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ABSTRACT 

The activities of the building and construction industry have made it one 
of the highest energy consumers and thus one of the highest emitters of 
greenhouse gases. The main objective of this study was to develop a system 
to determine energy saving in the industry. This was achieved through an 
integrated model of index decomposition analysis, an artificial neural 
network, and data envelopment analysis. Index decomposition analysis is 
used to understand the contribution of the factors responsible for energy 
consumption. These factors are inputs to the artificial neural network to 
predict the baseline energy consumption. The energy saving is finally 
determined through data envelopment analysis. The results showed that 
the integrated model presents a reasonable amount of energy saving in the 
building and construction industry. 

OPSOMMING 

Die konstruksiebedryf is een van die grootste verbruikers van energie en 
dra dus noemenswaardig by tot die vrystel van kweekhuisgasse. Die 
hoofdoel van hierdie studie is die ontwikkeling van ŉ stelsel om 
energiebesparing in die bedryf te bepaal. Dit is bereik deur ŉ geïntegreerde 
model van indeks ontledingsanalise, ŉ kunsmatige neurale netwerk en data 
omvattingsanalise. Indeks ontledingsanalise word gebruik om die bydrae 
van verskillende faktore tot energieverbruik te verstaan. Hierdie faktore is 
insette tot die kunsmatige neurale netwerk om die basislyn energieverbruik 
te voorspel. Die energiebesparing word dan deur data ontledingsanalise 
bepaal. Die geïntegreerde model dui op ŉ redelike hoeveelheid 
energiebesparing in die konstruksiebedryf. 

 

1 INTRODUCTION 

The total amount of energy used globally in the construction industry is 204.67Mtoe, whereas the total 
direct consumption equals 24.57Mtoe, indicating huge amounts of energy being used indirectly [1]. The 
construction industry and the building sector require techniques that assist in quantifying and reducing the 
consumption of resources and their environmental impact, and that support decision-making [2]. One of 
those resources is cement, the production of which involves an energy-intensive process, with an estimated 
total consumption of energy of two per cent of the world’s primary energy consumption [3]. Energy is one 
of the key resources in constructing buildings, which leads to emission [4]. The energy cost indeed plays a 
major role in the process of producing cement [5], to say nothing of the amount of energy required for such 
production and the emission consequences. 
 
Buildings and similar indicators use a lot of energy in the material production, construction, and operation 
phases [6]. Numerous efforts globally to make buildings more energy-efficient and to reduce energy 
consumption through energy-saving policies have been looked on from the viewpoint of the consumption of 
energy [7]. The application of new strategies in the form of green buildings, sustainable material use, and 
integrated renewable energy systems is important in managing the reduction of energy consumption and 
enhancing energy efficiency to produce more energy-efficient buildings and infrastructure [8]. It is reported 
that 30 to 40 per cent of the primary energy is used in building-connected projects [6]. Energy policies’ 
target for buildings is to cut the consumption of energy leading and so reduced their carbon footprint [9].  
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Considering all emission sources, the contribution of the building and construction industry is huge as a 
result of massive material and equipment usage [10]. With various environmental issues emerging, the 
design of buildings is becoming more energy-efficient through the development of new building materials 
and improved building structures [4]. Various models, however, have made an impact on analysing energy 
use and emissions for the purposes of energy conservation and emission mitigation. Energy models, 
particularly those that are integrated to create integrated assessment models (IAMs), are developed to 
project energy use and the emission of greenhouse gases (GHGs) and to assess their potential [11]. To be 
able to reduce the amount of energy consumed and the emissions, integrated approaches could be applied 
[12] . This study approached the literature on various energy models to understand their impact before 
considering a theoretical background that could lead to two or more of those models being integrated for 
the purpose of better analysis. Best-known among the energy models reviewed for this study are index 
decomposition analysis (IDA), artificial neural network (ANN), and data envelopment analysis (DEA). 
 
Decomposition analysis is extensively used in both energy and environmental studies [4]. Of the various IDA 
methods, the logarithmic mean Divisia index (LMDI) has received the most attention from researchers. 
Other authors’ arguments in choosing the LMDI as the preferred technique note its perfect decomposition 
with no residues, independent path, unified mathematical form, consistent aggregation, and ability to 
handle zero values in any dataset [13,14,15,16]. Index decomposition analysis attributes changes in energy 
consumption between period 0 and period T to a product of various significant factors. Index decomposition 
analysis also quantifies the relative significance of each of the factors [4]. It could be in forms that are 
either multiplicative or additive. Although the forms are inconsequential, the representation and the 
interpretation of results are most important; this study chose the multiplicative form because of its non-
negativity, which can only permit its integration with the other models. An artificial neural network is 
similar to decomposition analysis when it comes to the different types of neural network used in the 
literature. The preferred type for this study was the multilayer perceptron (MLP) trained by the 
backpropagation algorithm. ANN captures non-linear relationships to achieve accurate forecasting [17]. It 
has a structure of three layers: the input, hidden, and output layers. These layers have one or more neurons, 
and bias neurons are linked to the hidden and output layers. DEA is based on linear programming that 
produces a single measure of efficiency [18], and is a powerful data analytic tool that is widely used by 
researchers and practitioners alike to assess the relative performance of decision-making units (DMUs). It 
comprises input-oriented and output-oriented models operating under constant returns to scale or variable 
returns to scale. The input-oriented model operating under the variable returns to scale was adopted for 
this study. The next section elaborates on the literature review, followed by the data and methodology 
(section 3), the results and discussion (section 4), and the conclusions (section 5). 

2 LITERATURE REVIEW 

The search of the literature used the search phrases “LMDI application on energy consumption”, “ANN 
application on energy consumption”, “DEA application on energy consumption”, and “integrated energy 
models’ applications on energy consumption”. In the decomposition literature, few of the existing studies 
have been reviewed for the purpose of understanding the role of decomposition techniques in the energy 
field. In the Italian tourism sector, to understand the contributions of energy intensity, economic structure, 
and industrial structure to the sector’s electricity consumption between 1995 and 2017, Bianco [19] applied 
IDA. The 5.58GWh increase in electricity use was the result of both the industry’s energy intensity and its 
structural changes, while the decrease of 1.337GWh was the result of economic structure. With the interest 
in reasons why the Korean manufacturing sector had increased its energy consumption over two recent 
decades, Kim [20] used LMDI in a study focused on the period 1991 to 2011. Activity was the factor most 
responsible for the energy increase, while structure and intensity had the opposite effect. The study 
proposed industrial restructuring as well as the introduction of industry-specific energy-saving policies. 
Achour and Belloumi [21] assessed the energy consumed in Tunisia’s transport sector from 1985 to 2014 
using LMDI. The factors they considered were energy intensity, transportation structure effects, 
transportation intensity effects, economic output, and population scale effects. The overall energy 
intensity proved to be the only factor playing a key role in reducing the amount of energy consumed during 
the period studied. 
 
Dai and Gao [22] analysed the factors responsible for the changes in the energy consumed in China’s logistics 
industry between 1980 and 2010 using the LMDI. Responsible for those changes were logistics activity, a 
modal shift in freight transportation, increased transport intensity, and overall improvements in energy 
consumption, while an improvement in energy intensity controlled the increase. Similar to the studies of 
[21] and [22], Wu and Xu [23] analysed the energy consumption factors in the Chinese cargo transportation 
sector between 2000 and 2012 using the LMDI approach. To reduce the country’s energy consumption for 
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goods, it was proposed that an optimisation of the transport structure, industrial layout, and promotion of 
technological progress would be required. Between 1990 and 2009, Xu et al. [24] analysed the energy 
consumption change in China’s cement industry using the LMDI technique. The analysis was focused on the 
clinker manufacturing process in which the following factors were analysed: cement output, clinker share, 
process structure, and specific energy consumption per kiln type. The results pointed to the growth of 
cement output as the dominant factor that led to increased energy consumption, while the clinker share 
declined and the structural shift decreased the energy consumtion. 
 
Similar to the decomposition literature, studies that used neural network techniques were also reviewed 
to understand their role in the energy field. To forecast the energy consumed over 24 hours in the building 
of the Regulation Authority of Energy (RAE) in Athens, Greece, Katsatos et al. [25] developed a forecasting 
model using ANN. Among the inputs was meteorological data (air temperature, relative humidity, wind 
speed, and barometric pressure), and ANN gave a remarkable prediction result. In an Italian case study in 
which energy and environmental performance of a building was to be assessed, Amico et al. [7] proposed 
the application of ANN. The study was simulated in various weather conditions, with 13 inputs for the 
energy analysis. ANN was applied successfully. In an attempt to forecast the electricity consumed in 
different areas (science and technology, a humanities college, and old liberal arts) on a university campus 
in Japan, Yuan et al. [26] proposed and applied ANN. Among the inputs that were combined were 
meteorological data and previously consumed electricity. The old liberal arts area had the least root mean 
square error, followed by the humanities college and science and technology.  
 
For the purpose of developing a model to predict the HVAC-related energy saving in 56 office buildings in 
Singapore, Deb, Lee and Santamouris [27] used ANN and compared it with a multiple linear regression 
application. ANN produced a more accurate result, as evidenced by the 14.5 per cent mean absolute 
percentage error. To model the energy consumed in a residential building, Rafe Biswas, Robinson and Fumo 
[28] addressed the nonlinearity in the energy situations of residential buildings by applying ANN to one of 
the houses in the study. The results were impressive, as indicated by the outcomes of the coefficients of 
determination, which were within the range of 0.87 and 0.91. The electricity consumed in a suburban area 
in Palermo was assessed to see whether it correlated with demand, using ANN for short-term forecasting. 
The study was done over a period of 79 weeks, using both climatic conditions and electricity intensity as 
inputs. The result showed 1.5 per cent for the mean error and 4.6 per cent for the maximum error [29]. To 
address Greece’s long-term energy consumption, a prediction was carried out using ANN, and the results 
were compared with the resulting outputs of a linear regression and a support vector machine, as well as 
the actual energy consumption [30]. ANN gave accurate results. 
 
Concerning DEA energy-related studies, some reviews were analysed. With environmental problems caused 
by industrial activity, Wu et al. [31] applied DEA to handle 38 sectors in China, with non-homogeneous 
inputs and outputs being considered in the study. Among the sectors, the recycling and disposal of waste 
department achieved the best energy-saving and emission-reduction efficiency. Another application of DEA 
to Chinese industry was the study of Zhou et al. [32], which examined the energy performance of Chinese 
industrial sectors from 2010 to 2014. The majority of the industries were revealed not to have performed 
well — most of them in the energy extraction sectors. To understand the roles played by efficiency, 
technology use, and factor substitution in energy productivity improvements, DEA was applied to 35 
industries in China from 1998 to 2011 [33]. The study revealed gthat technical efficiency made a major 
contribution, whereas factor substitution played the smallest role. Efficiency’s contribution, on the other 
hand, was obvious. The efficient industries in the study were telecommunications equipment and computer 
and other electronic equipment. 
 
Because of energy scarcity in China, Tian and Lin [34] investigated the technology gap in energy use in 30 
provinces from 2005 to 2014, using DEA. The study concluded that the eastern region of China had the most 
advanced technology. Energy-conservation technology was being threatened in the western and central 
regions by low labour costs, contributing to a huge growth in the number of SMEs. The SMEs’ lack of finance 
made the situation worse. Pérez, González-Araya and Iriarte [35], using DEA, analysed Chilean 
manufacturing industries for both energy efficiency and greenhouse gas emissions by considering the region 
and sector. The regions of Coquimbo, La Araucania, and Aysen were found to be the most efficient, while 
thed regions of Tarapaca, Antofagasta, and Bobio had industries with less efficiency. The efficient sectors 
included communications equipment, base metals, and clothing, while the least efficient were food and 
beverages, textiles, and non-metallic minerals. Mediterranean countries were examined to see how energy-
efficient they were from 2009 to 2012, using DEA [36]. The results indicated a high energy efficiency in the 
Mediterranean, with a decline over time. The factors impacting energy efficiency were the gross national 
income per capita, population density, and renewable energy use.  
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Integrated models have proved helpful in upgrading the performance of single models. In the area of energy 
studies, few of these hybrid models have been cited in thed literature. In the study of Lin and Xu [37] to 
assess qualitatively the factors affecting China’s metallurgical industry from 2000 to 2016, a comprehensive 
framework combining LMDI and productive decomposition analysis (PDA) was conducted. The study 
concluded that energy intensity declined rapidly during the period of study, with technological progress 
contributing the most to that decrease. On the other hand, the contributions of both the energy-structure 
effect and capital-energy substitution were very minimal. The labour-energy effect was the major factor 
hindering the reduction of the industry’s energy intensity. To predict accurately the energy consumed in a 
residential setting for the purpose of ensuring a stable supply of power, Kim and Cho [38] employed a 
convolutional neural network (CNN) combined with long short-term memory (LSTM) to achieve the 
objective. The CNN-LSTM achieved an almost perfect prediction of the electricity use that had initially 
proved difficult to predict.  
 
Using the LMDI method-based long-term energy alternatives planning (LEAP) model, Wang et al. [39] were 
able to analyse the energy consumed in the Hunan Province of China. The study was able to divide the 
energy consumed by three industries between 2006 and 2015 according to scale, structure, and efficiency 
effect through LMDI, and later predict energy use for the period from 2016 to 2040 using LEAP. The energy 
saving and management of complex chemical processes was successfully modelled using index 
decomposition analysis integrated with the energy-saving potential method [40]. The study showed the 
influence of activity on energy consumed, energy hierarchy and intensity, and energy hierarchy on energy-
saving technology. An improved artificial neural network approach, integrated with DEA, was applied to 
petrochemical industries for energy optimisation and prediction [41]. The results led to a reduction in the 
energy consumption of an ethylene production system. 
 
Similar to the technique proposed for this study, IDA-ANN-DEA has been applied in various studies. IDA-
ANN-DEA was applied to South African industry to assess its energy potential [42]. The study concentrated 
on 11 energy-intensive industrial sectors from 1971 to 2008, and concluded that 49.9 per cent of energy 
could be saved when compared with the practice in 1975-1976. In a Canadian application, 15 industries 
were tested from 1990 to 2000 using the IDA-ANN-DEA approach, and it was observed that 0.47 per cent of 
energy could be saved if the practice in 1993 and 1994 were observed [43]. The dynamic relationship 
between Chinese energy consumption and economic growth was successfully analysed empirically, using 
cointegration analysis and a state-space model [44].  
 
Sustainable buildings provide ways of significantly mitigating the impact on the environment [45]. Thus the 
rate at which energy increases in the construction of buildings and infrastructure necessitates an 
improvement in the building and construction industry’s energy efficiency [4]. The aim of the current study 
was to assess the energy efficiency potential of this industry. The integrated approach was based on a top-
down approach that identified the factors responsible for energy consumption, predicted the energy 
consumption, and later estimated the potential that could be obtained in a particular period. The proposed 
methodology was designed to assess the energy potential of the industry, and to develop an integrated 
system that could successfully determine its energy saving.  

3 DATA AND METHODOLOGY 

3.1 Data 

For the purpose of this study, data for the building and construction industry and for the civil engineering 
and other construction industry in South Africa from 1994 to 2016 was collected. The data used (Figure 1 
and Figure 2) was from Quantec, a private company in South Africa. The production values were all given 
by the gross domestic product (GDP) output, expressed in millions of Rands at current prices. 
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Figure 1: Energy consumption data for the building and construction and civil engineering and other 
construction industries 

 

Figure 2: GDP data for the building and construction and civil engineering and other construction 
industries 

3.2 Methodology 

3.2.1 Index decomposition analysis-LMDI 

The consumption of energy in any period is best explained by the changes in activity, structural impact, 
and energy intensity. These changes in energy consumption from the starting period (0) to the end period 
(T) are decomposed to activity (the Q-term, which captures the contribution of the various productions to 
the overall GDP), energy intensity (the I-term, which refers to changes in energy efficiency), and the 
structural impact (the S-term, which describes the shifts in the mix of products or activities). 
 
All of the corresponding terms capture the change in energy consumed in the periods that were analysed. 
The variables used for the decomposition analysis are: 
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𝐸𝑖 – Total energy consumed in sector 𝑖 
𝐸 — Total energy consumed (𝐸 = ∑ 𝐸𝑖𝑖 ) 
𝑄𝑖 — Production values in sector 𝑖 
𝑄 — Total production value (𝑄 = ∑ 𝑄𝑖𝑖 ) 

𝑆𝑖 – Sector’s production share 𝑖 (𝑆𝑖 =
𝑄𝑖

𝑄
)  

𝐼𝑖 – Energy intensity in sector (𝐼𝑖 =
𝐸𝑖

𝑄𝑖
) 

 
Total energy use is addressed in the equation below — the sum of the product of total production value, 
sector’s production share, and energy intensity. 
 

 𝐸 = ∑ 𝐸𝑖𝑖 = ∑ 𝑄𝑖
𝑄𝑖

𝑄

𝐸𝑖

𝑄𝑖
= ∑ 𝑄𝑖 𝑆𝑖𝐼𝑖 (1) 

 

An assumption of aggregate 𝐶 is composed of 𝑛 factors (𝑥1, … , 𝑥𝑛), i.e. 𝐶 = ∑ 𝐶𝑖𝑖  and 𝐶𝑖 = 𝑥1,𝑖  𝑥2,𝑖 … 𝑥𝑛,𝑖, with 

the additional assumption that from period 0 to T the aggregate changes from 𝐶0 to 𝐶𝑇. The IDA’s objective 
is to understand the contributions of the 𝑛 factors that led to the change in the aggregated energy 
consumption with the multiplicative and general LMDI expressions below. For further guidance on the 
mathematical expressions, refer to [15,46]. 
 
Multiplicative form 

 𝐶𝑡𝑜𝑡 =
𝐶𝑇

𝐶0
= 𝐶𝑥1𝐶𝑥2 … 𝐶𝑥𝑛 (2) 

 
Similar to equations 1 and 2, the ratio change in energy consumption from period 0 to period T is equivalent 
to the product of activity, structure and intensity in equation 3 below 
 

 
𝐸𝑇

𝐸0 = 𝐷𝑡𝑜𝑡 = 𝐷𝑎𝑐𝑡𝐷𝑠𝑡𝑟𝐷𝑖𝑛𝑡 (3) 

 
Where 𝑎𝑐𝑡  represents activity, 𝑠𝑡𝑟 refers to structure, and 𝑖𝑛𝑡 implies intensity.  
  
General formulae of LMDI 
In the logarithmic mean Divisia index approach, the general formulae for the effect of the kth factor on 
the right-hand side of equations 2 and 3 are given in equations 4 and 5 
 

 ∆𝐶𝑥𝑘 = ∑ 𝐿𝑖 (𝐶𝑖
𝑇 , 𝐶𝑖

0)ln [
𝑥𝑘,𝑖

𝑇

𝑥𝑘,𝑖
0 ] (4) 

 𝐷𝑥𝑘 = exp [∑
𝐿(𝐶𝑖

𝑇,𝐶𝑖
0)

𝐿(𝐶𝑇,𝐶0)𝑖 ln [
𝑥𝑘,𝑖

𝑇

𝑥𝑘,𝑖
0 ]] (5) 

where (𝑎, 𝑏) =
𝑎−𝑏

𝑙𝑛𝑎−𝑙𝑛𝑏
 ; L(a, a) = a 

 
LMDI (Multiplicative) 
For simplicity, for each of the factors in activity, structural impact and energy intensity, the equations are 
given below: 
 

 𝐷𝑎𝑐𝑡 = exp [∑ 𝑤𝑖𝑖 ln [
𝑄𝑇

𝑄0]] (6) 

 𝐷𝑠𝑡𝑟 = exp [∑ 𝑤𝑖𝑖 ln [
𝑆𝑖

𝑇

𝑆𝑖
𝑜]] (7) 

 𝐷𝑖𝑛𝑡 = exp [∑ 𝑤𝑖𝑖 ln [
𝐼𝑖

𝑇

𝐼𝑖
0]] ; (8) 

where 𝑤𝑖 =
(𝐸𝑖

𝑇−𝐸𝑖
0)/(𝑙𝑛𝐸𝑖

𝑇−𝑙𝑛𝐸𝑖
𝑜)

(𝐸𝑇−𝐸0)/(𝑙𝑛𝐸𝑇−𝑙𝑛𝐸0)
 

 
Artificial neural network 
The neural network’s objective function is the mean square error (MSE) between the neural network’s 
output (energy consumption from IDA) and the predicted energy consumption values. As the decomposed 
factors are fed to the network, the output generated from the network is compared with the actual output. 
The error between the actual output and the network’s output is computed. The average sum of the errors 
must be minimised to achieve the goal of the ANN. The equation governing the MSE is given below: 
 



 

116 

 MSE =
1

Q
∑k=1

Q
e(k)2 =

1

Q
∑k=1

Q
(t(k) − a(k))2 (9) 

 
where Q represents the total number of units, from the k = 1 to Q, and t(k) the actual output and a(k) the 
predicted output. The least MSE algorithm adjusts the weights and biases of the linear network. The 
proposed ANN for this study is the multilayer perceptron (MLP) with backpropagation algorithm training. 
The network’s architecture comprises the input, hidden, and output layers. The network can be described 
through the computational procedure below [47] (Hsu and Chen, 2003): 
 

 Yj = f(∑iwijXij), (10) 

 

where Yj represents the output of node j, ƒ(. ) is the transfer function, wij refers to the connection weight 

between nodes j and i at the lower layer, whereas Xi is the input signal from node i in the lower layer. The 
backpropagation is based on a gradient descent algorithm, which improves the neural network’s 
performance through total error reduction by the changes of weights along its gradient. Inputs for the 
neural network are from the decomposition results. The number of hidden neurons chosen was determined 
after a performance comparison of various cross-validated networks, from 1 to 10 hidden neurons, and the 
one with the best performance was picked. This was a network of the three factors (activity, structural 
impact, and energy intensity) as inputs, eight hidden neurons, and the energy consumption (output) — i.e., 
a 3-8-1 network. The network parameters included a learning rate of 0.06, a momentum of 0.7, a variable 
learning rate with momentum (trainlm) as the network’s training function, and the activation functions of 
tansig and purelin. Because there were 22 data points, the data was divided into 50 per cent training, 27 
per cent testing, and 23 per cent validation, to allow for a proportionate distribution for analysis. To 
validate the ANN, the coefficient of correlation (R) and the coefficient of determination (R2) were used. 
The equations governing R and R2 are given below: 
 
Error = (actual target – predicted target)  (11) 
Sum of squares error = norm (error) 2      (12) 
Sum of squares total = norm (predicted target – mean target) 2 (13) 
Sum of squares regression = sum of squares total – sum of squares error (14) 
Coefficient of determination (R2) = sum of squares regression/ sum of squares total (15) 

3.2.2 Data envelopment analysis 

The DEAFrontier package in Microsoft Excel® was used to perform this analysis. The input-oriented Charnes-
Cooper-Rhodes (CCR) was the DEA model considered for this study. The variable returns to scale (VRS) was 
selected, as the increase in the input did not correspond with a proportional increase in the output. The 
input-oriented model minimises inputs while the least-given output is satisfied [48]. The efficiency scores 
obtained from the input-oriented model for the inefficient years (DMU) interpreted the possible amount of 
energy saving when compared with the efficient DMUs. The mathematical form is given below [49]:  
 

 Max 
∑k=1

t ukyk0

∑i=1
m vixi0

  

 s.t 
∑k=1

t ukyk0

∑i=1
m vixi0

 ≤ 1,   j = 1, … , n, (16) 

 vi  ≥ 0, i = 1, … , m, 
uk  ≥ 0, k = 1, … , t, 

 
where yk0, k = 1, … , t denotes outputs and xi0, i = 1, … , m signifies inputs for all j = 1, … , n, DMUs and j = 0 

pinpoint the DMUj, which needs assessment. uk represents output weight, and the input weight is 

represented by vi. With the DEA equation above (equation 16) being a linear fractional programming 
problem, this is transformed into an ordinary linear programming problem, with new defined variables μk =
 β uk, vi =  βvi and obtaining the following ordinary linear programming problem with the same optimum 
value of the DEA equation as above [49]: 
 

 Max ω0 = ∑ μkyk0
t
k=1  

 s.t ∑i=1
m vixi0 = 1, 

 −∑i=1
m vixij + ∑k=1

t μkykj   ≤ 0, j = 1, … , n, (17) 

 vi  ≥ 0, i = 1, … m, 
 μk  ≥ 0, k = 1, … , t.  
 
This problem is dual in nature, and takes an ‘envelopment model’ form, which is easily expressed below 
as: 
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Min θ0 

 Such that ∑j=1
n xijλi  ≤  xi0θ0, i = 1, … , m,    

 ∑j=1
n ykjλj  ≥  yk0, k = 1, … , t,     (18) 

 λj  ≥ 0, j = 1, … , n. 
 

This problem can be solved if θ0, λj = 1 for the DMUj = DMU0 is chosen to be evaluated and every other λj 

= 0. Additionally, there is a bounded solution below by max yk0,k = 1, … , t, and the λj  ≥ 0 constraints. The 

optimal value of θ0 becomes finite so that, through the dual theorem of linear programming, equation (17) 
gives a finite solution with ω0

∗ =  θ0
∗, where “*” specifies the optimal value [49]. 

3.2.3 Theoretical framework — the guide to the proposed model 

The ability to assess the potential of energy saving guided the theory behind the integrated model. The 
various energy models have different capabilities. The notable capabilities that are needed for energy 
analysis include understanding the factors responsible for the energy consumed, the ability to predict 
energy use, and comparing various units with homogeneous resources to analyse the efficient use of energy. 
These capabilities are demonstrated by IDA, ANN, and DEA. Integrating these models (Figure 3) offsets the 
bias of each model, turning it into an improved model for energy analysis. The background of this model 
can be found in [42] in its early application. The application of this model includes decomposing the energy 
consumed in the industry case study into the activity, structural impact, and energy intensity factors. These 
become inputs for predicting the energy consumption, which in turn serves as the baseline to optimise 
energy use and to determine the potential savings. 
 

ANN

Energy Saving 
potential

DEALMDI 

GDP 
/Energy 

Data

Energy 
(Output)

Energy 
(Baseline)

Activity, Structure, Intensity

Phase 1 Phase 2 Phase 3
 

Figure 3: Proposed integrated model 

The steps to achieve the objective of this study are given below. 
 
1. Phase I — IDA through multiplicative LMDI disaggregates the econometric data (GDP and energy data) 

into the contributing factors that lead to energy consumed in the building and construction industry. 

These factors are activity, structural impact, and energy intensity. 

2. Phase 2 — The contributing factors serve as inputs to ANN to predict energy consumption. The 

prediction is verified and validated to obtain the preferred neural network structure for the energy 

baseline to be integrated into the other models. 

3. Phase 3 — The final step involves DEA. The predicted energy consumption is the baseline that serves 

as output to the DEA, while the actual energy consumption from the LMDI serves as the input to allow 

the determination of the potential savings in the industry. 

3.2.4 Proposed integrated model 

The mathematical expression behind the integrated model is as follows. The activity, structural impact, 
and energy intensity results obtained from the decomposition result serve as inputs to equation 10 in the 
neural network, and 𝐶𝑡𝑜𝑡 serves as the output. These inputs and outputs were used as vectors in MATLAB 
(Matrix Laboratory). This becomes:  
 

 𝐶𝑡𝑜𝑡 = 𝑓(∑ 𝑤𝑖𝑗𝑖 (𝐷𝑎𝑐𝑡(𝑖𝑗), 𝐷𝑠𝑡𝑟(𝑖𝑗), 𝐷𝑖𝑛𝑡(𝑖𝑗))) (19) 
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The goal is to minimise the average sum of the errors between the decomposed energy consumption (output 
to the neural network) and the target energy consumption (predicted energy consumption). Thus 𝑀𝑆𝐸 =

 
1

𝑄
 {∑ 𝐶𝑡𝑜𝑡𝑡(𝑘)𝑄

𝑘=1 − 𝐶𝑡𝑜𝑡𝑎(𝑘)}2 

 
where 𝐶𝑡𝑜𝑡𝑡 is the predicted total energy consumption and 𝐶𝑡𝑜𝑡𝑎 is the decomposed total energy 
consumption. Substituting 𝐶𝑡𝑜𝑡𝑡 as the output variable and 𝐶𝑡𝑜𝑡𝑎 as the input variable in equation 16 gives: 
 

 𝑀𝑎𝑥 
∑ 𝐶𝑡𝑜𝑡(𝑡)𝑟0𝑢𝑟

𝑠
𝑟=1

∑ 𝐶𝑡𝑜𝑡(𝑎)𝑖0𝑣𝑖
𝑚
𝑖=1

 

 such that 
∑ 𝐶𝑡𝑜𝑡(𝑡)𝑟0𝑢𝑟

𝑠
𝑟=1

∑ 𝐶𝑡𝑜𝑡(𝑎)𝑖0𝑣𝑖
𝑚
𝑖=1

≤ 1, 𝑗 = 1 … 𝑛 (20) 

 
.,...,1,0

;,...,1,0

sru

miv

r

i





 
 

where 𝐶𝑡𝑜𝑡(𝑡)𝑟𝑜,𝑟 = 1, … 𝑠  represents the outputs and 𝐶𝑡𝑜𝑡(𝑎)𝑖𝑜,𝑖 = 1, … 𝑚, represents the inputs for each of 

,,...1 nj 
DMUs and 

0j
 identify DMUj to be evaluated. r is the output weight, while iv

is the input 
weight. Once they are transformed into an ordinary linear programming problem, 𝛍r = 𝛽 𝛍r, vi = 𝛽 vi is 
obtained with the same optimum value as equation (20). 
 

𝑀𝑎𝑥 𝜑 =  ∑ 𝜇𝑟

𝑠

𝑟=1
𝐶𝑡𝑜𝑡(𝑡)𝑟0 

 such that ∑ 𝑣𝑖
𝑚
𝑖=1 𝐶𝑡𝑜𝑡(𝑎)𝑖0 = 1, 

 − ∑ 𝐶𝑡𝑜𝑡
𝑚
𝑖=1 𝑎𝑖𝑗 + ∑ µ𝑟

𝑠
𝑟=1 𝐶𝑡𝑜𝑡(𝑡)𝑟𝑗  ≤ 0, 𝑗 = 1, … 𝑛, 

 
.,...1,0

,,..1,0

sr

miv

r

i






 (21) 

 
Equation (21) accounts for the possible energy saving consumed, while the expected energy to be consumed 
is kept at the baseline level.  

4 RESULTS AND DISCUSSION 

4.1 LMDI 

The decomposition result shown in Figure 4 expresses the changes in the energy consumption of the 
industries being studied. Of the factors, the activity effect contributed the most. Except for the years 1995-
96, 1997-98, 2000-01, 2009-10, and 2014-15, the years were dominated by the activity effects. Energy 
intensity contributed most to the energy consumption on only two occasions, 2009-10 and 2014-15, whereas 
the structural impact effect played a secondary role. Most of the time, the activity effect was the key 
contributor to the energy consumed. Around 407 per cent of the industries’ activity contributed the most 
to the changes experienced in energy consumption throughout the study period, followed by structural 
impact (11%) and energy intensity (3%). All of the factors contributed the most to the energy changes in 
2007-08 and the least in 2015-16. Although the energy change reduced by 8.91 per cent in 1994-95 , the 
changes were erratic throughout the study period. 
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Figure 4: Decomposition results 

4.2 ANN 

Table 1 presents the results following the network’s application. The network was validated using visual 
inspection (Figure 5) and statistical measures of performance in the form of a coefficient of correlation. 
Figure 5 clearly shows the similarity between the predicted and the actual energy consumption, with 
minimal space (errors) between them. With the coefficient of correlation close to 1, the network’s 
performance proved effective. The coefficient for training was 1, testing was 0.96352, validation was 
0.82976, and the overall coefficient of correlation was 0.96098, while the coefficient of determination (R2) 
was 0.9234. 
 

 

Figure 5: Visual inspection of the network’s result 

  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1
9

9
4

-1
9

9
5

1
9

9
5

-1
9

9
6

1
9

9
6

-1
9

9
7

1
9

9
7

-1
9

9
8

1
9

9
8

-1
9

9
9

1
9

9
9

-2
0

0
0

2
0

0
0

-2
0

0
1

2
0

0
1

-2
0

0
2

2
0

0
2

-2
0

0
3

2
0

0
3

-2
0

0
4

2
0

0
4

-2
0

0
5

2
0

0
5

-2
0

0
6

2
0

0
6

-2
0

0
7

2
0

0
7

-2
0

0
8

2
0

0
8

-2
0

0
9

2
0

0
9

-2
0

1
0

2
0

1
0

-2
0

1
1

2
0

1
1

-2
0

1
2

2
0

1
2

-2
0

1
3

2
0

1
3

-2
0

1
4

2
0

1
4

-2
0

1
5

2
0

1
5

-2
0

1
6

D
e

co
m

p
o

se
d

 v
al

u
e

s

Study period

Dact

Dstr

Dint

Dtot

0 5 10 15 20 25
0.95

1

1.05

1.1

1.15

1.2

1.25

Period of study

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

 

 

Predicted energy consumption

actual energy consumption



 

120 

Table 1: ANN results 

Periods Actual consumption Predicted consumption 

1994-1995 1.1050 1.1045 

1995-1996 1.1399 1.1310 

1996-1997 1.1249 1.1245 

1997-1998 1.0782 1.0632 

1998-1999 1.0914 1.0912 

1999-2000 1.1306 1.1365 

2000-2001 1.1319 1.1311 

2001-2002 1.1335 1.1674 

2002-2003 1.2340 1.2334 

2003-2004 1.1337 1.1688 

2004-2005 1.0581 1.0579 

2005-2006 1.0485 1.0902 

2006-2007 1.1949 1.1940 

2007-2008 1.2028 1.1906 

2008-2009 1.1181 1.1175 

2009-2010 1.0745 1.0757 

2010-2011 1.0487 1.0481 

2011-2012 1.0784 1.0794 

2012-2013 1.0748 1.0750 

2013-2014 1.0649 1.0642 

2014-2015 1.0477 1.0497 

2015-2016 1.0065 0.9703 

4.3 DEA 

The actual energy consumption was the input and the predicted energy consumption was the output. The 
efficiency scores in the various years (DMUs) are presented in Table 2. Of the 22 DMUs, four industrial years 
— 2002-03, 2003-04, 2005-06, and 2015-16 — were efficient, and also served as benchmarks for the 
inefficient years, which would help to determine the potential saving. The efficient scores served as 
coefficients, indicating the potential saving. For example, the year 2013-14 was inefficient, and could have 
saved about 2.4 per cent (100% — 97.605%) energy when compared with the best practices of 2005-06 and 
2015-16. However, based on the ratio of the importance of each of the benchmarks, the year 2005-06 would 
be responsible for the major share (1.87%) of the energy saving, and the year 2015-16 for 0.6 per cent 
energy saving. If all the inefficient years were to reduce their consumption on the basis of the benchmark 
efficient years, the average energy to be saved throughout the 22 years would be 2.25 per cent (Figure 6). 
Figure 6 relates the consumption to the percentage amount of energy that would have been saved if all of 
the periods had emulated the four efficient years. The energy saving potential has a sinusoidal waveform, 
if we look at the points of the saving in Figure 6. 

Table 2: Efficiency scores from DEA 

    
Input-

oriented           

    VRS           
DMU No. DMU name Efficiency Benchmarks       

1 1994-1995 0.96286 0.181 2003-2004   0.819 2005-2006 
2 1995-1996 0.95858 0.519 2003-2004   0.481 2005-2006 
3 1996-1997 0.96510 0.436 2003-2004   0.564 2005-2006 
4 1997-1998 0.96367 0.775 2005-2006   0.225 2015-2016 
5 1998-1999 0.96167 0.013 2003-2004   0.987 2005-2006 
6 1999-2000 0.97178 0.589 2003-2004   0.411 2005-2006 
7 2000-2001 0.96550 0.521 2003-2004   0.479 2005-2006 
8 2001-2002 0.99889 0.983 2003-2004   0.017 2005-2006 
9 2002-2003 1.00000 1.000 2002-2003       

10 2003-2004 1.00000 1.000 2003-2004       
11 2004-2005 0.98022 0.730 2005-2006   0.270 2015-2016 
12 2005-2006 1.00000 1.000 2005-2006       
13 2006-2007 0.98156 0.390 2002-2003   0.610 2003-2004 
14 2007-2008 0.97075 0.338 2002-2003   0.662 2003-2004 
15 2008-2009 0.96422 0.347 2003-2004   0.653 2005-2006 
16 2009-2010 0.97107 0.879 2005-2006   0.121 2015-2016 
17 2010-2011 0.98574 0.649 2005-2006   0.351 2015-2016 
18 2011-2012 0.96876 0.910 2005-2006   0.090 2015-2016 
19 2012-2013 0.97055 0.873 2005-2006   0.127 2015-2016 
20 2013-2014 0.97605 0.783 2005-2006   0.217 2015-2016 
21 2014-2015 0.98722 0.662 2005-2006   0.338 2015-2016 
22 2015-2016 1.00000 1.000 2015-2016       
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Figure 6: Potential energy saving for the building and construction and civil engineering and other 
construction industries 

5 CONCLUSION 

The building and construction and civil engineering and other construction industries represent a step 
towards economic growth, given the infrastructure that arises from these industries. Achieving the 
industries’ objectives requires energy use. Owing to the nature of the industries’ use of energy, emissions 
occur in large volumes. To manage the energy use in the form of conservation while achieving their 
objective, this study proposed an integrated model to overcome energy-related emissions, leading to 
improvements in the use of energy in the building and construction and civil engineering and other 
construction industries.  
 
The proposed approach is an integrated IDA-ANN-DEA to decompose energy into the factors responsible for 
its consumption. The total amount of energy was predicted in order to determine the baseline for defining 
the amount of energy to be saved. In its decomposition, the activity effect made the highest contribution 
to the energy consumed. All of the activities in these industries need to be scrutinised to see where there 
could be improvements, which in turn would lead to policy improvements or to the development of new 
policies where needed. In the period that was studied, the years 2002-03, 2003-04, 2005-06, and 2015-16 
were the ones that the inefficient years could emulate to become efficient. An average of 2.5 per cent of 
the energy consumed could be saved each year throughout the 22-year period.  
 
The essence of this study has been to alert policymakers and stakeholders in the building and construction 
and civil engineering and other construction industries to the need to have proper energy management, 
and to the important issue of energy reduction while achieving the industries’ objectives. The reduction of 
industrial energy consumption is a useful procedure to reduce emission. The outcomes of this study can 
help policymakers to devise systems for energy management. It is recommended that future studies look 
at considering greenhouse gas mitigation and energy-saving possibilities, using the integrated model, for a 
possible robust result. 
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