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ABSTRACT 

The quantitative relationships at the performance measurement 
system (QRPMS) is a methodology for identifying and quantifying 
relationships between key performance indicators. These 
relationships present additional information for decision-making 
purposes. QRPMS employs the Guttman-Kaiser criterion (K1) to 
complete a critical step during the methodology. This study 
presents evidence that the K1 criterion has limitations that 
compromise the reliability of QRPMS’s results. An improved QRPMS 
version is developed, and the results of the existing and improved 
QRPMS are compared in a mining industry case study. It is shown 
that the improved QRPMS delivers more accurate and reliable 
results. 

OPSOMMING 

Die quantitative relationships at the performance measurement 
system (QRPMS) is ’n metodiek om verwantskappe tussen sleutel 
prestasie-aanwysers te identifiseer en te kwantifiseer. Hierdie 
verwantskappe bied addisionele inligting vir besluitnemings- 
doeleindes. QRPMS maak gebruik van die Guttman-Kaiser kriterium 
(K1) vir die uitvoering van ’n kritieke stap gedurende die metodiek.  
Die studie lewer bewys dat die K1 kriterium beperkinge het, wat die 
betroubaarheid van QRPMS resultate beïnvloed. ’n Verbeterde 
QRPMS weergawe word ontwikkel, en die resultate van die 
bestaande en verbeterde QRPMS word vergelyk in ’n mynbou-
industrie gevallestudie. Die meer akkurate en betroubare resultate 
van die verbeterde QRPMS word geïllustreer. 

 

1 INTRODUCTION  

The use of performance measurement systems in industry is extensive. The challenge is that many 
key performance indicators (KPIs) are defined as part of these systems, but there is limited 
understanding of how these KPIs impact outcomes and each other. To gain an improved 
understanding of KPIs is not a trivial task. Each KPI can have multiple attributes of direction, 
strength, and polarity. For example, improving some KPIs might worsen others, and the impact of a 
KPI might be delayed and only become apparent at a later stage [1, 2]. To address these challenges, 
the importance of quantifying inter-relationships between KPIs has been studied. Rodríguez, Saiz 
and Bas [3] presented initial research on the topic, and later followed it up with their quantitative 
relationships at the performance measurement system (QRPMS) methodology [4]. More recent work 
explores KPI inter-relationships in service delivery [1, 2], the manufacturing industry [5], and 
cellular network systems [6]. With the ease of data collection brought about by technological 
developments and the significant contribution that inter-KPI relationships may have on 
organisational decision-making, it is evident that methodologies such as QRPMS are important in 
managing organisational performance. 
 
Research has previously been conducted into frameworks and methodologies employing the concept 
of relationships between performance elements to achieve their respective objectives [7, 8, 9]. 
These frameworks are, however, limited in their ability objectively to identify and quantify inter-
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KPI relationships. The reasons for these limitations lie in basic flaws and shortcomings in the two 
analysis techniques — subjective analysis and pair-wise correlation analysis — used by these 
frameworks. Subjective analysis is problematic since it is easily influenced by the biased opinions of 
analysts. It can therefore not be considered a mathematically accurate and reliable analysis 
technique. Any introduction of subjective analysis into the computational elements of a framework 
compromises the mathematical validity of the results, and thus any claims of objective results [3]. 
 
According to pair-wise correlation analysis, inter-KPI relationships are categorised into three groups: 
parallel, sequential, and coupled relationships [10]. Investigation into pair-wise correlation shows 
that it only considers the strong cause-effect relationship between two KPIs [10]. Other influences 
may be caused by third-party KPIs that may have changing effects on the relationship between the 
first and second KPIs. This problem is magnified when such a pair-wise correlation analysis technique 
is employed to identify relationships between a large set of KPIs. It is for this reason that pair-wise 
correlation analysis is regarded as an unsuitable technique when the aim is to identify inter-KPI 
relationships [3]. In response to the limitations identified in the frameworks and methodologies, the 
QRPMS methodology was developed [3]. QRPMS actively avoids the use of any subjective analytical 
or pair-wise correlation techniques, and employs two mathematical techniques to complete the 
objective identification and quantification of inter-KPI relationships. Principal component analysis 
(PCA) is employed to identify the relationships, and partial least squares (PLS) regression analysis is 
used to quantify these relationships. These two techniques are considered more objective due to 
the exclusion of interference bias [3].  
 
Investigation into the constituents of QRPMS identifies an inherent limitation when executing a 
critical step in the final stages of PCA. PCA is a multivariate statistical technique through which the 
important information found in a multivariate dataset can be reproduced, with minimal loss of 
information, by new and fewer variables — referred to as principal components (PCs). PCA computes 
several PCs that are equal to the total number of variables (KPIs, in this context) being assessed by 
PCA [11]. The critical step in QRPMS entails the process of selecting the appropriate number of PCs 
to retain for further analysis, while suffering a minimum loss of information from the original 
dataset. 
 
The QRPMS methodology employs the Guttman-Kaiser (K1) selection criteria to determine the 
number of PCs to retain. K1 is, however, not considered to be a reliable or accurate selection 
criterion, although some publications use it without reservation [12, 13]. This claim is supported by 
other authors, who agree that K1 cannot be recommended for use in PCA, and should be discarded 
from the list of acceptable selection criteria [14, 15, 16]. An improved version of QRPMS, in which 
more accurate and reliable selection criteria are employed, is introduced in this study. This 
improved methodology is referred to as the quantitative identification of inter-performance 
measure relationships (QIIPMR) methodology.  
 
The QIIPMR methodology employs two alternative selection criteria to K1: parallel analysis (PA) and 
the scree plot. These two criteria are selected and included in QIIPMR based on comparison studies 
[13, 17, 18]. PA is employed by QIIPMR as its primary selection criterion due to its proven 
mathematical accuracy and reliability. The scree plot is incorporated as a supporting criterion to 
PA, serving to confirm the PA results and to identify any possible errors. 

2 METHODOLOGY 

The QRPMS methodology employs four phases to deliver its intended results (Figure 1). The QRPMS 
phases vary in difficulty, and the time required to complete each may differ depending on the 
resources available. Phase one consists of the design and analysis of the performance measurement 
system under consideration. This is followed by the second phase, which covers initial performance 
measure data treatment. In phase three, the inter-KPI relationships are identified and projected, 
followed by phase four, which consists of the analysis and presentation of the results. 
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Figure 1: The phases of the QRPMS methodology. 

The QIIPMR is an improved approach to QRPMS: phase three of QRPMS is improved, while the 
remaining QRPMS phases and processes are incorporated unaltered into QIIPMR. Phase three involves 
PCA and PLS regression analysis for the identification and quantification of inter-KPI relationships 
respectively. PCA must be completed to compute the PCs (of the KPI dataset) required for the 
comparison between QRPMS and QIIPMR. The quantification of the selected PCs (through the 
execution of PLS) is, however, not performed as part of this paper, for two reasons. First, the 
quantification of the PCs retained by both methodologies does not contribute additional information 
to assist in evaluating the improvement offered by QIIPMR over QRPMS. Second, the quantification 
of KPI relationships using the PLS technique has been successfully validated by previous research, 
such as that of Patel, Chaussalet and Millard [19] and Rodriguez, Saiz and Bas [3]. To show the 
improvement of QIIPMR over QRPMS, phases one and two are presented in full, while phase three is 
partially presented. 

3 ANALYSIS AND DISCUSSION 

Comparing the QRPMS and QIIPMR methodologies appropriately, a set of KPI data from varying 
organisational sectors — such as operations, engineering, human resources, and logistics — from a 
single organisation are considered. Such variety of KPI data is not only likely to reveal apparent or 
obvious inter-KPI relationships, but also relationships between KPIs from different organisational 
sectors. A case study, in which KPI data from an asset intensive mining organisation is used, serves 
as a basis for the comparison. The case study organisation consists of different organisational 
divisions and, most importantly, manages the entire mining and delivery process of a single product, 
thermal coal. KPI data from a single business entity with sufficient organisational variety is therefore 
used.  This allows a variety of performance data to be available for analysis, presuming that 
performance measurement and management standards are maintained throughout all organisational 
divisions. A total of 84 KPIs recorded over two fiscal years are studied. The 84 KPIs consist of those 
related to the organisation’s operations and engineering divisions, safety-related KPIs, KPIs 
associated with human resources, and KPIs related to the organisation’s overall finances. The 
operations KPIs include KPIs for the sand, dozer, and dragline fleets, drilling units, and the division’s 
overall performance measures. The engineering KPIs include those for the dragline fleet, the shovel, 
demag crane, excavator, overburden drill, loader, truck, and dozer units.  
 
The multivariate statistics software, Statistica, is used to compute the PCs for the KPI data. Eighty-
four PCs are computed in the first exploratory analysis — one for each KPI. Table 1 presents the 
results of the first 23 PCs. It is important to note from the analysis that, at the 23rd PC, 100 per cent 
of the total variance in the KPI data is explained. For the rest of the study, only the first 23 PCs are 
considered, with the remainder of the PCs being excluded, based on their negligible contribution to 
the total variance. 
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Table 1: Principal components computed (23 out of 84). 

PC # Eigenvalues 
of PCs (PCA) 

PA generated 
eigenvalues 

(50%) 

PA generated 
eigenvalues 

(95%) 

Cumulative % 
variability 
explained 

1 12.833 7.63 8.35 15.28 

2 9.891 6.89 7.40 27.05 

3 8.417 6.34 6.74 37.07 

4 7.600 5.88 6.22 46.12 

5 5.494 5.48 5.79 52.66 

6 5.014 5.11 5.41 58.63 

7 4.434 4.77 5.05 63.91 

8 4.149 4.45 4.70 68.85 

9 3.365 4.16 4.41 72.85 

10 3.174 3.88 4.11 76.63 

11 3.061 3.61 3.84 80.28 

12 2.438 3.36 3.57 83.18 

13 2.040 3.11 3.33 85.61 

14 1.879 2.88 3.09 87.84 

15 1.806 2.66 2.87 89.99 

16 1.565 2.44 2.64 91.86 

17 1.387 2.23 2.42 93.51 

18 1.308 2.02 2.22 95.07 

19 1.291 1.83 2.02 96.60 

20 0.967 1.62 1.82 97.75 

21 0.736 1.43 1.62 98.63 

22 0.628 1.23 1.42 99.34 

23 0.524 1.00 1.21 100.00 

 
The K1 criterion, used in the QRPMS, states that all PCs with eigenvalues greater than unity may be 
retained for further analysis. From Table 1, the K1 criterion indicates that the first 19 of the total 
(84) computed PCs can be retained for further analysis. However, this poses a problem for analysts, 
since the K1 criterion does not explicitly state which PCs should be retained. Analysts who employ 
the K1 criterion are required to assess the retainable PCs, and make an informed decision about 
which of those PCs should be retained. This is the first deficiency of the K1 criterion. This deficiency 
is addressed in QIIPMR by using PA and the scree plot to identify the specific PCs that should be 
retained for further analysis. By using Statistica, the PA criterion constituents are calculated, as 
displayed in Figure 2. 
 
According to the PA criterion, the correct PCs to retain for further analysis are those that have 
eigenvalues greater than the averaged eigenvalues computed from the random parallel correlation 
matrices. By consulting Figure 2, it is evident that the first four PCs are extractable, whereas the 
fifth PC has an eigenvalue barely larger than the mean (50th percentile) eigenvalue, and is thus not 
extractable. 
 
The scree plot requires the PCs to be plotted against their respective eigenvalues, as shown in Figure 
3. According to the scree plot, all PCs with eigenvalues that are plotted before a linear decrease 
are candidates for extraction. However, when consulting Figure 3, it is difficult to ascertain where 
the appropriate linear decrease starts. To help identify the correct start of an appropriate linear 
decrease, two linearly decreasing trendlines are included in the plot shown in Figure 3. 
 
The first trendline is fitted to all data points between the fifth PC (the first possible start of a linear 
decrease) and the 23rd PC (the last, non-zero eigenvalue). The second trendline is fitted to all data 
points between the eighth PC (the second possible start of a linear decrease) and the 23rd PC. From 
these two trendlines, the scree plot shows that the first four PCs can be extracted with confidence 
for further analysis. However, due to the difficulty of determining where the linear decrease starts, 
the identification of additional PCs (for extraction) cannot be confidently or accurately determined. 
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Figure 2: Parallel analysis of case study KPI data 

A summary of the three selection criteria and their outcomes is presented in Table 2. To compare 
the results of the K1 criterion, PA, and the scree plot criteria in detail, it is necessary to investigate 
the 19 PCs (identified by the K1 criterion) to evaluate their so-called ‘retention-value’, compared 
with those PCs identified by PA and the scree plot. A PC is interpreted by assessing the loading 
coefficients of its contributing variables (KPIs) [20]. Contributing variables with large loading 
coefficients (‘significant’ contributing variables, either positive or negative in nature) attach 
meaning to a PC, whereas variables with small loading coefficients (‘insignificant’ contributing 
variables) contribute little meaning. 
 

 

Figure 3: Scree plot of the case study PCs 
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Table 2: Selection criteria results 

Selection criteria # of PCs to retain 

Guttman-Kaiser criterion (K1) 19 

Scree plot 4 (definite) + 4 (possible) 

Parallel analysis (PA) 4 

 
In this paper, a PC’s retention-value is evaluated by assessing the number of significant contributing 
variables (KPIs) it contains. PCs are linear combinations of the original KPIs in the data; therefore, 
a PC with many significant contributing variables is indicative of multiple, strong cause-effect 
relationships between these ‘significant’ KPIs. A PC with multiple significant contributing variables 
therefore has a high retention-value, and is more critical for assessment than a PC with few or no 
significant contributing variables. 
 
In assessing PCs, analysts are required to decide what magnitude a loading coefficient must exceed 
for that contributing variable to be classified as a significant contributing variable [21]. There are 
various methods of determining this magnitude for PC evaluation [21, 22]. Chin [22] suggests that 
contributing variables with loading coefficients larger than 0.6 (in absolute value) are to be 
considered significant contributors. To complete the assessment of the PCs shown in Table 1, two 
values are selected to determine significant contributors: firstly, 0.6, and 0.4 for a more 
conservative alternative. A sensitivity analysis is performed, comparing the use of these two values. 
 
It is important to note that the number of significant contributing variables does not equal the exact 
number of strong, inter-KPI relationships. Simply identifying the KPIs with significant loading 
coefficients for each respective PC is not an adequate method for identifying inter-KPI relationships. 
A matrix containing the loading coefficients of each KPI, for each PC, is computed. From this matrix, 
the number of contributing variables (KPIs) with loading coefficients exceeding the absolute value 
of 0.4 (conservative) and 0.6 (recommended) is determined for the first 19 PCs. The results are 
illustrated in Figure 4 and Figure 5. 
 
From the conservative results (Figure 4), it is seen that the ninth to the 19th PCs have very few 
significant contributing variables. These PCs are therefore not indicative of many, strong cause-
effect relationships between the KPIs in the dataset. The PCs are, however, indicative of some 
cause-effect relationships between pairs of KPIs. If the retention-values of these PCs are evaluated, 
based on the number of multiple, strong inter-KPI relationships represented, it is indicative that 
they have little retention-value or assessment importance compared with the remaining PCs. 
 
Visual assessment of Figure 4 reveals two groups of four PCs with a similar number of significant 
contributing variables. The first group (PCs 1 to 4) have approximately double the number of 
significant contributing variables per PC, compared with the second group (PCs 5 to 8). This shows 
that the first four PCs in Figure 4 contain the largest number of strong inter-KPI relationships of the 
19 PCs assessed. This finding is more evident from Figure 5, where only the first four PCs are shown 
to have more than one significant contributing variable. 
 
From the analysis and comparison, it is concluded that the K1 criterion suggests the retention of 
multiple ‘insignificant’ PCs for further analysis. The K1 criterion requires an additional assessment 
of the results to determine which of the 19 PCs are worth retaining. Based solely on the K1 results, 
the specific number of PCs that should be extracted could not be determined. The scree plot is more 
useful than the K1 criterion for showing that the first four PCs should be extracted for further 
assessment; but it proved difficult to ascertain where the ‘cut-off’ point is for the extraction of 
additional potential PCs. However, the PA criterion indicates that the first four PCs should be 
retained for further analysis.  
 
The study therefore supports the work by Yeomans and Golder [12], Lance and Vandenberg [13], 
and Zwick and Velicer [14], who also proved that the PA criterion delivers the most accurate and 
reliable results of the three selection criteria investigated in this case study. The scree plot proved 
to be an adequate supporting selection criterion for PA, but its sole implementation may prove 
problematic in assessing the results. 
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Figure 4: Number of KPIs with loading coefficients exceeding the absolute value of 0.4 (for the 
first 19 PCs) 

 
 

Figure 5: Number of KPIs with loading coefficients exceeding the absolute value of 0.6 (for the 
first 19 PCs) 

The QRPMS and QIIPMR methodologies both employ a graphical figure to highlight which KPIs are 
business driver key performance indicators (BDKPIs). Rodriguez et al. [4] state that BDKPIs are of 
greater importance to organisational management because of the relationships they maintain, and 
are critical to the evolution of the organisation. Two PCs are plotted against each other (Figure 6), 
using their respective KPI loading coefficients as data points. Two concentric ellipses are included 
in the plot. The larger ellipse indicates the ‘border maximum’, which is the maximum (absolute) 
value (1.0) that a single loading coefficient can achieve. The second, smaller ellipse indicates the 
‘border minimum’, which is the minimum (absolute) value a loading coefficient must exceed for 
that variable to be classified as a significant contributor to the PC. 
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This border minimum is determined by computing the minimum (absolute) value that each of the 
corresponding KPI loading coefficients (from the two PCs) must exceed for the resulting vector to 
have a magnitude greater than or equal to unity. The border minimum (absolute) value is computed 
to be 0.7, a value also used by Rodriguez et al. [4]. Figure 6 depicts the border maximum and border 
minimum for the first and second PCs computed in the case study for the QIIPMR methodology. The 
KPIs that fall in the area between the two concentric ellipses are reclassified as BDKPIs; this is 
repeated until all PCs are plotted against each other. The BDKPI prefix indicates the organisational 
division that measures the respective BDKPIs. The prefixes are: En for Engineering, F for Finance, 
HR for Human Resources, Op for Operations, and Sa for Safety. 
 
The BDKPIs identified by QRPMS and QIIPMR are shown in Table 3 and Table 4 respectively. Table 4 
contains 26 identified BDKPIs (only using the four PCs identified by PA and the scree plot). Therefore, 
26 of the 84 KPIs are of greater importance to organisational management because of their inherent 
relationships. And a mixture of KPIs from Finance, Operations, Engineering, Safety, and Human 
Resources constitute those BDKPIs listed in Table 4, satisfying the desire to identify inter-KPI 
relationships between the mine’s focus performance areas. 
 

 

Figure 6: KPI loadings between two principal components: Determining BDKPIs 

To complete the final comparison between QIIPMR and QRPMS, it is necessary to compare the BDKPI 
results. QIIPMR and QRPMS identify 26 and 29 BDKPIs respectively. When considering the number of 
PCs used by each methodology to determine their respective BDKPIs (four PCs versus 19 PCs 
respectively), it is apparent that the retention of additional, less important PCs (as in the case of 
QRPMS) yields diminishing returns. Furthermore, there are differences between the BDKPI results 
listed in Table 3 and those in Table 4. Only 15 BDKPIs correspond between the two sets of results. 
Table 5 presents the BDKPI comparison results, categorising them against the organisational 
divisions. 

Table 3: BDKPIs identified by the QRPMS methodology 

BDKPI BDKPI BDKPI BDKPI 

EnOb3 F7 OpD2 OpP6 

EnT11 F9 OpDo1 OpS1 

EnT12 F10 OpDo2 OpS2 

EnT13 HR1 OpDo3 OpS3 

F1 HR3 OpP1  Sa7 

F2 OpC1 OpP2  

F4 OpC2 OpP3  

F5 OpD1 OpP5  



100 

Table 4: BDKPIs identified by the QIIPMR methodology 

BDKPI BDKPI BDKPI BDKPI 

EnD12 EnT13 HR1 OpP6 

EnD22 EnT22 OpC1 OpS1 

EnD23 EnT31 OpC2 OpS2 

EnDo1 F3 OpDr3 OpS3 

EnOb2 F4 OpP1 Sa6 

EnT11 F5 OpP2  

EnT12 F6 OpP3  

Table 5: BDKPI result differences 

KPI focus area # of BDKPIs 
(QIIPMR) 

# of BDKPIs 
(QRPMS) 

# of 
similarities 

Engineering 10 4 3 

Finance 4 7 2 

Operations 10 15 9 

Safety & Human Resources 2 3 1 

Total: 26 29 15 

 
The results in Table 5 show additional noteworthy differences. QIIPMR identifies more than double 
the number of Engineering BDKPIs than QRPMS, and QRPMS identifies 50 per cent more Operations 
BDKPIs than QIIPMR. Similar differences are apparent for the Finance and Safety and Human 
Resources BDKPIs. It is evident from the comparison that it cannot be assumed (when determining 
BDKPIs in this case study) that employing 19 PCs will result in the identical BDKPIs that the first four 
PCs will identify. 

 

One possible reason for the variation between the two sets of BDKPIs shown in Table 5 may be the 
recalculation of the PCs while limiting the total number of PCs (that can be calculated) to four and 
19 (for QIIPMR and QRPMS respectively). The recalculated PCs may differ from their KPI loading 
coefficients. However, this is not the case. The loading coefficients of every KPI, for each PC, remain 
the same, regardless of the limitation. 
 
Although an exhaustive assessment of the BDKPI differences between QIIPMR and QRPMS was not 
covered in the study, Yeomans and Golder [12], Zwick and Velicer [14], Velicer, Eaton and Fava 
[15], and Cortina [16] state that the K1 criterion is highly inaccurate. Their research is indicative 
that the K1 criterion compromises the reliability and mathematical accuracy of the results obtained 
from QRPMS, and could explain the different QRPMS and QIIPMR results. Furthermore, the QRPMS 
results coincide poorly with the results of QIIPMR, which is a similar methodology that uses more 
accurate and reliable selection criteria. The QIIPMR employs the scree plot as a supporting selection 
criterion to PA, enabling any calculation errors to be identified. Thus, the results of the QIIPMR 
methodology are argued to be more trustworthy than those of QRPMS. 

4 CONCLUSION 

Quantifying the relationship of many KPIs, and its impact on business outcomes, remains a challenge.  
The QRPMS methodology provides a basis for quantifying KPI relationships, but has a limitation in 
the Guttman-Kaiser, or K1, criterion for selecting principal components. It is suggested that the K1 
criterion compromises the reliability and mathematical accuracy of the results obtained from 
QRPMS. This paper presents a study of an alternative approach in the form of QIIPMR, which improves 
on the QRPMS methodology. QIIPMR makes use of parallel analysis, supported by the scree plot for 
selection criteria, as an alternative to the K1 criterion. QIIPMR thus simplifies the identification of 
principal components to prevent statistical errors. The benefits of QIIPMR over QRPMS are illustrated 
by a case study in the asset intensive mining industry. 
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