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ABSTRACT 

The use of automated network planning systems is crucial for 
reducing the deployment cost and planning time of passive optical 
telecommunication networks. Mixed integer linear programming is 
well suited for the purpose of modelling passive optical networks; 
however, excessive computing times for solving large-scale problem 
instances render these approaches impractical. In this paper, an 
arc-based, a path-based, and a composite integer linear 
programming formulation of the passive optical network planning 
problem are considered. A reduction in computing times and peak 
memory usage is obtained by applying multiple heuristics as warm-
starts to these problem formulations. Finally, the computational 
results presented in this paper are based on real-world Geographic 
Information System data — more specifically, a neighbourhood in 
Potchefstroom, South Africa. 

OPSOMMING 

Die gebruik van geoutomatiseerde netwerkbeplanningstelsels is 
noodsaaklik om die ontplooiingskostes en beplanningstyd van 
passiewe optiese telekommunikasienetwerke te verminder. 
Alhoewel gemengde heeltallige lineêre programmering benaderings 
geskik is vir die modellering van passiewe optiese netwerke, die 
rekenaarvereistes ten opsigte van verwerkingstyd veroorsaak dat 
hierdie benaderings onprakties is. In hierdie artikel word ŉ 
skakelgebaseerde, ŉ padgebaseerde en ŉ saamgestelde lineêre 
programmering benadering voorgestel. Die resultate toon dat ŉ 
verbetering in verwerkingstyd asook geheue gebruik is moontlik 
deur die gebruik van heuristiek wat begin oplossings genereer vir 
die voorgestelde probleem formulerings. Die resultate in hierdie 
artikel is gebaseer op werklike Geografiese Inligtingstelsel data, 
spesifiek data van ŉ woonbuurt in Potchefstroom, Suid-Afrika. 

 

1 INTRODUCTION  

Global consumer internet protocol traffic is expected to reach 233 EB per month in 2021 [1]. The 
increase in bandwidth demand requires that internet service providers deploy access networks that 
are able to keep up with the increase in bandwidth usage. Asymmetric digital subscriber line (ADSL) 
technology is widely used in South Africa currently, and is on average slower than fibre-to-the-home 
(FTTH) [2]. The obvious solution is to move away from ADSL and towards passive optical networks 
(PONs); but this requires extensive network planning. 
 
The complexities involved in the design of a PON necessitate the use of automated network design 
tools. Apart from the choice of splitter types and splitter locations, a cost-efficient topology design 
is essential. There are several approaches in the literature to designing cost-efficient PONs, but 
there is typically a trade-off between the use of heuristics and exact solution approaches. The 
former is typically more computationally efficient without any solution quality guarantees, whereas 
the latter has the attractive feature of providing proven optimal solutions that may, however, be at 
the expense of computing times and memory usage. 
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Integer linear programming (ILP) is well suited for the purpose of modelling passive optical networks; 
however, being an exact solution approach, it may result in excessive computing times when solving 
large-scale problems. In this paper, a combination of heuristics and ILP approaches is presented in 
order to speed up computing times and allow for better memory use. The computational results 
presented in this paper employ warm-start solutions (partial initial solutions) obtained from the 
heuristics in Luies, Grobler and Terblanche [3] as starting solutions for the ILP formulation presented 
here. Table 1 gives a brief overview of the features of these heuristics. 
 
The paper is organised as follows. In section 2, the PON planning problem is defined, focusing on 
the structure of a PON. In section 3, related work on PON planning automation is given, all of which 
can be classified as exact, heuristics, or meta-heuristics approaches. In section 4, four different 
mathematical models are presented. The methodology of employing the models and heuristics is 
given in section 5. The results are given in section 6. The paper is concluded in section 7. 

Table 1: Model and heuristic notation 

Name  Description  Usage 

RECREM Recursively removes the splitter that impacts the 
network deployment cost the most. 

When no obvious structure is 
visible. 

KSPLIT Based on k-means clustering algorithm. Estimates 
possible optical splitter locations by clustering the 
optical network units (ONUs) together according to their 
geographic location, and using the optical splitter 
location closest to the centroid. 

When ONUs are in clusters. 

CPARC Commodity-pair arc-flow model, where ‘commodity-pair’ 
refers to a pair that contains an optical splitter and an 
ONU, or an optical splitter and the CO. Flow variables are 
defined for each commodity-pair. Details are provided in 
section 4.1. 

To obtain optimal solutions. 

HPATH Path-flow model with paths limited to only the shortest 
paths. Details are provided in section 4.2. 

Used as a heuristic by limiting the 
number of paths. 

AARC Aggregated arc-flow model, where a single flow variable 
is defined for each edge. Details are provided in section 
4.3. 

To obtain quality partial solutions. 

APATH Aggregated arc-path model, in which the distribution 
network uses a path-flow formulation and the feeder 
network uses an aggregated arc-flow formulation. Details 
are provided in section 4.4. 

Attempt to combine features from 
aggregated arc-flow and a heuristic 
path-flow to reduce memory usage 
and network deployment cost. 

2 PROBLEM DEFINITION  

A PON implements a point-to-multipoint architecture, in which an optical splitter serves multiple 
optical network units (ONUs). ONUs convert optical signals to electrical signals, and are the 
equipment used by the customers to connect to the network. The central office (CO) contains optical 
line terminals (OLTs) that control the flow of information to the ONUs. The network has two parts: 
the feeder network, which connects the CO with all the optical splitters; and the distribution 
network, which connects the ONUs to optical splitters. The structure of a typical PON is provided in 
Figure 1. Optical splitters cannot be used as a switch, and they broadcast the same data to multiple 
ONUs. The main advantage of an optical splitter is the reduction in network deployment cost. Only 
a single fibre from the CO to the optical splitter is needed to connect multiple ONUs. Each optical 
splitter can serve a predetermined number of ONUs, usually by a power of two. Multiple optical 
splitter types may be placed at a single location. The common split ratios are 1:8, 1:16, 1:32, and 
1:64.  
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Figure 1: Basic PON structure 

PONs have a tree structure, and the network deployment cost can be reduced by placing several 
fibre cables in a single trench (duct sharing). The number of optical splitters at each location, the 
types of optical splitters, and the layout of the fibre cables (via optical splitters) must be chosen to 
ensure that all ONUs are connected to the CO with minimum deployment cost.  

3 RELATED WORK 

According to [4], when more ONUs connect to the same optical fibre splitter, the more likely it is 
that fibre optic cables will share parts of the same path. The number of paths between an optical 
splitter and an ONU increases exponentially as the node density increases. When considering 
different paths between optical splitters and ONUs, these paths can potentially share the trenches 
with paths to other ONUs. A heuristic, based on a network flow formulation and presented by Van 
Loggerenberg, Grobler and Terblanche [5], constructs feasible solutions by limiting the number of 
paths to improve fibre duct sharing. A disintegration heuristic is proposed [6] in an attempt to reduce 
computing times by using the output of a centroid, a density-based, and a hybrid clustering 
algorithm. The computational results are favourable for large problem instances. Van Loggerenberg 
[7] employs a Benders decomposition approach to improve scalability. 
 
Li and Shen [8] proposed a suboptimal heuristic to minimise the deployment cost of greenfield PONs 
through disintegration. The heuristic algorithm selects some random optical splitters as the initial 
solution, and improves the solution through a simulated annealing process. The algorithm is finally 
compared with a random-cut heuristic to show the efficiency of the algorithm. 
 
Ouali and Poon [9] demonstrate how an ILP can be applied to automate FTTH designs by reducing 
the capital expenditure of telecommunication companies. The proposed model incorporates multi-
hierarchical PONs, and optimal solutions could be computed for one of the so-called MediumNet 
datasets (two optical splitters and 94 ONUs) they considered in their study. No optimal solutions 
could be computed for the so-called BigNet datasets (five optical splitters and 482 ONUs). 
 
Various approximation approaches to solving PON planning problems are suggested — for instance, 
simulated annealing, particle swarm optimisation, and genetic algorithms [10, 11, 12, 13]. 
 
Two greedy heuristic algorithms are presented by Luies et al. [3]. The first algorithm uses all the 
optical splitters at first, removing the splitter that impacts the network deployment cost the most. 
This process is repeated until the network deployment cost cannot decrease any further. The second 
algorithm estimates possible optical splitter locations by clustering the ONUs according to their 
geographic location, and then by connecting the optical splitter location closest to the centroid of 
these clusters. 
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4 MODELS 

The model formulations considered in this paper are all based on the well-known multi-commodity 
network flow formulation [14]. In the context of PON planning, a commodity-pair is defined as a 
pair that contains either an optical splitter and an ONU, or an optical splitter and the CO. Four 
different mathematical models are presented below: an arc-flow formulation, a path-flow 
formulation, an aggregated arc-flow formulation, and a composite path-arc-flow model formulation. 
The number of paths used in the path-flow implementation is limited to only the shortest paths, 
which reduces computation times and memory usage at the expense of higher network deployment 
costs. The aggregated arc-flow formulation does not require a flow over every commodity-pair. 
Although the total cost is lower for the aggregated arc-flow than for the heuristic path-flow 
implementation, it is not trivial to determine which ONU connects to which optical splitter location. 
The arc-flow formulation determines which commodity-pairs use trenches, but has significantly 
more flow variables, which may result in higher computing times and memory usage. The models 
are discussed in more detail in sections 4.1 — 4.4. 

4.1 Arc-flow formulation (CPARC) 

The setup cost for a CO is denoted by 𝑐𝑐. The set 𝑈 denotes the index set of all ONUs included in the 
network. The cost of a single ONU is 𝑐𝑢, with 𝑢 ∈ 𝑈. The set of splitter locations is denoted by 𝑆 and 
the set of splitter types by 𝑍. It is possible to place more than one type of optical splitter at a single 

location, which is represented by the decision variable 𝑦𝑖
𝑧 ∈ ℕ0, with 𝑖 ∈ 𝑆 and 𝑧 ∈ 𝑍.  

 

The graph representation of the PON network is facilitated by a set of edges 𝐸 and a set of arcs 𝐴. 
Variables indexed by an arc (𝑖, 𝑗) ∈ 𝐴 imply directional flow from node 𝑖 to node 𝑗, whereas indexing 
with an edge 𝑒 ∈ 𝐸 is directionless, which is typically associated with variables associated with 

trenching. The trenching cost for edge 𝑒 is 𝑐𝑒
𝑇, and the binary decision variable 𝑥𝑒 ∈ {0,1} specifies 

whether the solution includes edge 𝑒 for trenching. The set of commodities 𝐾 includes all 
commodity-pairs considered in the formulation. The set 𝐾𝑠

𝑢 ⊂ 𝐾 contains the distribution 

commodity-pairs, and the set 𝐾𝑐
𝑠 ⊂ 𝐾 contains feeder commodity-pairs. The flow variable 𝑓𝑖𝑗𝑘 ∈  ℤ 

over arc (𝑖, 𝑗) ∈ 𝐴 for commodity 𝑘 ∈ 𝐾 determines the placement of a fibre cable between nodes 𝑖 
and 𝑗. 

 
The objective of the commodity-pair arc-flow formulation (CPARC) is to 
 

Minimise 

𝑓0 = 𝑐𝑐 + |𝑈|𝑐𝑢 +∑∑𝑦𝑖
𝑧𝑐𝑧

𝑧∈𝑍𝑖∈𝑆

 , + ∑𝑥𝑒𝑐𝑒
𝑇

𝑒∈𝐸

+ ∑ ∑ 𝑓𝑖𝑗𝑘𝑐𝑖𝑗
𝐹

(𝑖,𝑗)∈𝐴𝑘∈𝐾

  (1) 

subject to 

∑ ( ∑ 𝑓𝑖𝑗𝑘  

𝑗∈(𝑖)

− ∑ 𝑓𝑖𝑗𝑘  

𝑗∈(𝑖)

)

𝑘∈𝐾𝑠
𝑢

= {
−1, 𝑖 ∈ 𝑈,
𝑁𝑖 , 𝑖 ∈ 𝑆,
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

  (2) 

∑ ( ∑ 𝑓𝑖𝑗𝑘  

𝑗∈(𝑖)

− ∑ 𝑓𝑖𝑗𝑘  

𝑗∈(𝑖)

)

𝑘∈𝐾𝑐
𝑠

=  

{
 
 

 
 −∑𝑦𝑖

𝑧

𝑧∈𝑍

, 𝑖 ∈ 𝑆,

∑∑𝑦𝑖
𝑧

𝑧∈𝑍𝑗∈𝑆

, 𝑖 ∈ 𝐶,

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

  (3) 

𝑁𝑖 ≤∑𝑦𝑖
𝑧𝑛𝑧

𝑧∈𝑍

 ,            ∀𝑖 ∈ 𝑆,   (4) 

∑(𝑓𝑖𝑗𝑘 + 𝑓𝑗𝑖𝑘)

𝑘∈𝐾

≤ ∆𝑥𝑒 ,   ∀𝑒 ∈ 𝐸  (5) 

 
The objective function (1) shows the total deployment cost of the network. The first two terms of 
the objective function are constant, since the ONUs are fixed for each problem instance. To ensure 
that each ONU is connected to exactly one optical splitter location, constraint set (2) is applied. 
Each ONU is a sink node with an incoming flow of one, whereas each optical splitter location is a 
source node with an outgoing flow 𝑁𝑖, which is the sum of all the flows from the ONUs connected to 
the splitter 𝑖. The function (𝑖) returns a set of all the nodes adjacent to node 𝑖. The flow to all 
other nodes should be zero in constraint set (2). 
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Constraint set (3) presents the feeder network. In this case, each optical splitter location is a sink 
node with an incoming flow equivalent to the sum of the optical splitters at that location. The CO 
is the source node, with an outgoing flow equal to the number of splitters used in the solution. The 
flow of all the other nodes should be zero. 
 
Constraint set (4) ensures that the optical splitter locations contain valid optical splitter ratios. 
Constraint set (5) sets the binary decision variables 𝑥𝑒 ∈ {0,1} whenever there is a flow over an edge 
e. Since constraint set (5) is a set of big-M constraints, ∆ can be any suitable large positive number. 

4.2 Heuristic path-flow formulation (HPATH) 

Unlike the arc-flow formulation, the number of paths used in the path-flow formulation can be 
limited to reduce computing times and memory usage, but unfortunately at the expense of solution 
quality. In this paper, only the shortest path between each commodity-pair is considered.  
 
In order to facilitate the formulation of path variables, the index set 𝑃(𝑘) is used to describe the 
set of all possible paths between the nodes of the commodity-pair 𝑘 ∈ 𝐾. The implementation of a 
heuristic that involves only shortest paths will imply that the set 𝑃(𝑘) will be restricted to only a 
single shortest path for a commodity-pair 𝑘 ∈ 𝐾. 
 

The variable 𝑓𝑝 ∈ ℤ denotes the flow over a path 𝑝 ∈ 𝑃(𝑘), for a commodity  

𝑘 ∈ 𝐾. The total fibre cable cost for the network is the sum of all the paths used multiplied by the 

cost of each path 𝑐𝑝
𝐹 . The variables from the previous formulation that relate to the splitter 

locations, splitter types, and trenching decisions are re-used in the formulation below. 
The objective of the heuristic path-flow formulation (HPATH) is to 
 

Minimise 

𝑓0 = 𝑐𝑐 + |𝑈|𝑐𝑢 +∑∑𝑦𝑖
𝑧𝑐𝑧

𝑧∈𝑍𝑖∈𝑆

 , + ∑𝑥𝑒𝑐𝑒
𝑇

𝑒∈𝐸

+ ∑𝑓𝑝𝑐𝑝
𝐹 

𝑝∈𝑃

  (6) 

 
subject to 

∑   ∑ 𝑓𝑝 = 1

𝑝∈𝑃(𝑘)𝑘∈𝐾𝑠
𝑢(𝑗)

,        ∀𝑗 ∈ 𝑈  (7) 

∑   ∑ 𝑓𝑝 =∑𝑦𝑖
𝑧

𝑧∈𝑍𝑝∈𝑃(𝑘)𝑘∈𝐾𝑠
𝑐

,      ∀𝑖 ∈ 𝑆,  (8) 

∑   ∑ 𝑓𝑝 ≤∑𝑦𝑖
𝑧𝑛𝑧

𝑧∈𝑍𝑝∈𝑃(𝑘)𝑘∈𝐾𝑠
𝑐 

∀𝑢∈𝑈

,   ∀𝑖 ∈ 𝑆 
 (9) 

∑  ∑ 𝑓𝑝 ≤ ∆𝑥𝑒
𝑝∈𝑃(𝑘,𝑒)𝑘∈𝐾

,     ∀𝑒 ∈ 𝐸.  (10) 

 
The objective function (6) represents the total deployment cost. The first two constant terms are 
the setup cost of the CO and of the ONUs. Constraint set (7) represents the constraints for the 
distribution network. Each constraint considers the path from all the optical splitter locations to 
each individual ONU via the set of commodity-pairs 𝐾𝑠

𝑢(𝑗), where 𝑗 is an ONU. The sum of all the 
paths to the commodity-pairs that include a specific ONU should be one, since only a single ONU can 
be connected to an optical splitter. 
 
Similar to the distribution network, the feeder network uses path-flow constraints. Constraint set 
(8) includes the path-flow constraints for the feeder network.  
 
Constraint set (10) enables the edges included in the path p. 𝑃(𝑘, 𝑒) retrieves any path that contains 
e as an element for commodity-pair k. For the big-M constraints, ∆ can be any large number – e.g., 
|𝑃|. 

4.3 Aggregated arc-flow formulation (AARC) 

The aggregated arc-flow formulation is similar to the arc-flow formulation, with the exception that 
the aggregated arc-flow does not consider flow over each commodity-pair separately. There are 
fewer flow variables in the aggregated arc-flow than in the arc-flow model; however, there is no 
way to know which ONU is connected to which optical splitter. As a heuristic, the solutions obtained 
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from the aggregated arc-flow model can reveal some information about the problem, such as the 
optimal trenching decisions according to the binary variables 𝑥𝑒, and the optimal splitter locations. 
 
The flow variables considered in the aggregated arc-flow formulation are divided into feeder flow 

variables 𝑓𝑖𝑗
𝑓
∈ ℤ and distribution flow variables 𝑓𝑖𝑗

𝑑 ∈ ℤ, for each arc (𝑖, 𝑗) ∈ 𝐴. 

 
The objective of the aggregated arc-flow formulation (AARC) is to 
 

Minimise 

𝑓0 = 𝑐𝑐 + |𝑈|𝑐𝑢 +∑∑𝑦𝑖
𝑧𝑐𝑧

𝑧∈𝑍𝑖∈𝑆

+∑𝑥𝑒𝑐𝑒
𝑇

𝑒∈𝐸

+ ∑ 𝑓𝑖𝑗
𝑓
𝑐𝑖𝑗
𝐹

(𝑖,𝑗)∈𝐴

+ ∑ 𝑓𝑖𝑗
𝑑𝑐𝑖𝑗

𝐹

(𝑖,𝑗)∈𝐴

  (11) 

 
subject to 

∑ 𝑓𝑖𝑗
𝑓
 

𝑗∈(𝑖)

− ∑ 𝑓𝑖𝑗
𝑓
 

𝑗∈(𝑖)

=  

{
 
 

 
 −∑𝑦𝑖

𝑧

𝑧∈𝑍

, 𝑖 ∈ 𝑆,

∑∑𝑦𝑖
𝑧

𝑧∈𝑍𝑗∈𝑆

, 𝑖 ∈ 𝐶,

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

        (12) 

∑ 𝑓𝑖𝑗
𝑑  

𝑗∈(𝑖)

− ∑ 𝑓𝑖𝑗
𝑑  

𝑗∈(𝑖)

= {
−1, 𝑖 ∈ 𝑈,
𝑁𝑖 , 𝑖 ∈ 𝑆,
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

  (13) 

𝑁𝑖 ≤∑𝑦𝑖
𝑧𝑛𝑧

𝑧∈𝑍

 ,            ∀𝑖 ∈ 𝑆,  (14) 

𝑓𝑖𝑗
𝑓
+ 𝑓𝑖𝑗

𝑓
+ 𝑓𝑖𝑗

𝑑 + 𝑓𝑖𝑗
𝑑 ≤ ∆𝑥𝑒 ,   ∀𝑒 ∈ 𝐸  (15) 

 
The objective function (11) shows the total deployment cost of the network, and the constraints for 
the feeder network are described in (12). Constraint set (13) models the flows for the distribution 
network, and constraint set (14) ensures that the total number of ONUs is always less than or equal 
to the sum of all the optical splitter capacities at a location. Finally, constraint set (15) enables any 
edge with a flow in any direction. For the big-M constraints, ∆ is any suitable large number. 

4.4 Composite arc-path formulation (APATH)  

The composite formulation is a combination of the aggregated arc-flow and the path-flow 
formulation. One drawback of the aggregated arc-flow formulation is the loss of information on the 
commodities — i.e., there is no way to know which ONU is assigned to which optical splitter. Only 
the feeder network uses the aggregated arc-flow formulation because there is only one CO, and we 
know that each optical splitter in the solution connects to the CO. Determining the paths from the 
remaining edges is then trivial. The distribution network uses the path-flow; this allows the 
preservation of information of about the resulting commodity-pairs.  
 
The objective of the arc-path-flow formulation (APATH) is to 

 
Minimise 

𝑓0 = 𝑐𝑐 + |𝑈|𝑐𝑢 +∑∑𝑦𝑖
𝑧𝑐𝑧

𝑧∈𝑍𝑖∈𝑆

 , + ∑𝑥𝑒𝑐𝑒
𝑇

𝑒∈𝐸

+ ∑ 𝑓𝑖𝑗
𝑓
𝑐𝑖𝑗
𝐹

(𝑖,𝑗)∈𝐴

  + ∑ 𝑓𝑖𝑗
𝑑𝑐𝑖𝑗

𝐹

(𝑖,𝑗)∈𝐴

  (16) 

 
subject to 

∑ 𝑓𝑖𝑗
𝑓
 

𝑗∈(𝑖)

− ∑ 𝑓𝑖𝑗
𝑓
 

𝑗∈(𝑖)

= 

{
 
 

 
 −∑𝑦𝑖

𝑧

𝑧∈𝑍

, 𝑖 ∈ 𝑆,

∑∑𝑦𝑖
𝑧

𝑧∈𝑍𝑗∈𝑆

, 𝑖 ∈ 𝐶,

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

  (17) 

∑   ∑ 𝑓𝑝
𝑑 = 1

𝑝∈𝑃(𝑘)𝑘∈𝐾𝑠
𝑢(𝑗)

,     ∀𝑗 ∈ 𝑈,  (18) 
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∑   ∑ 𝑓𝑝
𝑑 ≤∑𝑦𝑖

𝑧𝑛𝑧
𝑧∈𝑍𝑝∈𝑃(𝑘)𝑘∈𝐾𝑠

𝑢 
∀𝑢∈𝑈

,     ∀𝑠 ∈ 𝑆, 
 (19) 

𝑓𝑖𝑗
𝑓
+ 𝑓𝑖𝑗

𝑓
+ ∑   ∑ 𝑓𝑝

𝑑

𝑝∈𝑃(𝑘,𝑒)𝑘∈𝐾𝑠
𝑢(𝑗)

≤ ∆𝑥𝑒 ,       ∀𝑒 ∈ 𝐸  (20) 

 
The objective function is similar to the other formulations, except that the feeder and distribution 

networks are shown in separate parts. The last terms in (16) show the arc-flow 𝑓𝑖𝑗
𝑓
∈ ℤ and path-flow 

𝑓𝑝
𝑑 ∈ ℤ variables. 𝑦𝑖

𝑧 ∈ ℕ0 is a decision variable for the optical splitter types at each location. 

Constraint set (17) is the same as constraint set (12), which corresponds to the constraints for the 
feeder network. Constraint set (18) is the same as constraint set (7), which allows every ONU to be 
connected to only one optical splitter. Constraint set (19) ensures the correct optical splitter ratios. 
Finally, edges are enabled with big-M constraints in (20). 

5 METHODOLOGY 

For the computational results in this study, the ILP models presented above were solved by 
employing the greedy algorithms presented in [3] as warm-start heuristics. More specifically, the 
algorithm that recursively removes optical splitters (RECREM) and the clustering algorithm (KSPLIT) 
were considered. It should be noted, however, that the aggregated arc-flow model (AARC) only 
produces partial optimal solutions — that is, it only provides information on the optimal trenching 
decisions and on the optimal splitter locations. But this information may be used in other problem 
formulations to ‘force’ the trenching and splitter locations to take on the optimal values, thus 
excluding all the edge and splitter variables not present in the optimal solution. AARC may therefore 
be employed as a pre-processor to the other ILP problem formulations. A drawback of this approach, 
however, is the inability to produce optimal solutions with CPARC, if AARC is not solved to optimality 
when applied as a pre-processor to CPARC. 
 
The edges and optical splitter locations determined with RECREM, KSPLIT, and AARC are used to 
warm-start the other ILP implementations. The path-flow implementation (HPATH) is limited to only 
the shortest path between each commodity pair in order to improve scalability. The pre-processed 
input can improve the solution quality of HPATH, since some of the edges are removed, allowing for 
different shortest paths than in the initial input data. 
 
The composite arc-path model (APATH) is an attempt to combine the ability to limit the number of 
paths and the ability to explore multiple paths at the same time. An aggregated arc-flow is used for 
the feeder network. Since a single CO is used, it is trivial to determine the path between each 
optical splitter and the CO. It is not trivial, however, to determine the paths between ONUs and 
optical splitter locations, since the flows are aggregated. Thus the path-flow formulation is used for 
the distribution part of the PON network. The APATH should produce slightly better quality solutions 
than the HPATH formulation.  

6 RESULTS 

The problem instances considered in this paper are real-world instances derived from Geographic 
Information System data. More specifically, a digital street map of a residential area in 
Potchefstroom, South Africa was used to determine ONU locations and potential splitter locations. 
From this information, three different datasets were created: SmallNet, MedNet, and HugeNet. Each 
of these datasets has a different number of ONUs and splitter locations to demonstrate the 
scalability of the suggested approach. SmallNet has 76 edges, 24 ONUs, and six possible optical 
splitter locations; MedNet has 933 edges, 389 ONUs, and 62 possible optical splitter locations; and 
HugeNet has 1787 edges, 662 ONUs, and 124 possible optical splitter locations. 
 
Table 2 shows the results of the different heuristics that are considered. In the case of AARC, partial 
solutions are obtained, and in the case of RECREM and KSPLIT, relatively low-quality feasible 
solutions are obtained. It is possible, of course, also to combine AARC with RECREM and KSPLIT by 
using the latter to generate warm-start solutions to improve the computing times of the AARC 
formulation. This combined approach is labelled as either AARC-RECREM or AARC-KSPLIT in the 
results displayed in Table 2. 
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Table 2: Preprocessed partial solutions 

Dataset (Method) Objective value (R) MEM 
(kB) 

time 
(s) 

SmallNe
t 

RECREM 
KSPLIT 
AARC 
AARC-RECREM 
AARC-KSPLIT 

755468.43 
867605.53 
708205.40 
708205.40 
708205.40 

75108 
3936 
45840 
42256 
42452 

0.03 
0.01 
1.25 
1.12 
0.96 

MedNet RECREM 
KSPLIT 
AARC 
AARC-RECREM 
AARC-KSPLIT 

7281841.17 
8145176.34 
6965882.53 
6966709.73 
6977057.52 

82752 
11896 
3432920 
3379160 
3154488 

1.32 
3.65 
>1h 
>1h 
>1h 

HugeNet RECREM 
KSPLIT 
AARC 
AARC-RECREM 
AARC-KSPLIT 

14389489.09 
15167954.37 
13699102.84 
13646557.17 
13685011.86 

105688 
35732 
1836692 
>12GB 
2104856 

8.86 
12.89 
>1h 
3320.14 
>1h 

 
From the results in Table 2, it is observed that the KSPLIT algorithm uses the least amount of 
memory, but it also obtains the worst objective function values. RECREM scales better than KSPLIT 
for computing times, and it also produces better quality solutions. Although the peak memory usage 
is worse for RECREM, the reported computing times for KSPLIT are higher. 
 
AARC produce good quality results, but lacks some information about the solution. The objective 
value obtained AARC is a realistic value, but there is no way of knowing with this model which optical 
splitter connects to which ONU. When AARC solves to optimality, the edges used and optical splitter 
locations are the same as in the optimal solution of CPARC. The problem is that AARC is not able to 
produce an optimal solution for a large dataset such as MedNet and HugeNet. 
 
Using KSPLIT as a warm-start for AARC improves the total computation time of SmallNet, but has no 
significant impact on MedNet and HugeNet. With RECREM as a warm-start for AARC, there is a slight 
improvement in the objective function value; however, there is excessive memory usage. 
 
Table 3 shows the results obtained for the path-flow, arc-flow, and arc-path composite models 
respectively. Results are also reported when these formulations are solved with warm-start solutions 
obtained from the heuristic approaches RECREM and KSPLIT, or with the partial solution computed 
by solving the AARC formulation. Recall that the solutions obtained from solving the different ILP 
formulations may only be considered heuristic if AARC is not solved to optimality.  
 
The SmallNet problem instance is used to benchmark the solution quality of each model formulation. 
HPATH only considers shortest paths between commodity-pairs; thus its search space is a subset of 
the APATH search space. APATH only considers shortest paths for the distribution network, whereas 
an arc-flow formulation is used for the feeder network, which leads to a larger search space than 
for HPATH. CPARC considers the complete search space, and is not presented as a heuristic; but it 
is obvious from MedNet and HugeNet that CPARC does not scale well. For the SmallNet, HPATH 
performed around two per cent worse when comparing its objective value with that of APATH, and 
ARC-PATH performed more than four per cent better than HPATH. 
 
For SmallNet, AARC was solved to optimality, and when used as a warm-start for other models, it 
also resulted in the lowest possible objective function value. Since the solution obtained from AARC 
has fewer possible optical splitter locations and edges for the input than other models, fewer 
decision variables are created and memory usage is lower. Peak memory usage of APATH and HPATH 
with AARC used as a warm-start for MedNet was less than 4GB, which is significantly than with the 
other heuristics (all larger than 12GB). The combined approach of APATH and HPATH with AARC also 
resulted in a 1.3 per cent to 2.4 per cent improvement in solution quality. The results obtained for 
HugeNet also show the same trend: the peak memory usage is lower and solution quality is higher 
when AARC is used as a warm-start for HPATH. When AARC is used as a warm-start there is a 3.02 
per cent to 5.39 per cent improvement in objective function value, compared with when other 
heuristics were used. Unfortunately, CPARC did not obtain a single solution for the MedNet and 
HugeNet problem instances, since the decision variables for CPARC are significantly more than in 
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the other model formulations. In most cases, RECREM and KSPLIT showed little to no improvement 
for some instances. 

Table 3: Comparison of different implementation methods for large dataset. 

Dataset (Method) Objective value (R) MEM (kB) time (s) 

SmallNet HPATH 
HPATH-RECREM 
HPATH-KSPLIT 
HPATH-AARC 
APATH 
APATH-RECREM 
APATH-KSPLIT 
APATH-AARC 
CPARC 
CPARC-RECREM 
CPARC-KSPLIT 
CPARC-AARC 

740039.41 
740039.41 
740039.41 
708205.40 
724577.34 
724577.34 
724577.34 
708205.40 
708205.40 
708205.40 
708205.40 
708205.40 

34892 
33760 
35308 
45840 
45296 
44440 
46520 
45840 
67048 
72704 
74304 
45840 

0.12 
0.13 
0.13 
1.26 
1.01 
0.73 
0.97 
1.29 
1.12 
1.06 
1.11 
1.30 

MedNet HPATH 
HPATH-RECREM 
HPATH-KSPLIT 
HPATH-AARC 
APATH 
APATH-RECREM 
APATH-KSPLIT 
APATH-AARC 
CPARC 
CPARC-RECREM 
CPARC-KSPLIT 
CPARC-AARC 

7138161.95 
7134714.34 
7127273.96 
6968135.68 
7067984.28 
7057233.90 
7059051.55 
6968135.68 
N/A 
N/A 
N/A 
N/A7 

>12GB 
>12GB 
>12GB 
3529120 
>12GB 
>12GB 
>12GB 
3529120 
>12GB 
>12GB 
>12GB 
>12GB 

6322.95 
>2h 
>2h 
>2h 
4601.01 
4158.69 
6187.32 
>2h 
DNF 
DNF 
DNF 
DNF 

HugeNet HPATH 
HPATH-RECREM 
HPATH-KSPLIT 
HPATH-AARC 
APATH 
APATH-RECREM 
APATH-KSPLIT 
APATH-AARC 
CPARC 
CPARC-RECREM 
CPARC-KSPLIT 
CPARC-AARC 

14467443.35 
14188772.84 
14221346.34 
13687546.03 
14170474.41 
14113316.87 
14234834.33 
13687546.03 
N/A 
N/A 
N/A 
N/A 

4733052 
3005632 
5207556 
1836692 
4499556 
4914808 
4337020 
1836692 
>12GB 
>12GB 
>12GB 
>12GB 

>2h 
>2h 
>2h 
>2h 
>2h 
>2h 
>2h 
>2h 
DNF 
DNF 
DNF 
DNF 

7 CONCLUSION  

The arc-flow model does not scale with an increase in the number of optical splitter locations and 
ONUs. The composite arc-path model and the path-flow model both show potential as heuristics, 
especially when they are provided with partial solutions to be used as a warm-start, which is 
obtained by solving the aggregated arc-flow model. In most cases, RECREM and KSPLIT did not show 
significant improvement, if at all, for some of the problem instances. It is clear that the partial 
solutions obtained from the aggregated arc-flow model provided valuable information about the 
problem, and may be exploited to improve the solution quality of other approaches. Using the 
aggregated arc-flow solutions as a warm-start also improved the scalability of the path-based 
formulation when employed as a heuristic. 
 
Future work includes the exploration of multiple methods — for instance, the use of statistical 
learning to extract valuable information from the problem. This may be achieved by investigating 
the structure of PONs in an attempt to determine which edges and optical splitter locations are 
more likely to be used in the optimal solution. 
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