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ABSTRACT 

Machine learning has become an immensely important technique for 
automatically extracting information from large data sets. By doing so, it 
has become a valuable tool in various industries. In this investigation, the 
use of machine learning techniques for the production of railway wheel 
prognostics was investigated. Metrorail’s railway wheel wear data was used 
as a case study for this investigation. The goal was to demonstrate how 
machine learning can used on the data generated by Metrorail’s routine 
operations. Three machine learning models were implemented: logistic 
regression, artificial neural networks, and random forest. The investigation 
showed that all three models provided prognoses with an accuracy of over 
90 per cent, and had an area under curve (AUC) measurement exceeding 
0.8. Random forest was the best performing model, with an AUC 
measurement of 0.897 and an accuracy of 93.5 per cent. 

OPSOMMING 

Masjienleer het ŉ belangrike tegniek geword wanneer dit kom by die 
outomatiese ontginning van inligting uit groot datastelle. ’n Wye 
verskeidenheid van bedrywe het al voordeel getrek uit die implementering 
van masjienleer. In hierdie ondersoek was daar gekyk na hoe masjienleer 
gebruik kan word om prognostiese voorspellings te maak m.b.t. die 
verwering van spoorwegwielflense. Die doel van die ondersoek was om te 
demonstreer hoe masjienleer waarde uit Metrorail se data kan ontgin. Drie 
masjienleer modelle is geïmplementeer: logistiese regressie, kunsmatige 
neurale netwerke, en ‘random forest’. Die resultate van die ondersoek het 
getoon dat al drie modelle ŉ akkuraatheid van oor die 90 persent behaal 
het. Al drie modelle het ook ŉ area onder die kromme (AUC) telling van 
meer as 0.8 behaal. Die ‘random forest’ model het die beste presteer van 
al drie die modelle, met ’n AUC telling van 0.897 en ŉ akkuraatheid van 
93.5 persent.

 

1 INTRODUCTION 

Passenger railway services (PRS) are required to provide communities with punctual, safe, and affordable 
railway transport. The physical asset maintenance strategies that are implemented by PRS providers have 
a direct bearing on the punctuality, safety, and cost of the services they provide. A PRS provider’s physical 
asset maintenance strategy must be cost-effective, and must uphold a high availability rate of its assets 
without sacrificing the diligence and quality of the maintenance work that is done. 
 
It stands to reason that the maintenance management team of a PRS will greatly benefit from a prognostic 
decision support system. Such a system can predict when a system or component will fail, which informs 
maintenance teams about prioritising and scheduling their maintenance efforts. By enabling maintenance 
to be implemented on an ‘as-needed’ basis, a prognostic decision support system can aid in developing 
maintenance strategies that maintain the condition of assets, while reducing the cost associated with 
unnecessary maintenance efforts. By aiding maintenance management with maintenance planning, such a 
decision support system can also help to improve resource allocation decisions. These can increase the 
throughput rate of maintenance operations, which will lead to the higher availability of the assets being 
maintained.  
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The necessity of the advantages provided by prognostic decision support systems to PRS is especially high 
at Metrorail. Metrorail is a subsidiary of the Passenger Rail Agency of South Africa (PRASA), operating in the 
four main metropolitan areas of South Africa. The necessity stems from the fact that Metrorail employs an 
aging fleet of rolling stock, Metrorail’s physical assets are frequently damaged or destroyed during acts of 
vandalism and theft, and a large portion of Metrorail’s clients come from lower income groups who rely on 
Metrorail for their daily transportation needs. Even though this list of reasons is by no means exhaustive, it 
shows that Metrorail relies on a fragile system to provide a crucial service to a vulnerable portion of the 
South African population; hence the need for a prognostic decision support system to aid maintenance 
management.  
 
Machine learning (ML) is an exciting field of study that focuses on developing computer programs that are 
capable of learning to perform tasks rather than being explicitly programmed to do so. ML techniques have 
been used to solve problems in various industries such as agriculture, healthcare, and marketing. In this 
article, the implementation of ML techniques to develop a prognostic decision support system for a PRS 
provider was investigated. As a case study, the techniques were applied to develop a prognostic model 
capable of producing prognoses for the railway wheels used by Metrorail. The findings presented in this 
article were used to serve as a proof-of-concept for the use of ML techniques to develop prognostic decision 
support systems that can aid maintenance management at Metrorail. 
 
The following objectives were investigated: 
 
1. To implement three ML models (logistic regression, artificial neural networks (ANN), and random 

forest (RF)) to provide railway wheel prognostics. 
2. To implement methods of comparing the performance of the three model types. 
3. To report on the best performing of the three model types. 

2 LITERATURE REVIEW  

2.1 Prognostics 

The Oxford Learner’s Dictionary [1] defines ‘prognosis’ as “a judgement of how something is likely to 
develop in the future”. In the context of physical asset maintenance, a prognosis can refer to a prediction 
of the future state or condition of an asset. Tiddens, Braaksma and Tinga [2] highlighted the utility of a 
prognostic decision support system, in a physical asset maintenance context, by comparing it with a 
diagnostic system. The crux of the comparison was that prognostic techniques are prospective in nature, 
and therefore offer management the opportunity to pre-empt or prepare for asset failures. Diagnostic 
techniques, on the other hand, are retrospective in nature, and so provide information related to the cause 
and nature of a physical asset failure, but only after the failure has occurred.   
 
Some of the most notable advantages of a prognostic decision support system in the context of physical 
asset maintenance have already been highlighted. These advantages stem, mainly, from the prospective 
nature of such a tool. Its main drawback lies in the difficulty of its development. The key element of any 
prognostic tool is a model capable of predicting the future state of its subject. Generally, these models are 
either physics-based or data-driven. A physics-based model consists of a mathematical representation of 
the subject and the processes that determine its future state. Formulating these mathematical expressions 
can be challenging, especially in the physical asset prognostics context, where the assets often consist of 
various interacting components, and where the degradation processes can be complex. Therefore the 
development of a physics-based model often requires knowledge and expertise that can be expensive to 
acquire [3]. 
 
With data-driven modelling, prognostic models are derived directly from routinely collected data for 
monitoring conditions. The key advantage of data-driven modelling over physics-based modelling is that 
data-driven modelling does not require the domain-specific knowledge and expertise that physics-based 
modelling does. However, data-driven modelling has a key requirement — the availability of a sufficiently 
sized repository of condition monitoring data — from which a prognostic model can be derived [4].  

2.2 Machine learning 

As stated, ML is focused on developing computer programs that are capable of learning. Mitchell [5] has 
stated that a computer learns as follows: 
 

http://f1000.com/work/citation?ids=6229382&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5076626&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5080863&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5159886&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5499747&pre=&suf=&sa=0
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A computer program is said to learn from experience E with respect to some class of task T and performance 
P, if its performance at tasks in T, as measured by P, improves with experience E. 
 
Two factors have contributed significantly to the growth in the popularity of ML. The first of these is the 
decreasing cost of computing power and data storage. The second is the fact that sensors capable of 
capturing data have become more affordable and available. The ubiquity of mobile phones that are 
equipped with highly sophisticated sensors and instruments supports this notion. These two factors have 
resulted in a rapid increase in the rate of data generation, which calls for new techniques that are capable 
of automatically extracting information from this data. ML is one such technique that provides this 
capability. 
 
ML problems are usually subsumed under one of two categories: classification or regression. With the latter, 
the task of the ML model is to predict a continuous numerical value. Examples of regression problems 
include forecasting sales or predicting stock prices. With classification problems, the task of the ML model 
is to assign an observation to one of a set of categories. Examples of classification problems include the 
task of classifying a person as either male or female, based on their height and weight measurements. 
Another example of a classification problem is predicting whether a physical asset will be functional or 
non-operative at a future point in time, given its current state and working conditions [6].  
 
Quite a few ML model types have been developed to solve classification problems. These model types will 
be referred to as classifiers in this article. Examples of popular classifiers are support vector machines, 
boosting algorithms, and decision trees. The classifiers that were implemented in this investigation were 
logistic regression, artificial neural networks (ANN), and random forest (RF).  

2.2.1 Logistic regression 

Logistic regression is a binary classifier that models the probability that an observation belongs to a specific 
category, based on a set of input features. The model takes the form P(X) = P(Y=1|X), where X is a vector 
consisting of a set of input features, and Y is a binary target variable. The classifier takes, as input, a 
weighted linear combination of a set of input features, and returns a prediction of the probability that the 
observation belongs to a default binary class (Y = 1) [6], [7]. 
 

 

Figure 1: Shape of logistic function 

Logistic regression makes use of a link function that returns a value between 0 and 1 for all values of X. 
There are numerous functions that meet this description, but with logistic regression the logistic function 
is used; it is expressed as 
 

 
 
and has the shape illustrated in Figure 1. 

http://f1000.com/work/citation?ids=5499745&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5499745,818109&pre=&pre=&suf=&suf=&sa=0,0
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The variable 𝜷 in the logistic function is a vector of weights. With some manipulation, we find that the 
logistic function takes the form 
 

 
 
which shows that the logistic regression model has log-odds that are linear in X. 
 
The predictive performance of the model is improved by adjusting the vector of weights, 𝜷. A popular 
method of optimising the model parameters is maximum likelihood estimation. The likelihood function has 
the form 
 

 
 
In the likelihood function, each xi is an observation of the input data that belonged to class Y = 1, and for 
each xi’, Y = 0. If 𝜷 is selected to maximise the likelihood function, it would mean that the logistic function 
is predicting values close to 1, for observations where the true class is 1 while predicting values close to 0 
for observations where the true class is 0 [7].  

2.2.2 Artificial neural networks 

ANNs are a biologically inspired ML classifier that mimic the way in which the brain processes information. 
The brain has a large number of information processing units called neurons, which are interconnected by 
electrically conductive axons, as shown in Figure 2. In crude terms, information is ingested by the brain in 
the form of electrical impulses. An electrical impulse is conducted to a neuron from a large number of 
neighbouring neurons, via axons. If the combination of entering impulses exceeds some threshold, the 
neuron, in turn, fires an impulse through its axons to subsequent neurons. The brain’s reaction to a stimulus 
comes in the form of a specific combination of firing neurons [8].   
 

 

Figure 2: Illustration of neurons connected by axons [9] 

ANNs are conceptualised as a series of aggregating mathematical functions that constitute the artificial 
neurons, which relay their output via weighted connections to subsequent neurons. These weights represent 
the artificial axons of an ANN [9]. 
 
ANN configurations differ with respect to the aggregation functions (also known as activation functions) 
used for each neuron in the network, the number of neurons in the network, and the degree and manner 
of interconnectedness among neurons in the network. In this article, a common configuration for ANNs is 
used; a fully-connected, feed-forward ANN, which comprises three layers of neurons. The first layer is 
referred to as the input layer, which represents the raw input data, X, which is fed to the model. The 
second layer is referred to as the hidden layer, while the third layer is referred to as the output layer. The 
aggregate function used in both the hidden layer and the output layer is the logistic function, referred to 
in Section 2.2.1. The term ‘fully connected’ refers to the fact that the neurons in each layer of the network 
are connected to all neurons in the subsequent layer by a set of weights, W, as illustrated in Figure 3. 
 

http://f1000.com/work/citation?ids=818109&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1907144&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1907419&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1907419&pre=&suf=&sa=0
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The advantage of ANNs stems from the interconnectedness of the neurons in the network, allowing it to 
model very complex behaviour. This becomes evident when we consider that a logistic regression model 
would represent a single node in an ANN. Therefore ANNs have an advantage over logistic regression models 
when modelling phenomena with complex behaviour. However, this complexity comes at a cost, and is the 
source of many of the disadvantages of ANNs. 
 

 

Figure 3: Illustration of fully connected, feed-forward ANN with logistic activation function 

First, ANNs are much more computationally expensive to optimise (also referred to as training) than logistic 
regression models. ANN training is achieved by making predictions on data for which the true target value 
is known. A measure of the difference between the predictions and the true values is then calculated; this 
is known as the prediction error. By exploiting the chain rule of partial differentiation, the change in the 
error with respect to a change in the value of each weight in the network is computed. In this way, the 
weights are incrementally adjusted, in order to reduce the overall predictive error of the model. This 
process, known as the backpropagation algorithm, is repeated until the performance of the model is 
deemed sufficient or the change in model performance diminishes [5], [9]. Backpropagation is 
computationally expensive, and scales poorly as the size of the ANN increases.  
 
Second, ANNs are prone to over-training, which is a ML phenomenon: a model is trained to the point where 
it internalises the nuances of the training data that was used to train it. This inhibits the model’s ability to 
make accurate predictions on data that was not present in the training dataset. This tendency to over-train 
is a consequence of the high variance exhibited by ANNs — that is, the ability of ANNs to model complex 
functions/behaviour.  
 
Finally, ANNs are referred to as ‘black boxes’ because it is difficult to extract the rationale behind the 
predictions they produce. This is a disadvantageous characteristic of ANNs, especially when ML is 
implemented with the intention of gaining insights into the system or process that is being modelled.  

2.2.3 Random forest 

Random forest is a decision-tree-based ML model that reduces the high variance exhibited by conventional 
decision-trees, by building out and averaging over a large number (i.e., a ‘forest’) of decision-trees. A 

http://f1000.com/work/citation?ids=1907419,5499747&pre=&pre=&suf=&suf=&sa=0,0
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decision-tree classifier is built by successively dividing the input space of the problem into regions that 
exhibit high purity. A visual representation of a decision-tree is given in Figure 4 [7].  

 

 

Figure 4: Visual representation of decision tree, reproduced from [7] 

Figure 4 shows how each variable, X1 to X5, is successively divided until six distinct regions, known as leaf 
nodes, are formed. The purity of a leaf node refers to the extent to which it contains observations from 
only one of the members of the categorical output variable. A prediction is made by taking the mode class 
of the leaf node to which an observation belongs. With random forest, many decision-trees are built, using 
different combinations of subsets of the input variables; and each tree is built using a different randomly 
selected sample of the training data. The prediction of the model is then taken as the mode prediction 
made over all of the decision-trees [10]. 
 
Leaf purity is used to determine the sequence in which the input variables are split. The Gini impurity 
score is a measure of leaf impurity for a split produced by a given variable. The score is calculated as  
 

 
 
The Gini impurity of a given variable (i) is calculated as a sum, over all M classes of the input variable, of 
the product of the proportion of observations with class M=m (pm) and the proportion of observations where 
class M=m with output variable class Y=k (pm,k). For a given value of pm, Gi is maximised when pm,k = 0.5, 
and minimised when pm,k=1. When a decision needs to be made about which variable should be selected to 
make the next split in a decision tree, the variable with the lowest Gini impurity score is chosen [7], [10]. 
The advantage of random forest models is that they are computationally inexpensive to train, yet are 
capable of modelling complex behaviour. And the classifier is quite resistant to over-training, especially if 
the number of trees that are generated is large, because the predictions that it produces are the result of 
averaging over a large number of predictions made by unique sub-models. The disadvantage of random 
forest models is that they become increasingly difficult to interpret as the number of trees in the model 
increases. Eventually, if a large enough number of trees are generated, the model can be considered to be 
a ‘black box’ that provides little insight into the process or system being modelled [7], [10].  
 
The model parameters that are to be adjusted to improve its performance are the maximum tree depth 
(i.e., the number of splits per tree), the minimum leaf node size, the number of trees to grow, the number 
of observations to sample per tree, and the number of variables to sample per tree. These parameters are 
often optimised using an exhaustive grid-search approach. 

http://f1000.com/work/citation?ids=818109&pre=&suf=&sa=0
https://docs.google.com/document/d/1FYqfx2ZxiWhwNzbgTySKlokVEAvJv3Na798fuDNZLUs/edit#figur_Decision_Tree
http://f1000.com/work/citation?ids=818109&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5499748&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5499748,818109&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=818109,5499748&pre=&pre=&suf=&suf=&sa=0,0
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3 CASE STUDY 

3.1 Case description 

The ML techniques discussed in Section 2 were implemented on railway wheel wear data, recorded by 
Metrorail, to provide flange wear prognostics. As stated in Section 2, one of the key requirements of ML is 
the availability of relevant data that can be used to train the ML models. The railway wheel condition 
monitoring data set represents one of Metrorail’s most complete condition monitoring data sets.  
 
The data set consists of 454,187 records from between 2009-12-09 and 2018-07-05. A list of the fields is 
provided in Table 1. The data was recorded using a MiniProf railway wheel profile measurement instrument. 
A MiniProf mounted on a railway wheel is shown in Figure 5. This instrument was used during wheel 
condition monitoring inspections to measure wheel profiles. The wheel is decommissioned or sent for 
repairs when the flange height increases beyond 35mm.  

Table 1: Categories for questions 

Field Data type Field description Range/Categories 

Date Integer 
Date the measurement took 

place 
2009-12-09 - 2018-07-05 

Time 
Continuous 
numerical 

Time the measurement took 
place 

0.0006 - 0.9998  

Stock Categorical Motor coach model 
10M2, 10M2T, 10M3, 10M3T, 10M5, 10M5t, 10M5T, 

5M2A, 5M2At, 5M2AT, 8M, 8MT 

Bogie 
number 

Categorical 
Unique identifier for each 

bogie in a set 
1, 2 

Axle 
number 

Categorical 
Unique identifier for each 

axle on a bogie 
1, 2, 3, 4 

Wheel ID Categorical 
Unique identifier for each 

wheel on a bogie 
1, 2, 3, 4, 5, 6, 7, 8 

Flange 
height 

Numerical Measured flange height (mm) 0.00 - 50.27 

 

 

Figure 5: MiniProf mounted on a railway wheel, [11] 

https://docs.google.com/document/d/1FYqfx2ZxiWhwNzbgTySKlokVEAvJv3Na798fuDNZLUs/edit#figur_Decision_Tree
http://f1000.com/work/citation?ids=5746778&pre=&suf=&sa=0
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Figure 6 illustrates how the flange height is affected by wheel wear. The figure shows the profile of a new 
wheel superimposed on the profile of a worn wheel. The relative height between the wheel tread and the 
apex of the wheel flange increases as the wheel becomes worn out. If this relative distance exceeds 35mm, 
the wheel is sent for repairs or is decommissioned. In Figure 7, note how the flange height of a sampled 
wheel position on the train develops over time. The flange height gradually increases to the point where 
the wheel is replaced. In the example provided, the wheel is replaced twice. 
 

 

Figure 6: Illustration of wheel and rail contact interface [12] 

 

Figure 7: Sample illustration of flange height change over time, measured in mm 

3.2 Feature engineering 

To improve the performance of the ML models, some additional features were created. This process is 
referred to as ‘feature engineering’. In total, six additional features were created.  

3.2.1 Time between measurements 

‘Time between measurements’ was defined as the time that passed between successive flange height 
measurements of a specific wheel, measured in days. This feature was created to serve as a proxy for the 
extent to which the wheel was used between measurements. This was necessary because the distance 
covered by a wheel between measurements was not available. 

First wheel 
instance 

Second wheel 
instance 

Third wheel instance 

https://docs.google.com/document/d/1inoifsPBYtOr1yUwRM1ZJxv8PEifbOXvNrC-9jgjzEE/edit#figur_wheel_railway_interface
http://f1000.com/work/citation?ids=5739814&pre=&suf=&sa=0
https://docs.google.com/document/d/1FYqfx2ZxiWhwNzbgTySKlokVEAvJv3Na798fuDNZLUs/edit#figur_Decision_Tree
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3.2.2 Wheel instance age 

This feature was defined as the total age of a wheel, measured in days. The reasoning behind this feature 
was that, if flange height wear is a non-linear process, then the extent to which a wheel is worn for a 
specific period of use is dependent on the age of the wheel at the start of this period.  

3.2.3 Relative flange height difference 

Relative flange height difference was used to create three features that express the relative difference 
between the diameter of a wheel and its neighbouring wheels. The first of these was the flange height 
difference between a wheel and that of the opposing wheel mounted on the same axle. The second feature 
was the relative difference between a wheel’s flange height and that of the wheel with the smallest flange 
height on the same bogie. Finally, a measurement was created to show the difference between the average 
flange height of a coach and that of the neighbouring coach with the smallest flange height. The reasoning 
behind this feature was that wheels with larger diameters (i.e., smaller flange heights) will carry a 
relatively larger portion of the weight of the train, and so will wear at a different rate than smaller wheels.  

3.2.4 Moving average wear rate 

Moving average wear rate was calculated as the average wear rate, for a wheel, over the past three flange 
height measurements that were taken for a wheel. The reasoning behind this feature was that the historical 
rate of deterioration for a given wheel will provide some indication of the expected rate at which the wheel 
will deteriorate in the near future.  

3.2.5 Previous flange height measurement 

This measurement was defined as the flange height value that was recorded for a given wheel during the 
previous wheel condition monitoring intervention. The feature was created simply because a wheel that is 
close to being decommissioned for flange height deterioration will be more likely to have exceeded its 
allowed extent of flange height wear at the time of the next condition monitoring intervention, as opposed 
to a new wheel that still has a relatively small flange height. 

4 MODEL DEVELOPMENT 

In this section the methods that were used to build the ML models will be briefly described. The free 
statistical software environment, R, was used for data manipulation and model development requirements. 
The processes that were completed to develop the ML models were: 
 

 Data preparation 

 Grid-search parameter setup 

 ML model training 

 ML model testing 

4.1 Data preparation 

Data preparation was done in three steps. First, records containing impossible values were removed from 
the data set. Impossible, in this case, referred to records containing negative flange heights or negative 
times and dates. Records were also not allowed to be future-dated, which in this case meant that dates 
were not allowed to be later than 2018-08-25, which was when the investigation took place. Finally, flange 
heights were not allowed to be greater than 50mm. This final constraint was set to allow for valid extreme 
values, because wheels were not strictly decommissioned or sent for repairs when their flange heights grew 
past 35mm. 
 
The second data preparation process was to create the target variable for the ML models. This was achieved 
by appending a binary variable to the data set that had a value of 0 for observations where the flange 
height was below 35mm and a value of 1 if the flange height was higher than 35mm. 
 
The final data preparation process is known as feature scaling. This process centres the mean of all 
numerical variables at 0 and transforms numerical variables to have unit variance. This is done to improve 
the training time of ML models. The performance increase stems from the fact that data sets often include 
variables that are on vastly different scales, which can be detrimental to the training time of an ML model. 
This is especially relevant to ML models that make use of a gradient descent approach to model 
optimisation, such as logistic regression and ANNs. Figure 8 shows how feature scaling (also known as 
feature normalisation) can shorten the path that a gradient descent algorithm has to take to optimise a 
model consisting of two input parameters. 
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Figure 8: Example of ML model error contour plots for non-normalised and normalised input features 
[13] 

4.2 Grid search parameter setup 

Exhaustive grid-search was used to optimise the various hyper-parameters of the implemented ML models. 
This process entails creating a table of the values for the hyper-parameters that will be trialled for each of 
the ML models. These parameters, therefore, are optimised, in the sense that the best combination of the 
issued hyper-parameter values is selected, and therefore global hyper-parameter optimisation is not 
guaranteed.  
 
The term exhaustive refers to the fact that every possible combination of the hyper-parameters entered in 
the aforementioned table is tested to find the best-performing combination.  
The ANN hyper-parameters that were optimised in this way were: 
 

 The learning rate (a) 

 The momentum factor (ɳ) 

 The number of hidden layers   

 The number of nodes per hidden layer 
 
The random forest hyper-parameters were: 
 

 The number of trees to generate (B) 

 The number of features to sample when choosing a feature to split on (K)  

 The number of observations to sample from the data set, per tree (L) 

 The minimum allowed number of observations per leaf node (n) 
 
The hyper-parameter tables (also referred to as grids) for the ANN and the random forest model are 
provided in Tables 2 and 3 respectively. The values that were selected for the tables were based on the 
default values selected for these parameters by the R packages that were implemented to build the models. 
A range of values centred on these default values were inserted into the hyper-parameter grids. No hyper-
parameters were adjusted for the logistic regression model.  

Table 2: ANN hyper-parameter grid 

Hyper- parameter Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8 

𝜂 0.1 0.2 0.3 0.5 N/A N/A N/A N/A 

a 0.005 0.050 0.500 N/A N/A N/A N/A N/A 

No. hidden layers 1 2 N/A N/A N/A N/A N/A N/A 

Nodes Layer 1 3 4 5 6 7 8 9 10 

Nodes Layer 2 3 4 5 6 7 8 9 10 

http://f1000.com/work/citation?ids=5996789&pre=&suf=&sa=0
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Table 3: Random forest hyper-parameter grid 

Hyper- 
parameter 

Option 1 Option 2 Option 3 Option 4 
Option 

5 

B 500 550 600 650 700 

K 
1

6
x no. features 

1

4
x no. features 

1

3
x no. features N/A N/A 

L 
1

2
x no. 

observations 

2

3
x no. 

observations 

3

4
x no. 

observations 

4

5
x no. 

observations 
N/A 

n 3 5 7 9 N/A 

4.3 ML model training 

The first step in building the ML models was to split the data set into training and testing data sets. Seventy 
per cent of the prepared data set was randomly allocated for training purposes, and the remainder was 
held out for testing.  
 
Each model (logistic regression, ANN, random forest) was built using an R package specifically designed to 
build its respective model. The base R package glm was used to build the logistic regression model. This 
package was designed for building a family of models called generalised linear models, of which logistic 
regression is a member. The following function call was used to build the model: 
 

logistic_model = glm(train$target_variable~,family = binomial(link = "logit"),data = train) 

The ANN2 package was used to build the ANN model, while the randomForest function of the ranger package 
was used to build the random forest model.  
 
K-folds cross-validation was used while tuning the hyper-parameters. Five folds were used per 
configuration, and the average F1-score over the five folds was used to measure the configuration 
performance. The F1-score is a measurement of classifier performance, based on the metrics produced by 
confusion matrices.  
 
The formula for the F1-score is: 
 

 
 
The values TP, FN, and FP in the F1-score formula refer to true positive, false negative, and false positive 
classification rates respectively. The F1-score was used because it is computationally inexpensive to 
calculate, yet it produces classifier performance measurements that are less sensitive to target variable 
class imbalance than the conventional accuracy measurement. Figure 9 shows how the average F1-score 
over each of the five folds of the k-folds cross-validation process fluctuated over the trials of the various 
ANN hyper-parameter configurations. Figure 9 shows how some configurations performed worse than 
others.  
 
The next performing ANN hyper-parameter configuration was a network with two hidden layers. It had eight 
nodes in the first layer and five nodes in the second. The value for a was 0.5 and the value for 𝜂 was 0.1. 

The winning hyper-parameters configuration for the random forest model was B = 550, K = 
1

6
x no. features, 

L = 
3

4
x no. observations and n = 9. 
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Figure 9: ANN hyper-parameter grid search output 

After the best hyper-parameter configurations were found, the ANN and random forest models were trained 
on the entire training data set.  

4.4 ML model testing 

The trained ML models were tested by having them predict whether a wheel will have exceeded its allowed 
flange height, based on the available cleaned and normalised input features. These predictions were made 
on the holdout data set to ensure the validity of the test.  
 
One of the metrics used to measure the model’s performance was area under curve (AUC), a metric derived 
from receiver operating characteristic (ROC) curves (see [10] and [14]). This metric was used because it is 
unaffected by target variable class imbalance. This was important because the occurrence of a wheel 
exceeding its allowed flange height was relatively scarce. The standard confusion matrix metrics — 
sensitivity, specificity, and accuracy — were also recorded for each model.  

5 RESULTS 

5.1 Logistic regression model performance 

The ROC curve for the logistic regression model’s predictions on the test data set is shown in Figure 10. 
The AUC for the model was 0.813. A confusion matrix of the predictions is provided in Table 4. The model 
had a sensitivity rate of 0.362, a specificity rate of 0.993, and an accuracy rate of 0.917. 

Table 4: Confusion matrix for logistic regression model of FH wear prognostics 

 Predicted class = 1 Predicted class = 0 

Actual class = 1 3’633 6’405 

Actual class = 0 514 73’350 

 

https://docs.google.com/document/d/1inoifsPBYtOr1yUwRM1ZJxv8PEifbOXvNrC-9jgjzEE/edit#figur_FH_hyper_param
http://f1000.com/work/citation?ids=5499748&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5596225&pre=&suf=&sa=0
https://docs.google.com/document/d/1inoifsPBYtOr1yUwRM1ZJxv8PEifbOXvNrC-9jgjzEE/edit#table_confMatrix_log_fh
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Figure 10: ROC curve for logistic regression model of FH wear prognostics 

5.2 ANN model performance 

The ROC curve for the ANN model’s predictions on the test data set is shown in Figure 11. The AUC for the 
model was 0.874. A confusion matrix of the predictions is provided in Table 5. The model had a sensitivity 
rate of 0.489, a specificity rate of 0.996, and an accuracy rate of 0.934. 

Table 5: Confusion matrix for ANN model of FH wear prognostics 

 Predicted class = 1 Predicted class = 0 

Actual class = 1 4’908 5’130 

Actual class = 0 319 72’545 

 

 

Figure 11: ROC curve for ANN model of FH wear prognostics 

5.3 Random forest model performance 

The ROC curve for the random forest model’s predictions on the test data set is shown in Figure 12. The 
AUC for the model was 0.897. A confusion matrix of the predictions is provided in Table 6. The model had 
a sensitivity rate of 0.480, a specificity rate of 0.998, and an accuracy rate of 0.935. 

https://docs.google.com/document/d/1inoifsPBYtOr1yUwRM1ZJxv8PEifbOXvNrC-9jgjzEE/edit#table_confMatrix_log_fh
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Table 6: Confusion matrix for random forest model of FH wear prognostics 

 Predicted class = 1 Predicted class = 0 

Actual class = 1 4’820 5’218 

Actual class = 0 183 72’681 

 

 

Figure 12: ROC curve for random forest model of FH wear prognostics 

6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

Three objectives were accomplished during the completion of this investigation. First, the three selected 
classifiers were implemented to provide railway wheel flange height prognostics. Second, three established 
methods of measuring and comparing the performance of the classifiers were implemented: ROC curves, 
AUC, and confusion matrix metrics. Finally, the three models were compared based on these performance 
metrics to select the best performing classifier.  
 
The results reported in Section 5 showed that all three models performed well. All three models had an 
accuracy rate higher than 0.9 and an AUC measurement that exceeded 0.8. These scores indicate that all 
three models performed well. However, random forest marginally outperformed the other two classifiers.  
 
A considerable portion of the accuracy reported for all three models stemmed from the imbalance in the 
target variable class, because the occurrence of a wheel flange exceeding its 35mm decommissioning height 
was quite rare. However, random forest had the highest specificity rate. This means that random forest 
was well suited for the detection of cases where the flange height exceeded 35mm. For these reasons, 
random forest was selected as the best-performing classifier in this investigation for flange height wear 
prognostics.  
 
In conclusion, the data generated by Metrorail during its daily operations, such as condition monitoring 
operations, are of considerable value to various departments in Metrorail. This investigation showed that 
routinely collected wheel wear measurements can be used to build prognostic models that can provide 
insights and early asset failure warnings to maintenance management.  

6.2 Recommendations 

Although this investigation was able to achieve its purpose, it was not without limitations. First, it is 
reasonable to expect that the developed models could be improved if more data could be obtained from 
Metrorail. For instance, the distance covered by a specific train wheel would certainly add to the accuracy 

https://docs.google.com/document/d/1inoifsPBYtOr1yUwRM1ZJxv8PEifbOXvNrC-9jgjzEE/edit#table_confMatrix_log_fh
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of wheel wear models. Second, reference is made in Section 1 to a range of additional classifiers. These 
could also be implemented on the provided data to determine whether better predictive performance could 
be attained. Third, a wider range of hyper-parameters could be tested to determine whether better 
performing models could be built.  
 
In practical terms, it is recommended that the models developed in this investigation be implemented on 
a control set of actual railway wheels to determine how the models perform in a real-life setting. Finally, 
it is recommended that a follow-up investigation be launched to measure the possible financial impacts 
that prognostic models such as those developed in this investigation could have on Metrorail’s maintenance 
operations.  
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