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ABSTRACT 

 
Gaver’s parallel system (and its variants) has received considerable attention in the literature.  
The Laplace-transform (LT) of the survival function, corresponding to the underlying 
systems, has been derived by various (alternative) methods.  Unfortunately, little-to-no 
attention has been paid to invert the corresponding transform. First, we present a general 
reliability analysis of Gaver’s basic parallel system (valid for an arbitrary repair time 
distribution). Then, we formulate some general hints to obtain the numerical inverse.  Finally, 
we propose a tangible methodology to derive the exact inverse in some particular but 
important cases of non-rotational transforms.  
 

OPSOMMING 
 
Gaver se parallelsisteem (en variante daarvan) is reeds dikwels behandel in die literatuur.  Die 
Laplacetransformasie van die oorlewingsfunksie van die onderliggende sisteme is reeds 
afgelei op verskillende uiteenlopende wyses.  Ongelukkigerwys is min aandag gegee aan die 
ooreenstemmende inverse transformasie. Ten aanvang word 'n algemene 
betroubaarheidsontleding van Gaver se basiese parallelsisteem voorgehou (geldig vir 'n 
arbitrêre hersteltyd-verdeling).  Dit word gevolg deur wenke vir bepaling van die numeriese 
inverse.  Ten slotte word 'n tasbare metodologie vir die afleiding van die presiese inverse vir 
sekere belangrike nie-rotasionele transformasies voorgestel. 
 
 
 
 

http://sajie.journals.ac.za



 
 

142

1.  INTRODUCTION 
 
Gaver’s parallel system [7,8] (for instance, two generators in active redundance [2] attending 
the light-plant of a tunnel) has received considerable attention in the literature, e.g. [2, 4, 5, 6, 
9,10, 11, 12, 13, 14, 15, 16, 18, 19]. 
 
The Laplacetransform (LT) of the survival function has been derived by various (alternative) 
mathematical methods, such as the supplementary variable technique (SVT), e.g. [7, 8, 12] 
and the phase method, e.g. [11].  The resulting set of transient differential equations are then 
solved by a LT technique.  It should be noted that this particular methodology requires the 
existence of bounded density functions, hereby imposing tangible (statistical) restrictions on 
the generality of the survival function.  The advanced concept of Lebesgue-Stieltjes 
integration is rather an exception than a rule.  On the other hand, the SVT is not restricted to 
any particular reliability system.  Thus, apart from the restrictions imposed on the underlying 
distributions, the SVT remains a powerful (but intricate) technique, e.g. [12, 15, 17].   
Unfortunately, little-to-no attention had been paid to invert the corresponding LT.  As usual, 
the inversion process is left to the system designer.  Consequently, the reliability analysis of 
Gaver’s system (and its variants), subject to arbitrary distributions, is far from complete. 
 
First, we present a general reliability analysis of Gaver’s parallel system valid for an arbitrary 
repair time distribution.  Then, some general hints are formulated to invert the LT by 
numerical methods.  Finally, a tangible methodology to derive the exact inverse in some 
particular but important cases of non-rotational transforms is proposed. 
 
It should be noted that the proposed exact inversion procedure is, in general, quite 
complicated.  Therefore, in order to keep the analysis as simple as possible, we consider the 
particular but important case of deterministic repair is considered.  However, note that the 
proposed procedure works equally well for any other distribution, provided that certain 
Cauchy-type integrals (see forthcoming analysis) can be evaluated as a finite sum in terms of 
linear combinations of known algebraic and/or transcendental functions. 
 
In the opposite case, one is forced to rely upon alternative numerical methods (see 
forthcoming remarks). 
 
2.  FORMULATION 
 
Consider Gaver’s parallel system subjected to the usual conditions (i.i.d. random variables, 
instantaneous switch, perfect repair). 
 
Each operative unit has a constant failure rate 0>λ and an arbitrary repair time distribution 

0)0((.), =RR .  Let (.)1(.) RR −≡− .  The repair time is denoted by r . 
 
Let }0,{ ≥tX t be a stochastic process, with arbitrary discrete state space ),0[},,{ ∞⊂CBA , 
characterized by the following mutually exclusive events: 
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:}{ AX t =  “Both units are simultaneously operative at time t.” 
:}{ BX t =  “One unit is operative and the other unit is under progressive repair at time t.” 
:}{ CX t =  “Both units are down at time t.” 

 
Consider the stopping time 
 

}.:0inf{: 0 BXCXt t ==>=Θ  
 
In reliability theory, Θ is usually called the first system-down time.  The origin of time is 
fixed at the instant of the first failure, so that the busy period of the repairman starts at 0=t , 
i.e. BX =0 , P-a.s.  The survival function of the system is defined by 
 

=ℜ )(t P .0},{ ≥>Θ tt  
 
The greatest integer function is denoted by [.]. 
 
3.  INTEGRAL EQUATION 
 
Observe that state A is regenerative for the process }0,{ ≥tX t .  Hence, by renewal theory, 
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The Stieltjes-convolution theorem entails that 
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Observe that Θ−seΕ represents the Laplace-Stieltjes-transform of the distribution of θ , 
whereas rse )( λ+−Ε  represents the LT of the exponential tail with respect to the repair time 
distribution, i.e. 
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Clearly, Θ is finite P-a.s. 
 
4.  SURVIVAL FUNCTION 
 
Note that (.)ℜ is uniquely determined by the Laplace-transform 
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where, 
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Remarks 
 
• First consider the case of Coxian repair, i.e. let 
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where 0;,);( ≥>= kmmknsQn , is a polynomial of degree n . 

 
An explicit evaluation of (.)ℜ could then be performed by a numerical inversion 
technology, sustained by user-friendly software, such as Wofram [20].  Cf. [17] for further 
details. 
 

• For a non-rational transform (for instance, induced by Weibull repair) an exact evaluation 
of (.)ℜ is in general excluded.  However, a numerical evaluation could then be obtained 
by an inversion technology developed by Blanc [3]. 

 
• For a particular family of non-rational transform, the exact explicit evaluation of (.)ℜ  

can be achieved by methods of complex analysis.  As an application, consider the case of 
deterministic repair. 

 
5.  DETERMINISTIC REPAIR 
 
Let 

⎩
⎨
⎧

<
>≥

=
.0

0

,0
,0,1

)(
ttif
ttif

tR  

 
For the sake of simplicity, we take 0t as time unit.  Hence ssr ee −− =Ε .  By (1), we have 
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Some algebra entails that 
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where ( ) )(122:)( λλλρ +−−+= sess . 
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Observe that (.)ℜ is continuous on ),0( ∞ and of bounded variation on ),0[ ∞ .  Hence, by the 
inversion thereom, 
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Or, by (2), 
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An application of the maximum modulus theorem [1] entails that 
 

1)(max)(
0Re

<=≤ −

≥

λρρ ess
s

. 

 
Consequently, the identity 
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holds for Re 0≥s  and 0≥t (where the empty sum is defined 0).  In addition, )(sρ is analytic 
in the half-plane }0Re:{ >∈ sCs and boundedly continuous on the closed half-plane 

}0Re:{ ≥∈ sCs .  Moreover,  
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Hence, by Cauchy’s theorem, 
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On the other hand, 
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An application of the residue theorem reveals that for ][,...,1 tk = and 1≥t  
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However, by Leibniz’s formula, 
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By (3), (4), (5) and the identity 
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Figure 1 shows the graph of 5.0(.), =ℜ λ (case 1) and 3.0=λ (case 2). 
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Figure 1:  Graph of 3.0(.), =ℜ λ  (upper graph), 5.0=λ (lower graph). 
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