involved in this project (scrum master 1 and scrum master 2) were interviewed who had 
implemented and championed Scrum in the company, and who would lead the scaling of Agile.  
 
A survey was sent to an external scrum master (scrum master 3) who was not involved in FinTechEnterprise 
and was included purely to provide Agile knowledge. A survey is a fixed list of questions to participants, 
and is a standardised method of collecting data [16]. The e-mailed survey allowed the participant to answer 
the questions honestly, without the added pressure of time or interview prompting. Scrum master 3 has 
experience in DAD and scaled Agile framework implementations, enabling him to provide an expert opinion 
on Agile and scaling. The questions in the survey were based on experiences of Agile in general, and were 
not about FinTechEnterprise. Unlike the information gathered via interviews on the context-specific use of 
Agile, where emotions and nonverbal cues were accessible, the survey was used simply for additional cross-
validation.  

2.2 Systematic enquiry for a solution 

To identify a possible solution from the literature, a systematic literature review (SLR) was used. The 
research protocol for the SLR was the eight-step procedure of Okoli and Schabram [18]: (1) the purpose of 
the SLR, (2) protocol and training, (3) searching the literature, (4) practical screening, (5) quality appraisal, 
(6) data extraction, (7) synthesis of the study, and (8) writing a review. The purpose of this SLR was to 
analyse Agile frameworks, extracting factors that need to be considered when choosing an appropriate 
framework, including lessons learnt from existing implementations.  
 
The research protocol was defined in terms of a key word selection, data sources, criteria for practical 
screening, and criteria for quality appraisal, following Okoli and Schabram [18]. The key words were 
incorporated in a single search string — i.e., Kw:(“Scaling Scrum”OR“Scrum”OR“Scaling Agile”OR“Scaled 
Agile Framework”OR“Disciplined Agile Delivery”OR“Nexus”OR“Large-Scale Scrum”OR“Agile”OR“Large-
Scale Agile”). For the protocol of data sources, we included the University of Pretoria’s online library, and 
books and journals from reliable electronic databases: World Cat, IEEE Xplore, and SpringerLink.  
 
Practical screening included peer-reviewed online articles written in English, and English-language books 
that contained any of the key words in their titles. The peer-review criteria were included only for the 
initial research, and not for data obtained from backward snowballing. Only research from the year 2000 
onwards was considered, as the scalability of Agile emerged as a topic in 2002 [3], thus requiring screening 
a few years prior to it for an understanding of its origins. Any non-English documentation or research with 
no connection to the key words used for this SLR was excluded. Since a high number of free sources were 
available, any sources that needed a payment and any duplicate articles were excluded immediately. For 
the primary sources found, any non-peer-reviewed online articles were also excluded. From the selected 
extracted articles, backwards snowballing was completed. According to titles, keywords, and abstracts, 
including the language and year range from the inclusion and exclusion criteria, articles related to the 
research questions and key words were selected for further consideration. Articles, blogs, and websites 
found as a result of backward snowballing, although not peer-reviewed, were also considered. Non-peer-
reviewed sources were included, as they were used to create content for peer-reviewed articles, and could 
therefore be considered reliable sources. A comprehensive but focused pool of research was thus created.  
 
The quality appraisal process was taken from Kitchenham et al. [19], using the evaluation process from 
York University’s Centre for Reviews and Dissemination (CDR) and the Database of Abstracts of Reviews of 
Effects (DARE) criteria. The quality assessment, based on four questions, was answered by ‘yes’, ‘partially’, 
or ‘no’, giving a score per answer of 1, 0.5, and 0 respectively [19]. Each source, shortlisted via the practical 
screen, was scored, excluding sources with an aggregated score lower than 2. This allowed for the quality 
of the sources to be compared with each other, and ensured that all sources were of the same high calibre. 
The four quality assessment questions were:  
 
1. Is the selected article clearly focused on Agile and its frameworks? 
2. Is the scalability of Agile clearly addressed? 
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3. Is there reference to frameworks/approaches that can be used in order to utilise Agile in a large-scale 
operation (means of scaling Agile up)? 

4. Is there empirical evidence that a suggested framework/approach (as a solution) sufficiently addresses 
some of the problematic factors associated with Agile? 

 
No source scored lower than 2. The four sources that scored 2 were only used for the SLR results, which 
validated a class-of-problems exist, as they scored in the first two questions containing information on 
Agile and touching on the concept of scalability, but not suggesting frameworks/approaches solutions. The 
24 sources that scored above 3 were considered for the SLR results that related to suggested solution areas, 
as they included frameworks/approaches as solutions. 
 
The data extraction process, which began with an initial search method using the University of Pretoria’s 
online library and keywords, is illustrated in Figure 1. The inclusion criteria (from the practical screen 
protocol) were then used to indicate date range and peer-reviewed articles only. Owing to the high number 
of sources and wide range of keywords, as well as researcher capacity constraints, only the first five pages 
of results per keyword search were considered. Since the result set indicated little empirical data on scaled 
Agile and their frameworks (in terms of comparisons of features or evaluation metrics/tools [4, 20, 21, 22, 
23, 24]), lower quality sources (blogs and web pages) were also included to ensure a more comprehensive 
coverage of work from practitioners and theorists.  
 
A data extraction form captured standard article information (author, title, year of publication, and 
publication type), following Kitchenham [25], and the extracted codebook themes related to the extracted 
source were based on Guest, MacQueen and Namey [17]. A second analyst was involved during the coding 
process, thus improving the reliability of the process. The primary researcher adapted the intercoder 
agreement guidelines from Guest et al. [17], created the codebook, and then chose three sources (the first 
three pages) to provide training to the second analyst. The primary researcher created the master set of 
data coding, while the second analyst created a secondary set of data coding, and the two were compared. 
The percentage of agreement for all the codes was 85 per cent. An intercoder agreement of 80 per cent or 
higher is considered acceptable [17], and therefore no adjustments were made to the codebook. The main 
source topics were either non-scaled Agile (NSA) or scaled Agile (SA), with the extracted themes being 
‘AgileOrigin’, ‘OriginFW’, ‘ScaleNeed’, ‘ScaledFW’, ‘ScaledFactors’, ‘ScaledPros&Cons’, and 
‘ScaledExamples’.  
 
The data synthesis was completed in a qualitative and quantitative manner, and represented graphically. 
These representations assisted with comparing the amount and type of data collected regarding the class-
of-problems and its solutions, simplifying the data analysis. The theme frequency in a source was taken as 
‘1’, regardless of how many times it occurred in that source [17]. The quantitative data was investigated 
by mapping the year of publication against the extracted themes, revealing that, even though scaling Agile 
was recognised as early as 2003, it began to be acknowledged from 2010, which correlates with scaling 
Agile being raised as a top research topic at the 2010 XP conference [22]. The total number of sources per 
theme were 13, 18, 18, 23, 18, 20, and 14 for ‘AgileOrigin’, ‘OriginFW’, ‘ScaleNeed’, ‘ScaledFW’, 
‘ScaledFactors’, ‘ScaledPros&Cons’, and ‘ScaledExamples’ respectively. Figure 2 shows that 39 per cent of 
the data fell under the non-scaled Agile topic and 61 per cent under scaled Agile; the largest percentage 
related to the general mentioning of various scaled frameworks. 
 



 

200 

 

Figure 1: Search method of number of sources found 
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Figure 2: Percentage of sources, based on extracted themes 

Figure 3 graphically represents the data synthesis in a qualitative manner, showing the number and type of 
sources per extracted theme. The quality of the sources, grouped into ‘high’, ‘medium’, and ‘low’, is based 
on the type of publication used.  
 

 

Figure 3: Quality of data sources per extracted theme 

High-quality publications were regarded as peer-reviewed articles/documents, books, or Master’s theses, 
because they were academically reviewed. Medium-quality sources were non-peer-reviewed conference 
papers, guides, reports, case studies, and white papers, because these might not have been reviewed, but 
might have evidence to support their claims, or were used as the standard for implementation/use (in the 
case of guidelines). The low-quality sources were from blogs or web pages, with no validation or review by 
anyone, and with no academically supported evidence. 
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3 PROBLEM INQUIRY RESULTS 

FinTechEnterprise was already using Scrum, and the evident benefits included the following: team members 
were working well together achieving regular incremental releases; and there was a noticeably positive 
change from the initial waterfall system development approach. However, with a Scrum implementation 
that was focused heavily on the teams, factors outside those teams were not considered. Bottlenecks were 
not dealt with — an issue, according to scrum master 1, that was resolved by the creation of a leadership 
board that stated:  
 
“The leadership board was an overarching board that was placed just before the product backlog where all 
our initiatives for the next couple of years would be listed and recorded. This gave us an additional 
redundant step because we were just creating silos again.” 
 
Using the interview transcripts, the ‘five whys’ method was performed in order to identify the root cause 
(Figure 4).  
 

 

Figure 4: Five whys results represented visually 

The ‘five whys’ originated in the main concern that inter-team dependencies were a weakness in this build, 
as mentioned by the lead technical manager. This led to the first ‘why’ addressing the lack of 
communication between the teams, as stated by the product development lead:  
 
“…the inter-team dependency though was where things started to break down a little bit.” 
“We had many teams, all working in isolation, there were dependencies that they had amongst each other; 
but those dependencies weren’t clearly communicated and understood, as a result impacted their own 
deliverables.” 
 
Teams were not communicating, and so inter-team dependencies were not known; this led to the second 
‘why’, the lack of collaboration — also raised in the quote from the product development lead. With teams 
working in isolation, there would be very little or no collaboration, resulting in the teams working in silos, 
as noted earlier by scrum master 1, resulting in the third ‘why’. The fourth ‘why’ brought clarity and 
reasoning to the isolation and lack of collaboration, as Scrum  was executed in the company at an individual 
team level, as stated earlier by scrum master 1 and pointed out by a senior business analyst:  
 
“We had Scrum within our small groups, that’s about it.”  
 
The final ‘why’, identifying the root cause, was that the Scrum implementation was not system-based, but 
rather had a team-based foundation. This was validated by scrum master 1 and confirmed by scrum master 
3: 
 
“What didn’t work was that we realised that Scrum, although many people think it’s a team-based thing, 
it’s actually a systems-based thing. If you fixed the team, or you improve them with Scrum, you’re going 
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to hit a glass ceiling at some point because you can only optimise them so much before the organisational 
gravity pulls them back into bad habits or impacts their productivity. So, we optimised the team and once 
the team reached a certain level of productivity, we realised that factors outside of the team started 
impacting the team so that they couldn’t grow more. They reached an optimum productivity level and then 
it kind of dipped because there wasn’t any motivation. That was one of the big things we had to fix. Scrum 
wasn’t only a localised team thing; it was a much bigger problem. If you wanted to fully tap into the power 
and benefits of Scrum, you needed to look at the system as well, to look at bottlenecks before and after 
your function.”  
 
“If teams adopt Agile as a framework without the understanding and support of the organization, the 
structures and processes within the organization will not change to support the implementation, and the 
initiative will struggle to survive — teams cannot work in isolation, it must be a system wide adoption.” 
Using the CLD (Figure 5), the variables of knowledge of the inter-team dependencies, collaboration, and 
communication among the teams are linked. They all impact each other positively in a reinforcing loop. 
Increasing communication and collaboration would therefore increase knowledge of the inter-team 
dependencies. 
 

 

Figure 5: Causal loop diagram 

Teams worked in silos because the Scrum implementation was team-focused, resulting in good team work 
but a lack of knowledge outside their own projects, and a lack of transparency between teams. As scrum 
master 2  explained:  
 
“Also, it was nice because teams were going along nicely but we had no visibility of what everyone was 
doing, so this team would deliver something, but other teams didn’t know what they were delivering.” 
 
The banking build exposed the lack of clarity in the environment, and showed that inter-team dependencies 
were not catered for, as raised by the product development lead and the lead technical manager: 
 
“We had many teams, all working in isolation, there were dependencies that they had amongst each other; 
but those dependencies weren’t clearly communicated and understood, as a result impacted their own 
deliverables.”  
 
“… the inter-team dependency though was where things started to break down a little bit. It was hard to 
coordinate between teams, especially when deliverables were due, and a team was dependent on two or 
three other teams. They might be able to work directly with one team, because we have two teams in India 
and then a couple teams in South Africa; if you were here and you were dependent on everyone here it was 
relatively easy to get things going. If you were dependent on teams in India, then you were locked to their 
dev cycle; they had already decided what they were going to do in their sprint before, they had no idea 
that you were looking for anything from them.”  
 
Teams were also globally distributed between India, South Africa, and Mauritius, increasing the project’s 
complexity. Having many teams working together, building one product, was something that needed to be 
addressed, but was not considered in the current system. When asked what caused the company to consider 
a scaled solution, the product development lead stated:  
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“The size of the project, and the many teams involved, there were 6 systems we needed to build …  It 
[Scrum] made sense for what they were doing at that point in time. Small, minor, changes on systems, 
focused on them and executed them, not a lot of involvement with other people; versus what we do now, 
where it’s massive systems big overall, and complete redesign…” 
 
Transparency among teams and clear communication are vital in addressing inter-team dependency issues, 
identifying the need for a solution in this project. 

4 SOLUTION SELECTION 

Agile, originally created for small groups of co-located developers working on a project [20, 23, 26, 27, 28, 
29] with the benefits of improved efficiency, was required by larger enterprises [23]. The reality of software 
development in large organisations is that teams are larger than the Agile design originally intended, with 
numerous globally distributed teams working on one project [4, 6, 21, 29, 30, 31]; hence the need for 
scaled Agile. A larger group creates a greater risk of management becoming overwhelmed trying to keep 
track of the amount of work, losing visibility and control of the project, and a paucity of requirements 
analysis and architectural planning [22, 23, 26, 32, 33, 34]. Other challenges include: coordination among 
teams, comprehension of the bigger picture, increased resistance towards change, consistency of coding 
standards, and requiring documentation — which goes against Agile principles, but is needed with the 
number of people involved, including external parties [22, 23, 26, 27, 30, 32, 34, 35]. 
 
Various frameworks are aimed at scaling Agile. The main ones discussed in the literature are Scrum of 
Scrums (SoS), Scaled Agile Framework (SAFe), Disciplines Agile Delivery (DAD), Large Scale Scrum (LeSS), 
and Nexus [4, 6, 20, 21, 22, 24, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. According 
to the 2018 Agile Report on scaled Agile approaches, 29 per cent of organisations use SAFe, 19 per cent use 
SoS, 10 percent use internally created methods, five percent use DAD, and five percent use LeSS. Enterprise 
Scrum, Lean Management, and Agile Portfolio Management are at three percent each, Nexus at one percent, 
and none use Recipes for Agile Governance in the Enterprise [34]. Frameworks have their strengths and 
weaknesses; and even though SoS is the most widely used scaled Agile solution, there seems to be a key 
issue with it. With the large number of people attending the Scrum-of-Scrum meetings from the various 
teams, the meetings became too long, and too few tasks overlapped in each individual group’s set of work 
to be considered useful [22, 26, 27]. Therefore, as a part of the main framework discussion and comparison, 
SoS was excluded. With SoS excluded, SAFe, DAD, and LeSS are the most used scaled Agile approaches [28, 
34], and so they were included in the framework evaluation and analysis exercise. Looking at LeSS and 
Nexus, Coleman [36] stated that “both options provide a much better alternative to Scrum of Scrums”.  
 
As FinTechEnterprise was using Scrum, Nexus was included in the framework evaluation. Even though it is 
not a widely used scaled Agile approach, the reasoning was that it is specifically a scaled Scrum approach. 
With Scrum already a popular framework in FinTechEnterprise, and a main issue with scaling Agile being 
resistance to change, investigating a framework that uses what the environment already knows and uses 
implies less change, and therefore less resistance to change, increasing the probability of success. There is 
a lack of assessment criteria when trying to choose which scaled Agile framework is best for an enterprise 
environment [24], as stated below.  
 
“Many noted the lack of any assessment model for conducting such a comparison to guide critical decisions 
on adopting specific large-scale agile frameworks.”  
 
Each framework’s background is given for evaluation. Table 1 provides summarised information extracted 
from the literature on the pros, cons, complexity, and level of inter-team communication for each 
framework. Success factors and challenges are also considered, providing for a better assessment.  
 
SAFe, a scaled Agile framework, combines Scrum, Lean, Kanban, and a mix of Agile methodologies [4, 40]. 
SAFe has various levels that cater for different enterprise needs and complexity levels, specifying levels 
with clearly defined roles, processes, and organisational structures [20, 40, 45]. LeSS is a scaled Scrum 
framework with two variations catering for different numbers of Agile teams involved on one project — one 
for two to eight teams, and the other for more than eight teams [29, 45]. DAD, a mixture of Scrum and 
Lean methodologies, focuses more on the delivery of IT solutions, taking into account the technical aspects, 
and with a larger scope and more roles than Scrum [42]. Nexus, similar to Scrum-at-scale, using elements 
and fundamentals, can be used with three to nine teams and one product backlog [6, 31, 36, 44]. Nexus 
looks at collaboration and dependencies between teams, and aims to deliver an integrated increment every 
cycle, focusing on quality and speed of deliverables [31, 36, 38]. 
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Table 1: Scaled agile framework evaluation and analysis 

 SAFe LeSS DAD Nexus 
P
ro

s 

 More defined roles 
(ideal management) 
[46]. 

 Quicker time-to-
market, shorter lead 
times [17, 40]. 

 If scaled Agile is 
needed and the 
enterprise still uses 
traditional methods, 
it provides an easier 
transition into Agile 
because of its 
structure [43]. 

 Flexible in order to 
support small to 
extremely large 
enterprises [39, 45]. 

 Keeps business goals 
in focus[39]. 

 Lightweight, flexible, 
and easy to adapt to 
enterprise environment 
[4, 45]. 

 Extends Scrum to scale 
level, but not overly 
complicated [45]. 

 Customer-centric, 
which leads to happier 
customers and thus 
better business [29].  
 

 Flexible and 
adaptable [42]. 

 Shorter delivery 
times [42]. 

 Optimisation for 
the entire 
organisation and 
not just a certain 
team/group [42]. 

 Gives good 
guidance for which 
processes would 
suit a project best, 
architecture, and 
development 
operations [41, 43].  

 Increased visibility 
and decreased 
inter-team 
dependencies [38].  

 Decreased lead 
time [33, 37, 38]. 

 Lightweight and 
easy to set up [33, 
36]. 

  

C
o
n
s 

 It is one of the most 
complex of the scaled 
Agile frameworks. [4] 

 It is very structured, 
which leads to an 
increase in hierarchy 
and a decrease in 
flexibility and agility, 
making it less 
adaptable. Some have 
referred to it as the 
‘new waterfall’ [1, 4, 
39, 41, 43]. 

 It is very high level as 
it keeps the 
enterprise-vision in 
mind; but this can 
cause longer planning 
and therefore cycles 
[39]. 

 There is a lot of 
guidance as to how to 
implement and start 
SAFe, but very little 
guidance once it is 
implemented [24, 
41].  

 Owing to the 
minimalistic approach, 
there is less structure 
within the organisation 
and more reliance on 
the mindset and 
communication between 
people [29]. This can be 
seen as a high-risk and 
negative factor. 

 It is aimed at more 
advanced practitioners 
[36]. 

 Not very 
descriptive about 
how to do certain 
elements; this can 
lead to 
disorganisation 
[41]. 

 It is still new, so it 
is still adapting 
and changing; this 
can be seen as a 
negative because 
issues have not 
been picked up yet 
[41]. 

  

C
o
m

p
le

x
it

y
 

 High [4]  Medium [4]  Medium [4] 
 No analysis results 

available. 

In
te

r-
te

a
m

 

c
o
m

m
u
n
ic

a
ti

o
n
 

 High [41]  High [41]  High [41]  Medium [41] 

 
The SRL shows that there is a class of problems — i.e., a need for scaled Agile solutions in enterprises 
working on big projects, as well as the issues that surround scaling Agile. Key issues include managing more 
people, lack of visibility and control for management, the absence of analysis and architectural planning 
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requirements, coordination between teams, consistent coding standards among teams, documentation 
needs, resistance to change, and each independent team’s understanding of the ‘bigger picture’. Similar 
findings are evident in earlier research [32]. FinTechEnterprise raised some of these issues about the 
project, especially regarding the coordination between teams, which is the major problem instance. The 
class of problems is well-summarised [38]:  
 
“While the teams were working on one product and had one product owner, they suffered from being 
organised as component teams and dealing with cross-team dependencies.”  
 
The suggested solution areas included four scaled Agile frameworks (SAFe, LeSS, DAD, and Nexus), which 
were evaluated for their pros, cons, complexity, and level of inter-team communication (summarised in 
Table 1), and paired with the challenges and success factors of scaling Agile in order to make an informed 
framework selection. The challenges and success factors were taken from industry implementation and 
learnings.  
 
SAFe, the most popular scaled Agile framework, has various levels and caters for numerous needs; but 
because of its comprehensive nature it has been labelled as complex and as resembling the waterfall 
approach. LeSS, a lighter Scrum-based framework, is more flexible owing to its minimal approach; however, 
with very little structure, it relies on abstract concepts such as mindset and communication (a known weak 
factor in FinTechEnterprise). DAD combines methodologies into a flexible framework that goes beyond the 
Scrum scope to include delivery, ensuring a full-cycle framework. It lacks information about a few of its 
features, which could cause confusion. Nexus, an extension of Scrum, is a lightweight framework that is 
easy to set up, and assists with inter-team dependencies. However, it is still new and still changing, making 
it slightly risky to use, as not all of its potential issues have been realised and addressed. 
 
Referring to Table 1, SAFe is rated as high complexity, with LeSS and DAD rating as medium. Nexus cannot 
be accounted for, as there was no information. Inter-team communication is a major aspect to consider; 
all the frameworks score this as high, except for Nexus, which is rated medium. However, with a major 
issue in scaled-Scrum solutions being resistance to change, and with FinTechEnterprise already running 
Scrum in its environment, the choices were narrowed to LeSS and Nexus — scaled-Scrum solutions, not 
combining additional methodologies. This would result in less change and therefore less resistance, leading 
to a better success rate.  
 
Considering the objective of the study, LeSS and Nexus are lightweight and flexible, are both an extension 
of Scrum, and can both be used by the same number of teams. LeSS’s advantage is that it has a high level 
of inter-team communication, whereas Nexus is medium level; and LeSS is more customer-centric, whereas 
Nexus is more orientated to inter-team collaboration. Comparing their cons, LeSS’s major disadvantage is 
its minimalist approach, placing responsibility on the team members to talk; but communication and 
collaboration is the issue in question at FinTechEnterprise. Nexus is new, and may not have had all its flaws 
exposed; but it promises improved visibility within a project and decreases inter-team dependencies — 
which aligns with the main criterion for selecting a scaled Agile approach for FinTechEnterprise.  

5 CONCLUSION AND FUTURE RESEARCH 

This study identified a problem instance that featured at FinTechEnterprise, which was also evident as a 
class of problems in the literature. Our analysed problem instance results indicated that a solution was 
needed to increase communication and collaboration between teams. Using an SLR and extracting 
knowledge about Agile-at-scale frameworks from the literature, we short-listed four existing frameworks 
(SAFe, LeSS, DAD, and Nexus) as possible solutions for the enterprise. We evaluated the solutions, 
comparing their pros, cons, complexity, and inter-team communication. A factor that contributed 
significantly to the decision was that of trying to mitigate resistance to change, especially with the size of 
the build and the number of people involved. Because the enterprise was already running Scrum as their 
Agile framework, and had good results, our data analysis indicated that Nexus, a scaled version of Scrum, 
would be the best-fit framework for this fin-tech company.  
 
Future research could include a Nexus implementation in FinTechEnterprise, monitoring and documenting 
the practical implementation. Taking these learnings and comparing them with their theoretical version, 
the case study should provide insight into and knowledge about what was changed to suit a practical 
environment. These insights would be helpful to others with a similar business environment who need to 
scale-up Agile.  
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