
South African Journal of Industrial Engineering May 2019 Vol 30(1), pp 78-93

78

SINGLE-MACHINE SCHEDULING OF INDIVISIBLE MULTI-OPERATION JOBS

F.C. Çetinkaya1*, H.A. Çatmakaş1 & A.K. Görür2

ARTICLE INFO

Article details
Submitted by authors 7 Jul 2018
Accepted for publication 18 Apr 2019
Available online 29 May 2019

Contact details
* Corresponding author
 cetinkaya@cankaya.edu.tr

Author affiliations
1 Industrial Engineering

Department, Çankaya University,
Turkey

2 Computer Engineering

Department, Çankaya University,
Turkey

DOI
http://dx.doi.org/10.7166/30-1-2017

ABSTRACT

This paper considers a single-machine scheduling problem of multi-
operation jobs where each job consists of several operations
processed contiguously, rather than being intermingled with the
operations of different jobs. That is, the jobs are indivisible. A
sequence-independent setup is required if the machine switches
from one operation to another. However, no setup is necessary
before the first operation of a job if this first operation is the same
as the last operation of the immediately previous job. A job is
complete when all of its operations have been processed. We
investigate the problem for two cases. Makespan, which is the time
needed to complete all jobs, is minimised in the first case; whereas
the total completion time, which is the sum of the job completion
times, is minimised in the second case. We show that the makespan
problem is solvable in polynomial time. For the problem of
minimising total completion time, we develop a mixed integer
linear programming (MILP) model, which is capable of solving small
and medium-sized problem instances optimally, and obtain a very
small gap between the solution found and the best possible solution
for the unsolved large-sized problem instances.

OPSOMMING

Hierdie artikel ondersoek ŉ enkel-masjien skeduleringsprobleem
van meervoudige operasie take waar elke taak uit verskeie
operasies bestaan wat kontinu verwerk word eerder as om gemeng
te wees met die operasies van ander take. Die take is dus
onverdeelbaar. ŉ Volgorde-onafhanklike opstelling word vereis as
die masjien wissel van operasie na ŉ ander. Geen opstelling is egter
nodig voor die eerste operasie van ŉ taak indien die eerste operasie
van die nuwe taak dieselfde is as die vorige taak se laaste operasie
nie. Die tyd wat dit neem om elkeen van die take te voltooi is
eerstens geminimeer. Daarna is die totale voltooi tyd (die som van
al die taak voltooi tye) geminimeer. Daar word gewys dat die tyd
wat dit neem om elke taak te voltooi oplosbaar is in polinome tyd.
Om die totale voltooi tyd te minimeer is ŉ gemengde heelgetal
lineêre programmeringmodel ontwikkel wat daartoe in staat is om
klein- en mediumgrootte probleme optimaal op te los. Die model
behaal ook ŉ baie klein verskil tussen die geïdentifiseerde oplossing
en die beste moontlike oplossing vir groot probleemgevalle.

1 INTRODUCTION

Scheduling is the allocation of resources to complete a given set of tasks over time. In manufacturing
systems, resources and tasks are usually referred to as machines and jobs respectively [1].
Scheduling is a complex issue, because determining the processing sequence of jobs on a machine
is affected by many factors, such as processing times, setup times, due dates, precedence relations
among jobs, etc. Generally these factors cannot be handled without a systematic approach.
Researchers have investigated scheduling problems to satisfy the need for a systematic approach
since the 1950s. In most traditional scheduling problems, it is assumed that there is only one group

79

consisting of n jobs to be processed. Scheduling problems vary with the concern of increasing
efficiency in different manufacturing and service systems. This concern also leads to an increase in
studies with setup-time considerations. Significant setup times are required whenever a machine
completes the processing of a job and switches to a different job. Setup activity may include
obtaining tools, positioning work in process material, returning tools, cleaning up, setting the
required jigs and fixtures, adjusting tools, and inspecting material. Setup for a job can be a sequence
independent activity, depending only on the job to be processed, or it can be a sequence dependent
one, depending on both the job to be processed and the immediately preceding job [2],[3]). Setup
time is one of the most important factors that affect the efficiency and use of resources. Most
studies in the literature have thus focussed on reducing the effect of setup time.

In the traditional single-machine scheduling problem with multi-operation jobs, each job has
multiple operations that belong to several distinct families, and no setup is incurred whenever an
operation is to be processed following an operation of the same family. Furthermore, it is assumed
that all jobs are divisible; that all operations in the same family are contiguously processed (i.e.,
any operation of a job is allowed to be intermingled with the operations from different jobs); and
that decisions are made to determine the sequence of the families of operations and the sequence
of jobs in each family sequence to optimise a given scheduling performance measure [4],[5].
However, in our study we assume that all jobs are indivisible, as in the study by Yang, Hou and Kuo
[6], so that all operations for each job are processed contiguously (i.e., any operation of a job is not
allowed to be intermingled with the operations from different jobs). This is actually the fundamental
characteristic of group scheduling and the so-called group technology assumption. In our study, we
assume that a sequence-independent setup is required if the machine switches from one operation
to another. However, no setup is necessary before the first operation of a job, if this first operation
is the same as the last operation of the immediately previous job. The decisions in our problem are
made to determine the sequence of jobs and the sequence of operations in each job sequence.

The motivation for this relatively new type of scheduling problem comes from several real-world
applications. One application is in a manufacturing cell with a multi-purpose flexible machine that
is capable of processing several jobs with multiple operations (e.g., drilling, turning, punching,
etc.). To prevent time losses from loading and unloading the machine, all operations of a job (part)
are processed contiguously once the part is loaded to the machine. That is, the jobs are indivisible.
The machine has a turret holding various machine tools used for several operations. Each tool change
takes a different time in general to set up the machine to perform an operation. If two consecutive
operations scheduled on the machine are the same, then the tool is not changed, and the machine
continues to use the same tool so that the setup time between these operations becomes zero.

Another application comes from customer order scheduling (COS). In an order-based manufacturing
environment, scheduling is usually referred to as a customer order scheduling problem, in which
there are several customer orders, each consisting of one or more individual products. The
composition of products in each customer order is pre-specified by the customer. Furthermore,
different customers may give orders having one or several of the same products, and all products in
each order are processed and shipped as a group at the same time to the customer [7],[8]. Within
the context of multi-operation job scheduling, a customer order and a product ordered by a
customer may correspond to a job and an operation in the job respectively. Thus customer order
scheduling and multi-operation job scheduling are two closely related problems.

The contribution of our study in this paper is twofold. First, our study is a variant of the single-
machine scheduling problem with multi-operation jobs, and differs from the studies in the literature;
and, to the best of our knowledge, our study is the first effort that considers the above-mentioned
variant of the indivisible multi-operation job scheduling problem. We hope that our study will open
a new direction for future research, since our setup time consideration is different from the studies
in the literature. Second, we show that the makespan minimisation problem under consideration
can be solved in polynomial time, and a mixed integer linear programming (MILP) model can be used
to solve the small and medium-sized problems when the total completion time is minimised.

The remainder of this paper is organised as follows. Section 2 has a brief review of the works most
relevant to our study of multi-operation job scheduling and customer order scheduling problems.
Section 3 describes the problems being considered, and the structural properties of the optimal
schedules for each of the problems. Section 4 deals with the makespan minimisation problem, and
proposes a network flow-based mathematical programming model that can be solved in polynomial

80

time. Section 5 investigates the total completion time minimisation problem, and proposes a mixed
integer linear programming model. The computational tests to evaluate the performance of the MILP
model are also given in this section. Finally, our main findings, and several directions for future
research, are discussed in Section 6.

2 RELATED WORK

Studies on the traditional single-machine multi-operation job scheduling problem and the single-
machine customer order scheduling problem are scarce in the literature. Special cases of these
problems can be found in early works by Gupta [9]; Gupta [10]; Baker [11]; Coffman, Nozari and
Yannakakis [12]; Aneja and Singh [13]; Ding [14]; Mason and Anderson [15]; Potts [16]; Liao [17];
Gerodimos, Glass and Potts [18]; and Yan [19].

The general descriptions of the single-machine multi-operation job scheduling problem and the
single-machine customer order scheduling problem, in which all operations in the same family are
contiguously processed, were given by Gerodimos et al. [5] and Gupta, Ho and van der Veen [4]
respectively. Gerodimos et al. [5] studied the problem of various scheduling performance measures,
and proposed a polynomial-time algorithm for minimising the total completion time of the jobs.
Gupta et al. [4] considered a special case — in which each customer order must have one job from
each of several job classes — of the problem studied by Gerodimos et al. [5] to minimise makespan
and the total carrying cost of the customer orders in a lexicographic fashion, in which a performance
measure is minimised while holding the other one fixed at its optimal value.

Ng, Cheng and Yuan [20] showed that the total completion time of the multi-operation job
scheduling problem is strongly non-deterministic polynomial-time (NP) -hard, even when the setup
times are fixed, and the processing time of each operation is 0 or 1. Su and Chen [21] developed a
polynomial time algorithm for the maximum lateness of the multi-operation job scheduling problem,
and proposed a branch-and-bound algorithm for the problem studied by Ng et al. [20].

Customer order scheduling with family setup times that are required whenever production switches
from one family to another was considered by Erel and Ghosh [22]. Their study considers a situation
where several customers give orders for various quantities of products in different product families.
They considered the sum of the customer order lead time, which is the time from the start to the
completion of a customer order, as the performance measure to be minimised. They showed that
the problem is strongly NP-hard, and proposed dynamic programming-based exact-solution
algorithms for the general problem, and a special case where the number of customer orders is
fixed.

Hazir, Gunalay and Erel [23] considered a customer order scheduling problem, which is defined as
determining the sequence of tasks to satisfy the demand of customers giving orders for several types
of products produced on a single machine. In their study, setup is required whenever a product type
is launched, and the objective is to minimise the average customer order flow time. They proposed
four major metaheuristics: simulated annealing, genetic algorithms, tabu search, and ant colony
optimisation, and compared their performance. The results of their experiments showed that tabu
search and ant colony perform better for large-sized problems, whereas simulated annealing
performs best for small-sized problems.

Hou, Yang and Kuo [24] studied a lot scheduling problem with orders that can be split and are
grouped into lots, and then processed. They showed that the problem of minimising the total
completion time of all orders can be solved in polynomial time.

All of these studies, except for the work of Yang et al. [6], assume that multi-operation jobs (orders)
are divisible. They studied the same problem given by Hou, Yang and Kuo [24], but orders are
restricted to be indivisible. They showed that the problem is NP-hard in the strong sense, and
proposed a binary integer programming approach and four simple heuristics to solve the problem.

3 PROBLEM DESCRIPTION AND PRELIMINARY RESULTS

In this section, we first describe our problem, and then provide some observations and structural
properties of the optimal schedules for makespan and total completion time minimisation problems.

81

3.1 Problem description

Consider a set  NJJJJ ,...,, 21 of N multi-operation jobs (customer orders) ready at time zero to

be processed on a single flexible machine. Each job jJ)...,2,1(Nj  consists of jK different

operations from a set  KOOOO ,...,, 21 of K types (families) of operations jKK  , and has, at

most, one operation from each operation family. All operations of each job have no pre-specified
processing sequence, as in the case of open shops, and should be processed contiguously rather than
being intermingled with the operations from different jobs. In other words, jobs are indivisible, and

all operations of a job are processed contiguously. Each job jJ completes when all of its operations

have been processed. Each operation kO has a processing time, which is denoted by kp . A

sequence-independent setup time ks is required before the operation kO whenever the machine

completes the processing of an operation and switches to the operation kO . However, if two

operations processed consecutively are the same, no setup is required. In other words, no setup is
needed before an operation of a job if this operation is processed as the first operation of that job
and is the same as the last operation of the immediately preceding job. Setup activity may include
obtaining tools, positioning work in process material, returning tools, cleaning up, setting the
required jigs and fixtures, adjusting tools, and inspecting material. Furthermore, the machine can
perform, at most, one operation at a time, and cannot perform any operation while a setup takes
place. We assume that pre-emption is not allowed — i.e., the setup and operations of any job cannot
be interrupted at any time and resumed at a later time.

In the scheduling problem defined above, decisions are made to determine the sequence of the jobs
and the sequence of operations in each job to optimise a given scheduling-performance measure.
We investigate this problem for two cases. Makespan (the time to complete all jobs) is minimised in
the first case, while the total completion time (the sum of the completion times of the jobs) is
minimised in the second case. The first case, which is equivalent to minimising the total required
setup time, is focused on improving resource use and productivity, whereas the second one is
equivalent to minimising total work-in-process inventory. It is clear that determining the first and
last operations of each job will be enough to obtain the sequence of operations in each job.
Throughout this paper, we will call the sequences of jobs and operations job sequence and
operations sequence respectively. Furthermore, a schedule in which both job and operation
sequences are specified will be called a schedule.

Before we proceed with our analysis, it seems appropriate to illustrate the problem with a numerical
example.

Example 1. Consider a simple instance of the problem in which there are three indivisible jobs and
four different types of operations. Job 1 has operations 1 and 3; Job 2 has operations 1, 2, and 4;
and Job 3 has only operation 3. Within the context of customer order scheduling, these three jobs
and four operations correspond with three customer orders and four different products ordered by

the customers respectively. Setup and processing time);(kk ps for operations 1 to 4 are (3;3), (2;4),

(4;7), and (1;5) respectively. As illustrated in Figure 1(a), a feasible schedule for the operation

families is)()()()(3131212224 JJOJJOJOJO  in the traditional single-machine scheduling

problem with multi-operation jobs. However, a feasible schedule of the jobs in our problem is

)()()(333111242 OJOOJOOOJ  , as illustrated in Figure 1(b). Note that there is no need for a

setup for operation 1 in Job 1 since the last operation of the previous job (Job 2) is operation 1; and
there is no need for a setup for operation 3 in Job 3 since the last operation of the previous job (Job
1) is operation 3. In both of the feasible schedules in Figures 1(a) and 1(b), the makespan is 39, and
the total completion time of the jobs is 18 + 32 + 39 = 89. It is clear that the makespan (or total
completion time) values in the divisible and indivisible cases may not be the same for every problem
instance.

82

Figure 1: Divisible and indivisible job cases

3.2 Some observations and structural properties of the optimal schedules

Property 1. For both makespan and total completion time minimisation problems, there exists an
optimal schedule without inserted idle time.

Proof. If an idle time exists on the machine, then shifting the subsequent jobs left — along with
their operations — is feasible, since there are no precedence relationships among the jobs, and this
left shifting does not increase the objective value of the current schedule.

Although Property 1 is intuitively obvious, we provide its proof for the sake of completeness.

The set of jobs J can be divided into two disjoint sets J and J  , where the set J is composed of

jobs having no common operation with other jobs, and its complement set J  is composed of

remaining jobs, such that JJJ  and  JJ .

The following polynomial-time algorithm decomposes job set J into job sets J and J  .

Step 1: Form an N by K matrix where the rows and columns represent the jobs and operations

respectively. Set each entry in this matrix to 1 if the job jJ has operation kO . Set

operation index, k=1.
Step 2: Repeat until (k=K).

(a) Calculate the number of jobs having operation Ok.
(b) If total number of jobs having operation Ok is greater than two, then put all jobs having

operation o into the job set J ; otherwise, set k=k+1.

Step 3: Put all remaining jobs in set J into J  .

Property 2. There exists at least one optimal schedule of the makespan minimisation problem in

which the jobs in set J are not intermingled with the jobs in set J  . That is, the jobs in set J

are processed successively in any order before or after the optimal sequence of the jobs in set J 

.

Proof. Suppose that jJ is a job in set J . Furthermore, suppose that lJ and mJ are two jobs in

set J  . It is obvious that processing the job jJ between lJ and mJ may prevent the earlier

completion of the job mJ if the jobs lJ and mJ have a common operation that may reduce the

makespan. Thus the job jJ in set J should not be intermingled with the jobs in set J  .

(a) Divisible job case: operations are contiguously processed

 Job-2 Job-1 Job-3

0 1 6 8 12 15 18 21 25 32 39

 Opr-4 Opr-2 Opr-1 Opr-3

0 1 6 8 12 15 18 21 25 32 39

(b) Indivisible job case: jobs are contiguously processed

83

Definition 1. Total time (jTT) of a job jJ is the sum of the setup and processing times of all jobs

in this group — i.e.,   


jk JO
kkj psTT

.

Definition 2. The shortest total time (STT) sequence is a sequence (denoted by STT) in which the

jobs are sequenced in non-decreasing order of their total time.

When the setup times are omitted, we observe that the problem reduces to the scheduling of N
jobs, with several common and uncommon operations forming a single operation in each job, since
all operations of a job are being processed contiguously. In this reduced problem, the makespan
minimisation becomes trivial, since any sequence of jobs gives the same objective value. On the
other hand, processing the jobs in STT sequence minimises the total completion time of the jobs,
where the total time of a job is only the sum of the processing times of the operations in this job,
since the setup times are omitted. However, the structure of the problem changes dramatically
when the setup times are introduced. Depending on the composition of the jobs, the total
completion time minimisation problem is not straightforward, as in the case of no-setup times, and
the shortest total time rule does not perform well.

Definition 3. Let  



























k
JO

l
JJ

jj sTTTTJB
jkl

maxmin ,

   l
JJ

jk
JO

l
JJ

j TTTTsTTJR
llkl 

















 maxmaxmin , and

  











jl
JJ

j TTTTJA
l

max

be three disjoint subsets of the set J , which is composed of jobs having no common operation with

other jobs.

From Property 1 and Definitions 1 to 3, we have the following result.

Property 3. For the total completion time minimisation problem, there is an optimal schedule with
the following properties:

(a) Jobs in subset B precede all other jobs, and jobs in subset A succeed all other jobs.

(b) Jobs in subsets B and A are scheduled in STT sequence.

That is,

)(BSTT   Optimal schedule of RJ   )(ASTT 

Proof. Without loss of generality, we assume             Niii JJJJJJ ,...,,,,...,, 1121  is any sequence

of all jobs, where  jJ is the job processed in the j th position of the job sequence  .

Case A: Suppose that job  jJ is the first job of type B in the sequence. That is, all jobs preceding

the job  jJ are the members of the other sets J  , R , and A . Let  jC and)(TC be the

completion time of the job  jJ in the sequence  and the total completion time of the sequence

 respectively. Then we have

           Njjj CCCCCCTC  )(1121

              Njjjj CCTTCCCC   ...)(... 11121

              Njjjj CCTTTTjCCC   ...)1(... 1121

            Njjj CCTTjCCC   1121 ,

84

by Definition 3. Moving job  jJ to the beginning of all jobs in sets J  , R , and A currently

preceding the job  jJ in the job sequence  , and shifting backward all these jobs in sets J  , R ,

and A currently preceding the job  jJ , yields a new job sequence

            Njjj JJJJJJ ,...,,,...,,, 1121  . Let)( TC be the total completion time of the job

sequence   . Then we have

                 Njjjjjj CCTTCTTCTTCTTTC   ...)(...)()()(1121

              Njjjj CCTTTTjCCC   ...)1(... 1121

            Njjj CCTTjCCC   1121 .

Thus it is clear that the total completion time of the current sequence  is improved by this change,

since      TCTC . Repetition of this argument for all remaining jobs in subset B shows that jobs

of the subset B precede all other jobs.

Case B: Suppose that the job  jJ is the last job of type A in the sequence  . That is, all jobs

succeeding the job  jJ are the members of the other sets B , J  , and R . Then, we have

           Njjj CCCCCCTC  )(1121

              Njjjj CCTTCCCC   ...)(... 11121

              Njjjj CCTTTTjCCC   ...)1(... 1121

            Njjj CCTTjCCC   1121 ,

by Definition 3. Moving job  jJ to the end of all the jobs in sets B , J  , and R currently succeeding

the job  jJ in the job sequence  , and shifting forward all these jobs in the sets B , J  , and R

currently succeeding the job  jJ , yields a new job sequence

            jNjj JJJJJJ ,,...,,,...,, 1121  . Then we have

               NjNjjj CTTCTTCCCCTC  )(...)(...)(1121

              NjNjj CTTjNCCCCC  )(...... 1121

                NjjNjj CTTjTTNCCCCC   1121

                jjjNjj TTNTTjTTNCCCCC   1121

            jNjj TTjCCCCC   1121 .

Thus it is clear that the total completion time of the current job sequence  is improved by this

change, since      TCTC . Repetition of this argument for all remaining jobs in the subset A
shows that jobs of the subset A succeed all other jobs.

The proof of the second property follows from the result by Smith [25], who showed that processing
the jobs in the shortest processing time (SPT) rule minimises the total completion time for the

classical single-machine problem in which there are N jobs. In our problem, it is clear that the jobs

in the subsets A and B may each be treated as pseudo-jobs in the classical single-machine
problem, yielding an optimal sequence characterised by a modified version of SPT, which we refer

to as the STT sequence, in which the jobs in the subsets A and B are sequenced in non-decreasing

order of their total time jTT . This completes the proof.

Example 2. Consider an instance of the total completion time minimisation problem in which there
are seven indivisible jobs. Setup and processing times for all operations, and the operations in each
job, are given in Tables 1 and 2 respectively.

85

Table 1: Setup and processing times for all operations

Operation (kO) 1O 2O 3O 4O 5O 6O 7O 8O 9O 10O 11O

Setup time (ks) 13 17 25 12 16 13 14 20 13 12 28

Processing time (kp) 7 1 13 8 11 29 1 12 32 8 13

Table 2: Operations and total times of the jobs

Job (jJ) 1J 2J 3J 4J 5J 6J 7J

Operation (kO) 1O , 2O 9O , 11O 4O , 5O , 8O 1O , 2O , 5O 7O , 8O 3O , 6O 10O

Total time (jTT) 38 86 79 65 47 80 20

The set of all jobs can be divided into two disjoint sets J and J  , where the set  762 ,, JJJJ  is

composed of jobs having no common operation with other jobs, and its complement set

 5431 ,,, JJJJJ  is composed of the remaining jobs. From Property 3, the set  762 ,, JJJJ 

decomposes into three subsets:  7JB  ,  62 , JJA  , and R

since 21207 TT , where

         




















k
JO

k
JO

k
JO

k
JO

k
GO

l
JJ

sTTsTTsTTsTTsTT
kkkklkl 5431

max , max , max , maxminmaxmin 5431

          2102 ,14max74,16 ,17 ,13max56 , 20 ,16 ,12max97 , 17 ,13max38min 

 and 79862 TT , 79806 TT where     79,,,maxmax 5431 


TTTTTTTTTTl

JJl

.

From Property 3, we obtain

  7)(JBSTT  ,

  5431 , , , JJJJRJ  , and

  26 ,)(JJASTT  .

The optimal schedule in set  5431 , , , JJJJRJ  is obtained by solving the MILP model described

in Section 5.1, and illustrated in Table 3.

Table 3: Optimal schedule for  5431 , , , JJJJRJ 

Job sequence 1J 4J 3J 5J

Operation sequence 1O 2O 2O 1O 5O 5O 4O 8O 8O

7O

From Property 3, and the MILP model giving the optimal schedule for RJ  , we obtain the

following resulting optimal schedule of all jobs and operations (Table 4).

Table 4: Optimal schedule for all jobs and operations

Job 7J
 1J 4J 3J 5J

6J 2J

Operatio
n 10O

 1O 2O 2O 1O 5O 5O 4O 8O 8O

7O

3O 6O 9O 11O

4 THE MAKESPAN PROBLEM

In this section, we describe the shortest path formulation for the makespan minimisation problem
by constructing a network, and show that the problem can be solved in polynomial time. It is clear
that the application of Property 2 given in Section 3 will reduce the size of the problem by dropping

the jobs in set J from the problem before applying the shortest path network approach to the

groups in set J  .

86

4.1 Shortest path network

The shortest path network for minimising the makespan problem consists of a set of nodes and a set
of arcs connecting certain pairs of the nodes, as shown in Figure 2, for the numerical example in
Section 1. In this Figure, sample feasible and infeasible paths (job sequences) are illustrated. The

path passing through the nodes (12,,1 OJ), (11,,2 OJ) and (33,,3 OJ) is a feasible path (job sequence),

since jobs 2J , 1J , and 3J are processed in positions 1, 2, and 3 respectively. However, the path

passing through the nodes (42,,1 OJ), (33,,2 OJ), and (22,,3 OJ) is an infeasible path and should be

prevented, since job 2J is processed in both positions 1 and 3.

Figure 2: Shortest path network for the three-job example

The node set in the network includes:

 A dummy beginning (source) node (0).

 Intermediate nodes (kj OJi ,,), Ni ,...,1 ,

Nj ,...,1 ,

Kk ,...,1 , jk JO  : each of these

types of nodes represents that job jJ is assigned to the i th position of the job sequence, and

operation kO in job jJ is assigned to the last position in the operation sequence of this job.

For each position in the job sequence, which corresponds to a stage in the shortest path

network, we create  


N

j
jnNO

1
 nodes, where NO is the total number of operations in all

jobs, and jn is the number of operations in job jJ . Thus the total number of intermediate

nodes is NON  .

 A dummy ending (sink) node (1 NONTN).

The directed arc set A is generated as follows:

 An arc from the beginning node (0) to node),,1(rj OJ , with flow cost   


jk JO
kk ps .

 An arc from node),,(cj OJi to node),,1(cl OJi  , with flow cost   


lk JO
kk ps , where

1,...,1  Ni , lj  , and cO is a common operation in jobs jJ and lJ .

87

 An arc from node),,(rj OJi to node),,1(vl OJi  , with flow cost  


lklk JO
k

rkJO
k ps

,
,

where 1,...,1  Ni , lj  , vr  .

 An arc from node),,(kj OJN to the ending node)(TN , with flow cost of zero.

 All the remaining arcs with a flow cost of infinity (or a sufficiently large positive number).

The arcs having a flow cost of infinity are not shown in the network given in Figure 2. This is done
to reduce the visual complexity of the network. Thus the network in Figure 2 can be assumed to be

incomplete. For example, the arcs between nodes (11,,1 OJ) and (11,,2 OJ) and the arc between

nodes (11,,1 OJ) and (31,,2 OJ) are not illustrated in the network, since job 1J cannot be processed

in both positions 1 and 2 of the job sequence. Similarly, the arcs between nodes (31,,1 OJ) and (

11,,2 OJ) and the arc between nodes (31,,1 OJ) and (31,,2 OJ) are also not illustrated in the network,

since job 1J cannot be processed in both positions 1 and 2.

The flow costs between the intermediate nodes of the network for the numerical example in Section
1 are given in Table 5.

Table 5: Flow costs between the intermediate nodes of the network for the three-job
examples, when i equals 1 or 2

to
from 11,,1 OJi  31,,1 OJi  12,,1 OJi  22,,1 OJi  42,,1 OJi  33,,1 OJi 

11,, OJi   18 15 15 11

31,, OJi   18 18 18 7

12,, OJi 17 14    11

22,, OJi 17 17    11

42,, OJi 17 17    11

33,, OJi 13 17 18 18 18 

4.2 Mathematical model

The following binary integer programming (BIP) model needs to be solved to find the shortest path
in the network.

Parameters, indices, and sets:

TN Number of nodes in the network

tf, Indices for nodes (TNf ,...,1,0 ; TNt ,...,2,1)

N Number of jobs

j Index for jobs (Nj ,...,2,1)

tfc ,

Cost of flow from node f to node t (i.e., on arc Atf ),()

tjh ,

1 if node t has job jJ ; 0, otherwise

Decision variables:

tfx , Flow on the arc Atf ),(

BIP model:

 minimise 
f t

tftf xc ,, (1)

subject to:
















 1

 or 00

 01

,,

TNfif

TNfif

fif

xx

t

ft

t

tf (2)

88

  

f t

tftf xh 1 ,, j (3)

  1,0, tfx Atf ),((4)

In the model above, the objective in (1) is to minimise the total cost of flow from the source node
to the sink node. Constraint set (2) is the conservation equation at each node. Constraint set (3)
guarantees that each job is assigned to one position only. Constraint set (4) imposes an integrality
restriction on the decision variables.

The BIP model above, excluding the additional side constraints in (3), is a well-known formulation
for the classical shortest path problem that can be solved in polynomial-time using the Dijkstra
algorithm. However, this solution may not provide an optimal solution that satisfies the additional
side constraints in (3), so the BIP model above should be considered for our modified shortest-path
problem with constraints in (3). It is clear that the existence of the constraint set (3) prevents the
infeasible job sequence. Furthermore, it is known that the node-arc incidence matrix associated
with the conservation equations in (2) above is totally unimodular. At least one optimal solution to
the linear programming (LP) relaxation of the model above thus exists, in which all decision variables

are integer — i.e., 0, tfx or 1. Such a solution can be found by replacing  1,0, tfx by 0, tfx

and solving the resulting LP. Thus the makespan problem can be solved in polynomial time.

5 THE TOTAL COMPLETION TIME PROBLEM

In this section, we present a mixed integer linear programming (MILP) model to solve the total
completion time minimisation problem.

5.1 Mathematical model

The following indices, sets, parameters, and variables are used to develop our model.

Parameters, indices, and sets:

N Number of jobs

j Index for jobs (Nj ,...,2,1)

K Number of operation types

k Index for operation types (Kk ,...,2,1)

i Position index for jobs in the sequence (Ni ,...,2,1)

jkD 1 if job jJ has operation kO ; otherwise, 0

kp Processing time for operation kO

ks Setup time for operation kO

jK Set of distinct operations in job jJ

M Set of jobs having more than one operation to be performed

jTT Total (setup and operations) time of job jJ , where   


jk JO
kkj psTT

hkST Setup time between operations hO and kO is equal to ks (hk ) if operation kO

immediately follows operation hO ; otherwise, 0

Decision variables:






 otherwise0

 position to assigned is jobif 1 iJ
X

j
ji






 otherwise0

 position to assigned job in operation first the is operationif 1 iJO
F

jk
kji






 otherwise0

 position to assigned job in operation last the is operationif 1 iJO
L

jk
kji

89













 otherwise0
 same) not are followingy immediatel job theof operation

 first the and job aof operation last the (i.e., 1 to equal are and bothif 1 1,iklhji

hjkli

FL

Y

 position to assigned jobof time)operations and (setup total Realized iJRT jji 
jobs theof time completion TotalTC

MILP model:

minimise  
 



N

i

N

j

jiRTiNTC

1 1

)1((5)

subject to:






N

j

jiX

1

1 for Ni ,...,2,1 (6)






N

i

jiX

1

1 for Nj ,...,2,1 (7)


 



K

k

N

j

kjiF

1 1

1 for Ni ,...,2,1 (8)


 



K

k

N

j

kjiL

1 1

1 for Ni ,...,2,1 (9)

jijkkji XDF  for Nj ,..,2,1 ; jKk ; Ni ,...,2,1 (10)

jijkkji XDL  for Nj ,..,2,1 ; jKk ; Ni ,...,2,1 (11)

hjkliiklhji YFL   11, for Nlj ,..,2,1,  ; lj  ; jKkh , ; kh  ; Ni ,...,2,1 (12)

1 kjikji LF for Mj ; jKk ; (13)

11 jjj XTTRT  for Nj ,..,2,1 (14)


  







K

h

K

k

N

l

ihjklhk

K

k

kjikjkjjk YSTFsXTTRT

1 1 1

1,

1

 for Nj ,..,2,1 ; 2i (15)

0, jiRTTC for ij, (16)

 1 ,0,,, hjklikjikjiji YLFX for lkjih ,,,, (17)

In the MILP model above, the objective in (5) is to minimise the total completion time. Constraint
sets (6) and (7) ensure that each position in the job sequence is occupied by one job only and that
each job is assigned to one position only, respectively. Constraint sets (8) and (9) guarantee that
only one operation in each job can be performed as the first or last operation in its job respectively.
Constraint sets (10) and (11) ensure that an operation cannot be the first or last operation of a job,
if this job does not include this operation. Constraint set (12) satisfies the condition that no setup
time is necessary before the first operation of a job, if this first operation is the same as the last
operation of the immediately preceding job. Constraint set (13) guarantees that each operation in
a job can be the first, immediate, or last operation of this job. Constraint sets (14) and (15) define
the realised total (setup and operations) time of the jobs assigned to the first and other positions
respectively. Constraint sets (16) and (17) impose non-negativity and binary restrictions respectively
on the decision variables.

5.2 Lower and upper bounds of the total completion time

To improve the efficiency of the MILP model, we introduce a lower bound on the total completion
time value. A lower bound LB can be calculated by assuming that:

 the operation with the longest setup time in each job is assigned to the first position of its job,

90

 the setup time of the operation with the longest setup time in each job is cancelled, by
assuming that this operation is the same as the one in the last position of the previous job, and

 all jobs are sequenced in non-decreasing order of their revised total time  .max k
JO

j sTT
jk



Instead of assuming an initial upper bound on the total completion time as infinity, the total
completion time value obtained by sequencing all jobs in non-decreasing order of their total time

jTT can be used as an upper bound UB . Let  iSTTTT be the total time of the job in the i th position

of the job sequence, in which jobs are sequenced in non-decreasing order of their total time (i.e.,

shortest total time rule). Then the total completion time     


N

i
iSTTTTiN

1
1 becomes the upper

bound — i.e.,     


N

i
iSTTTTiNUB

1
1 . Finally, we add the constraints TCLB  and UBTC  to

the mathematical model.

In the MILP model, including the lower and upper bounds on the total completion time, one set of

the decision variables is a continuous variable, and the other)]2(1[2  NNON

of the decision

variables, where  


N

j
jKNO

1
, is the 0-1 type. On the other hand, the MILP model has

  2)1)1((14 2  NNNONOMNN constraints.

5.3 Computational experiments

In this section, we describe our computational tests to evaluate the effectiveness and efficiency of
the MILP model in finding the optimal schedules. The mathematical model is solved by using CPLEX
11.0 in GAMS 22.6, and all computational experiments are conducted on a personal computer with
Intel Core i7 dual-core 2.20 GHz CPU and 4 GB RAM. In our experiments, we limit the runtime of the
CPLEX to obtain the optimal solution of each problem instance to 10,800 seconds (3 hours).

The solver CPLEX gives two types of solutions for the MILP models. One of the solutions is the best
integer solution, which is the desired one; the other solution is the best non-integer solution, in
which some of the variables are non-integer. If the best non-integer solution obtained is equal to
the best integer solution, then we conclude that the optimal solution is achieved by the MILP model.

5.3.1 Computational settings for test problems

The values of the parameters used in our experiments are generated as follows:

Number of jobs (N): We consider four different cases in which the number of jobs is 5, 10, 15, and

20 respectively.

Number of operation types (K): We consider four different cases in which the number of operation
types is 5, 10, 15, and 20 respectively.

Number of operations within each job: We consider two different cases in which the number of
operations within every job is variable (changes from one job to another) and constant (same for all
jobs). The number of operations is generated from the following discrete uniform distributions:

VARIABLE: DU1, K; CONSTANT: DU2, K–1

Processing times: We investigate two different cases of the processing times: short and long. They
are generated from the following discrete uniform distributions:

SHORT: DU1, 10; LONG: DU100, 200

Setup times: We investigate four different cases of the setup times. They are generated from the
following discrete uniform distributions:

LOW mean — LOW variance: DU25, 35; LOW mean — HIGH variance: DU10, 50

HIGH mean — LOW variance: DU55, 65; HIGH mean — HIGH variance: DU40, 80

91

For each possible combination of the above parameters, five problem instances are generated.
Hence a total of 1280 problems are tested.

5.3.2 Discussion of the results

In this section, the performance of our MILP model is discussed. Table 6 shows a summary of the
number of problem instances solved optimally within the pre-set time limit (3 hours). As shown in
Table 6, all problem instances can be solved optimally when the number of jobs is five. It is clear
that the number of unsolved problem instances increases when the number of jobs increases. This
shows that the number of jobs causes an increase in the computational time required to solve the
problem of optimality.

Table 6: Performance of the MILP model

Number of jobs (N) 5 10 15 20

Number of optimum integer solutions obtained 320 319 249 95
Number of best integer solutions obtained 0 1 65 175
Number of unsolved problem instances 0 0 6 50

Total number of problem instances considered 320 320 320 320

To emphasise the performance of the MILP model, we should investigate the quality of the solutions
that are not optimal. It is a common phenomenon that the MILP model ends up with a gap between
the solution found and the best possible solution. Gap values are therefore examined to indicate the
percentage difference in integer solution from the theoretical optimum. We analysed gap values for
241 non-optimally solved problem instances under three circumstances: best case, worst case, and
average case. For some of the problem instances, so many iterations were done, and the integer
solutions were found to come closer to the theoretical optimum after each iteration. However,
CPLEX was terminated because of the time limitation before reaching the optimum solution. But
this case was the best case as, when the three-hour time limitation was complete, the gap values
were very close to zero. In the worst case analysis, we focused on the problem instances whose
solution procedure (branching) was terminated due to memory errors that occurred after a few
iterations had been completed. In this case, the integer solutions that are found are very rare, and
so the gap values are high. The maximum gap value, which represents the worst case, was found to
be 22.92 per cent. On the other hand, branching becomes very difficult for some problem instances,
and time-consuming. When branching is slow, the number of iterations is moderate — which leads
to higher gap values than the best case, and lower gap values than the worst case. In the average
case analysis, the gap values were found to be 0.56 per cent on average.

We also investigated the effect of the lower and upper bounds — given in Section 5.2 — and that are
considered constraints in our MILP, on the computational time effort of the solver CPLEX. In our
experiments, we observed that the average percentage of reductions in the computational time
were 55.6, 30.3, 37.1, and 25.6 for problem instances solved with 5, 10, 15, and 20 jobs respectively,
when we used the lower and upper bounds in our MILP. On the other hand, the average percent
reductions in the computational time were 43.1, 33.6, 37.7, and 34.1 for problem instances solved
with 5, 10, 15, and 20 operations respectively. As seen from these results, it is not possible to
observe a significant change in the direction of the computational time while the number of jobs or
number of operations increases. However, the greatest reduction in the computational time is seen
in small size problems. Considering all problems solved, we observed that the inclusion of the lower
and upper bounds in the MILP significantly reduced (by about 37% on average) the computational
time.

6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this study, a relatively new variant of the single-machine scheduling problem of multi-operation
jobs with setup times is considered. It is assumed that all operations in a job are processed
contiguously, rather than being intermingled with the operations from different jobs (i.e., jobs are
indivisible); and no setup time is necessary before the processing of the first operation of a job if
this first operation is the same as the last operation of the immediately preceding job. We have
investigated the problem with two objectives: one is to minimise the makespan, and the other is to
minimise the total completion time of jobs. For the makespan problem, we have shown that the
problem is solvable in polynomial time. For the total completion time problem, we have developed
a mathematical programming model that obtains optimal solutions for small and medium-sized

92

problems, and near-optimal solutions for large-sized problems. From our experiments it is observed
that solving the problem with a standard MILP solver seems not to be a useful alternative, especially
for instances of large-sized problems.
A considerable number of issues remain open for future research. Several extensions of our study
can be investigated. Although the MILP model was able to solve the small and medium-sized problem
instances considered in this paper, and obtained a very small gap between the solution found and
the best possible solution for the unsolved large-sized problem instances, future work could develop
heuristic algorithms to solve the large-sized problem instances with the objective of minimising the
total completion time. Studying different problem characteristics — such as ready times, precedence
relations among the jobs, and performance measures (such as total tardiness, maximum lateness,
and number of tardy jobs) — would be possible extensions. More complex machining environments
with parallel machines or multiple stages could be other future research issues.

REFERENCES

[1] Baker, K.R. 1974. Introduction to sequencing and scheduling. New York: Wiley.
[2] Allahverdi, A. & Soroush, H.M. 2008. The significance of reducing setup times/setup costs. European

Journal of Operational Research, 187(3), pp. 978–984.
URL: https://www.sciencedirect.com/science/article/pii/S0377221706008162

[3] Schuurman, J. & van Vuuren, J.H. 2016. Scheduling sequence-dependent colour printing jobs. South
African Journal of Industrial Engineering, 27(2), pp. 43–59.
URL: http://sajie.journals.ac.za/pub/article/view/1119/683

[4] Gupta, J.N.D., Ho, J.C. & van der Veen, J.A. 1997. Single machine hierarchical scheduling with customer
orders and multiple job classes. Annals of Operations Research, 70, pp. 127–143.
URL: https://link.springer.com/article/10.1023/A%3A1018913902852

[5] Gerodimos, A., Glass, C., Potts, C.N. & Tautenhahn, T. 1999. Scheduling multi-operation jobs on a single
machine. Annals of Operations Research, 92, pp. 87–105.
URL: https://link.springer.com/article/10.1023/A%3A1018959420252

[6] Yang, D.L., Hou, Y.T. & Kuo, W.H. 2017. A note on a single-machine lot scheduling problem with indivisible
orders. Computers & Operations Research, 79, pp. 34–38.
URL: http://www.sciencedirect.com/science/article/pii/S0305054816302520

[7] Julien, F.M. & Magazine, M.J. 1990. Scheduling customer orders: An alternative production scheduling
approach. Journal of Manufacturing and Operations Management, 3(3), pp. 177–99.

[8] Ahmadi, R.H. & Bagchi, U. 1993. Coordinated scheduling of customer orders. Working paper, John E.
Anderson Graduate School of Management, University of California, Los Angeles.

[9] Gupta, J.N.D. 1984. Optimal schedules for single facility with two job classes. Computers & Operations
Research, 11(1), pp. 409–413.
URL: https://www.sciencedirect.com/science/article/pii/030505488490042X

[10] Gupta, J.N.D. 1988. Single facility scheduling with multiple job classes. European Journal of Operational
Research, 33(1), pp. 42–45.
URL: http://www.sciencedirect.com/science/article/pii/0377221788902524

[11] Baker, K.R. 1988. Scheduling the production of components at a common facility. IIE Transactions, 20(1),
pp. 32–35.
URL: http://www.tandfonline.com/doi/abs/10.1080/07408178808966147

[12] Coffman, E.G., Nozari, A. & Yannakakis, M. 1989. Optimal scheduling of products with two subassamblies
on a single machine. Operations Research, 37(3), pp. 426–436.
URL: http://pubsonline.informs.org/doi/abs/10.1287/opre.37.3.426

[13] Aneja, Y.P. & Singh, N. 1990. Scheduling production of common components at a single facility. IIE
Transactions, 22(3), pp. 234–237.
URL: http://www.tandfonline.com/doi/abs/10.1080/07408179008964178

[14] Ding, F.Y. 1990. A pairwise interchange solution procedure for a scheduling problem with production of
components at a single facility. Computers & Industrial Engineering, 18(3), pp. 325‐331.
URL: http://www.sciencedirect.com/science/article/pii/036083529090054P

[15] Mason, A.J. & Anderson, E.J. 1991. Minimizing flow times on a single machine with job classes and setup
times. Naval Research Logistics, 38(3), pp. 333–350.
URL: http://onlinelibrary.wiley.com/doi/10.1002/1520-6750(199106)38:3%3C333::AID-
NAV3220380305%3E3.0.CO;2-0/full

[16] Potts, C.N. 1991. Scheduling two job classes on a single machine. Computers & Operations Research, 18(5),
pp. 411–415.
URL: http://www.sciencedirect.com/science/article/pii/030505489190018M

[17] Liao, C.J. 1996. Optimal scheduling of products with common and unique components. International
Journal of Systems Science, 27(4), pp. 361–366.
URL: ttp://www.tandfonline.com/doi/abs/10.1080/00207729608929225

[18] Gerodimos, A., Glass, C. & Potts, C.N. 2000. Scheduling the production of two-component jobs on a single
machine. European Journal of Operational Research, 120(2), pp. 250–259.
URL: http://www.sciencedirect.com/science/article/pii/S037722179900154X

93

[19] Yang, W.H. 2004. Optimal scheduling of two-component products on a single facility. International Journal
of Systems Science, 35(1), pp. 49–53.
URL: http://www.tandfonline.com/doi/full/10.1080/00207720310001657072

[20] Ng, C.T., Cheng, T.C.E. & Yuan, J.J. 2002. Strong NP-hardness of the single machine multi-operation jobs
total completion time scheduling problem. Information Processing Letters, 82(4), pp. 187–191.
URL: http://www.sciencedirect.com/science/article/pii/S0020019001002745

[21] Su, L.H. & Chen, Y.H. 2009. Scheduling multioperation jobs on a single flexible machine. International
Journal of Advanced Manufacturing Technology, 42, pp. 1165–1174.
URL: https://link.springer.com/article/10.1007/s00170-008-1666-3

[22] Erel, E. & Ghosh, J.B. 2007. Customer order scheduling on a single machine with setup times: Complexity
and algorithms. Applied Mathematics and Computation, 185(1), pp. 11–18.
URL: http://www.sciencedirect.com/science/article/pii/S0096300306007983

[23] Hazir, O., Gunalay, Y. & Erel, E. 2008. Customer order scheduling problem: A comparative metaheuristics
study. International Journal of Advanced Manufacturing Technology, 3(5-6), pp. 589–598.
URL: https://link.springer.com/article/10.1007/s00170-007-0998-8

[24] Hou, Y.T., Yang, D.L. & Kuo, W.H. 2014. Lot scheduling on a single machine. Information Processing
Letters, 114(12), pp. 718–722.
URL: http://www.sciencedirect.com/science/article/pii/S0020019014001306

[25] Smith, W.E. 1956. Various optimizers for single stage production. Naval Research Logistics Quarterly, 3(1),
pp. 59–66.
URL: http://onlinelibrary.wiley.com/doi/10.1002/nav.3800030106/full

