
South African Journal of Industrial Engineering May 2019 Volume 30(1), pp 1-23

1

DESIGN AND IMPLEMENTATION OF DEADLOCK CONTROL FOR AUTOMATED MANUFACTURING
SYSTEMS

H.Kaid1*, A. Al-Ahmari1, A.M. El-Tamimi1, E. Abouel Nasr1,2 & Z. Li3

ARTICLE INFO

Article details
Submitted by authors 5 Oct 2017
Accepted for publication 28 Jan 2019
Available online 29 May 2019

Contact details
* Corresponding author
 yemenhussam@yahoo.com

Author affiliations
1 College of Engineering, Industrial

Engineering Department, King
Saud University, Riyadh 11421,
Saudi Arabia

2 Mechanical Engineering

Department, Helwan University,
Cairo, Egypt

3 School of Electro-Mechanical

Engineering, Xidian University, No.
2 South Taibai Road, Xi'an 710071,
China

DOI
http://dx.doi.org/10.7166/30-1-1849

ABSTRACT

Petri nets are robust mathematical tools for the modelling,
handling, and control of deadlock problems in automated
manufacturing systems (AMSs). Several methods have been
proposed to prevent deadlocks in AMSs. However, it is important to
convert the controlled system represented by Petri nets into the
program of a programmable logic controller (PLC) for the
implementation of automation tasks. This study proposes a
methodology based on Petri nets for deadlock prevention, and
generates PLC codes for an AMS. In the suggested methodology, a
Petri net model of an uncontrolled system is built, and the
controlled Petri net model is developed using a deadlock-prevention
method. The controlled Petri net model is then transformed into an
automation-controlled Petri net model, which is further converted
into a controlled token-passing logic model. The controlled token-
passing logic model is utilised to generate the ladder diagrams for
the AMS under consideration. The proposed methodology was tested
using a real-world AMS at King Saud University labs. It provides an
effective method for PLC implementation from a controlled system
model represented by Petri nets.

OPSOMMING

Petri-nette is robuuste wiskundige instrumente wat gebruik word
om dooiepunt probleme in geoutomatiseerde vervaardigingstelsels
(AMSe) te modelleer, hanteer en te beheer. Verskeie metodes is al
voorgestel om dooiepunte in AMSe te verhoed, maar dit is belangrik
om die beheerde stelsel deur die Petri-nette voorgestel om te
skakel na die rekenaarkode van ŉ programmeerbare logiese
beheerder (PLC) sodat dit geïmplementeer kan word. ŉ Metodologie
gegrond op Petri-nette vir dooiepunt voorkoming word voorgehou
en genereer PLC rekenaarkode vir AMSe. In die voorgestelde
metodologie word ŉ Petri-netmodel van ŉ onbeheerde stelsel
geskep en die beheerde Petri-netmodel is dan ontwikkel met die
dooiepuntvoorkomingsmetode. Die beheerde Petri-net model word
dan getransformeer tot ŉ outomasiebeheerde Petri-netmodel wat
dan verder omskep word in ŉ beheerde kenteken-aanstuur logiese
model. Hierdie model word dan gebruik om leerdiagramme vir die
AMS te genereer. Dié metodologie is getoets in ŉ reële wêreld AMS
by die King Saudi Universiteit se laboratoriums. Dit verskaf ŉ
effektiewe metode vir PLC implementering van ŉ beheerde stelsel
wat deur Petri-nette voorgestel word.

1 INTRODUCTION

An automated manufacturing system (AMS) is a conglomeration of robots, machine tools, fixtures,
and buffers. Different types of products enter the manufacturing system at separate points of time;
the system can process these parts based on a specified sequence of operations and resource sharing.
The sharing of resources leads to the occurrence of deadlock states in an AMS through its operation,

2

in which the local or global system is incapacitated Li et al. [1], Li et al. [2], El-Tamimi et al. [3],
and Chen et al. [4]. Thus there is a need for an effective deadlock-control algorithm to ensure that
these deadlocks do not occur in an automated manufacturing system. Petri nets are a mathematical
and major graphical tool that is suitable for modelling, analysing, and controlling deadlocks in AMSs.
Petri nets are used to describe the characteristics and behaviour of an AMS, such as synchronisation,
conflict, and sequences. In addition, they could be used to provide behavioural properties — for
example, boundedness and liveness Chen et al. [5].

In the last three decades, there has been a deluge of deadlock-control algorithms, based on Petri
nets that were developed for deadlock prevention in AMSs Ezpeleta et al. [6], Huang et al. [7],
Uzam and Zhou [8], Li and Zhou [9], Huang et al. [10], Uzam and Zhou [11], Li et al. [12], Huang
[13], Li et al. [14], Li and Zhou [15], Chao [16], Chen and Li [17], Li et al. [18], Chen et al. [19],
Chen et al. [20], Qin et al. [21], Li et al. [22], Li and Zhao [23], Chen et al. [24], and Uzam et al.
[25]. Most of the deadlock-control policies have been proposed via the structural analysis of Petri
nets Chao [26, 27] or reachability graph analysis of Petri nets Uzam and Zhou [8], Ghaffari et al.
[28], Uzam [29], and Nasr et al. [28]. Deadlock-control algorithms (policies) based on reachability
graph analysis can usually become a maximally permissive liveness-enforcing supervisor; but the
former can lead to a sub-optimally controlled system, and the monitor number in a sub-optimal
supervisor depends on the Petri net size Lautenbach [31]. The latter may encounter a problem of
explosion state, since listing a portion or all of the reachable markings is necessary.

The control policies to prevent deadlocks in an AMS lead to a controlled system described by a Petri
net. However, the results obtained in the supervisory control literature are mostly related to the
theoretic studies as opposed to practical (implementation) studies. After designing a controller
(supervisor), it is a need to have an automatic ways for the generation of control code from the
controller to test the applicability of the deadlock prevention methods for real world systems and
determining which methods are suitable for these systems that can definitely lead to the maximal
permissiveness, structural complexity, and computational complexity. It is necessary to convert a
controlled Petri net system representation into a programmable logic controller (PLC)
implementation to evaluate the applicability of deadlock control methods to the execution of
automation tasks. PLCs have appeared as a robust tool in the fulfillment of automation operations
in industrial production systems. Ladder diagrams (LDs) are the most popular language used to
program a PLC. The main problem with LDs is that programming is done heuristically. In simple
manufacturing systems, it is not difficult to develop PLC programs with these methods. Nevertheless,
when multiple systems are considered, the problem is magnified. Indeed, it is difficult to find ladder
logic programs when the manufacturing system is single and has multiproduct types that are
implemented using heuristic approaches Venkatesh et al. [32, 33]. To overcome this problem, Petri
nets can be used to provide a successful solution for the conceptual design, and the heuristic design
is replaced by the transformation of Petri nets into LDs, which is introduced in Satoh et al. [34],
Jafari and Boucher [35], Burns and Bidanda [36], and Uzam et al. [37]. In Jones et al. [38], a token-
passing logic (TPL) technique has been introduced that provides options to involve counters, flags,
and timers. This technique is used in the transformation of an automation Petri Net (APN) into LDs.
Moreover, the same technique has been used to handle the timed-transition Petri nets Uzam et al.
[39], timed place Petri nets Uzam et al. [39] and Uzam et al. [40], and colored Petri nets Uzam et
al. [39].

This paper proposes a methodology based on Petri nets for deadlock prevention, and generates PLC
codes (ladder diagrams) for an AMS to elucidate the weaknesses or disadvantages of the existing
methods in the literature. In addition, the contributions of this research are clearly emphasised.
The rest of the paper is structured as follows. Section 2 introduces Petri nets. The proposed
methodology is described in Section 3. A real-world AMS case study is presented in Section 4. Finally,
the conclusions and future research are given in Section 5.

2 BASICS OF PETRI NETS

A place/transition net or Petri net N [12, 19, 30] is a quadruple (P, T, F, W), where P is a non-empty
and finite set of places, and T is a non-empty and finite set of transitions. Elements in P ∪ T are
called nodes with P ∪ T≠∅ and P ∩ T=∅. P and T are graphically described by circles and bars
respectively. F ⊆ (P × T) ∪ (T × P) is the set of directed arcs (with arrows) that join the places with
transitions, and vice versa. W: (P × T) ∪ (T P × T) is a mapping that allocates a weight to an arc,
where = {0, 1, 2, ...}. N is called an ordinary or unweighted net if ∀ (p, t) ∈ F((t, p)∈ F), W(p, t)

3

= 1 (W(t, p) = 1), denoted as N = (P, T, F). N is called a weighted net if there is an arc between p
and t with W(p, t) >1 or W(t, p) >1. If there is no arc between a place p and a transition t, we have
W(p, t) = W(t, p) = 0.

Assume that a net N = (P, T, F, W) and node a ∈ P ∪ T, •a = {b ∈ P ∪ T | (b, a) ∈ F} is called the
preset of node a, while a• = {b ∈ P ∪ T|(a, b) ∈ F} is called the post-set of node a. A marking M of N
is a mapping M: P → . (N, Mo) is a marked net or a net system, denoted as PN = (P, T, F, W, Mo),
where Mo is an initial marking. For a Petri net modelling an AMS, Mo indicates the various raw parts
that are to be simultaneously processed in an AMS, and the initial capacity configuration of resources
such as robots and machines. A transition t ∈ T is enabled at marking M if ∀ p ∈ •t, M(p) ≥ W(p, t),
which is indicated as M[𝑡⟩. If a transition t fires, it withdraws W(p, t) tokens from each place p∈ •t,
and stores W(t, p) tokens in each place p ∈ t•. Thus it reaches a new marking M′, indicated as M[𝑡⟩M′,
where M′(p) = M(p) − W(p, t) + W(t, p). A Petri net is pure or self-loop free if ∀ a, b ∈ P ∪ T, W(b, a)
= 0 and W(a, b) > 0. Incidence matrix [N] is an integer matrix of a net N, which consists of |T|
columns and |P| rows with [N](p, t) = W(t, p) −W(p, t).

Suppose (N, M0) is a net with N = (P, T, F, W). It can be said that a transition t ∈ T is live if for all M
∈ R(N, M0), ∃ M ∈ R(N, M), there exists a firing sequence such that M[𝑡⟩M′. A transition is in a deadlock
state at Mo if ∄ t ∈ T, M0[𝑡⟩ holds. M′ is said to be reachable from M if there is a firable finite
transition sequence δ = t1t2t3. . . tn, and markings M1, M2, M3, . . ., and Mn−1 such that M[t1⟩
M1[t2⟩M2[t3⟩M2 . . . Mn−1[tn⟩ M1 that is represented as M[𝛿⟩M′, satisfying the state equation M′ = M

+ [N] 𝛿, where 𝛿 : T → is a mapping from T to the number of appearances of t in δ, and called a
firing count vector or a Parikh vector. The reachable set of markings from M in N is called the
reachability set of a net (N, M), and is indicated as R(N, M). Petri net N with an initial marking Mo is

said to be k-bounded if  M ∈ R(N, M0), M(p) ≤ k (k). Petri net N is said to be safe if all its places
are safe, each place p does not have more than one token.

P-vectors (place vectors) and T-vectors (transition vectors) are column vectors. A P-vector I: P → Z
catalogued by P is said to be a place invariant or P-invariant if I ≠ 0 and IT. [N] = 0T, and a T-vector
J: T → Z catalogued by T is said to be a transition invariant or T-invariant if J ≠ 0 and [N].J = 0,
where Z is the set of integers. When each element of I is non-negative, the place invariant I is called
a place semiflow or P-semiflow. Assume that I is a P-invariant of a net with (N, Mo) and M is a
reachable marking from the initial marking Mo. Then ITM = ITMo. Let ||I|| = {p |I(p) ≠ 0} be the
support of P-invariant I. The supports of P-invariant I are classified into three types: (1) ||I||+ is the
positive support of P-invariant I with ||I||+= {p|I(p) > 0}. (2) ||I||− is the negative support of P-
invariant I with ||I||− = {p |I(p) < 0}. (3) I is a minimal P-invariant if ||I|| is not a superset of the
support of any other one and its components are mutually prime. Let li be the coefficients of P-

invariant I if  pi ∈ P, li = I(pi). Since regular (ordinary and weighted) Petri nets do not handle both
actuators and sensors, an extended Petri net has been developed to handle both actuators and
sensors Uzam et al. [37] and Uzam et al. [39], which is called an automation Petri net (APN). An
APN is an octuple (P, T, F, In, En, X, Q, Mo), where P, T, F, and Mo are explained above. In is an
inhibitor arc, graphically represented by an arc with a small circle (not an arrow). An inhibitor arc
connects an input place p to a transition t, and the transition t is enabled if the input place p has
tokens that are less than the inhibitor arc weight In(p, t). En is an enabling arc represented by an
arc with an empty arrow. An enabling arc connects an input place p to a transition t. The transition
t is enabled if the input place p has tokens whose number is at least equal to the enabling arc weight
En(p, t). X = {x1, x2, …, xm} is the set of firing conditions associated with the transitions, which can
be known as external events — for example, sensor readings. Q = {q1, q2, …, qn} is the actions set,
which can be allocated to the places. Q may represent more than one action in any place. In the
APN, the movement of tokens between their places represents the behaviour of an APN, which is
achieved via the firing of the transitions that are enabled.

3 THE PROPOSED METHODOLOGY

The proposed methodology is based on a deadlock-prevention method proposed by Ezpeleta et al.
[6]. Figure 1 illustrates the steps of the proposed methodology, which are described as follows:

4

3.1 Step 1: Build the Petri net model of the uncontrolled system, and obtain the controlled
Petri net model

In this step, a deadlock-prevention method based on strict minimal siphons (SMSs) is adopted to
design a controlled Petri net model. This method is adopted from Ezpeleta et al. [6]. A siphon in a
net N is defined as a set of places 𝑆 = {p1, . . . , pk}. A substantial characteristic of a siphon is that,
at a given marking, once a siphon is emptied it remains emptied at any subsequent marking
reachable from the given marking.

Definition 1. Let N be a net. A place set 𝑆 ⊆ P, 𝑆 ≠ ∅ , satisfying •𝑆 ⊆ 𝑆•, is said to be a siphon.

When a siphon does not include other siphons, it is said to be a minimal siphon. A minimal siphon 𝑆
is said to be strict if •𝑆 ⊊ 𝑆•.

Siphons play an essential part in the Petri net liveness examination, particularly in an unweighted
Petri net. When a siphon 𝑆 at a marking in a Petri net is unmarked, there are no enabled transitions
in 𝑆•, and all the transitions associated with 𝑆 cannot be fired. Therefore, the transitions are in a
deadlock state, leading to the absence of liveness in the system. In Ezpeleta et al. [6], a monitor or
control place is added to each SMS to fulfill the liveness of a Petri net. The proposed policy is simple
and guarantees success. However, it leads to a more complex Petri-net-controlled system than the
original Petri net model, since the number of added control places is equal to that of the SMSs in
the target Petri net model, and the added arcs are more than those of the added control places.
The strict minimal siphon control based on the complementary set of a siphon is used to create the
monitors. A complementary set [S] of a siphon 𝑆 is the set of operation places that are the holders
of the resources in 𝑆 but that do not belong to 𝑆. Moreover, [𝑆]∪ 𝑆 is the P-invariant support that
indicates the places of operations in [𝑆] that will contend for the resources in 𝑆 with the places of
operations belonging to 𝑆. 𝑆 will be unmarked when all tokens in 𝑆 flow into [𝑆]. Before constructing
the control algorithm, we state the following notations that will be used. 𝑆 represents a strict
minimal siphon that cannot include the place p semiflow support (i.e., siphons that can be
unmarked). Assuming that 𝑆 is a siphon, we have 𝑆 = 𝑆A ∪ 𝑆R, 𝑆R = 𝑆 ∩ PR, 𝑆A =𝑆 \ 𝑆R, where 𝑆A
denotes the places of operations and 𝑆R denotes the places of resources. [𝑆] indicates the following

set of state places: [𝑆]=(Ur∈𝑆R
H(r))∖𝑆A, where H(r) = {𝑝∖p ∈ 𝑃𝐴, 𝑝 ∈ ||𝐼𝑟||+∖{r} } indicates the P-

invariant positive support I, ∀ i,j∈{1,2,…,n},i≠j, H(ri)∩H(rj)=∅. Assume that [S] is a set of

complements of S: design and add a monitor for [S], and the initial marking of the monitor can be
computed as M0A(VS) = M0(S)-1. According to the strict minimal siphon concept, the developed
deadlock prevention algorithm proposed by Ezpeleta et al. [6] is shown in Table 1.

Table 1: The strict minimal siphon-based algorithm

Input: Original Petri net model (N, Mo) of an automated manufacturing system.
Step 1: Compute all strict minimal siphons for N.
Step 2: Design a monitor Vs for each strict minimal siphon, and consider the following:
The Vs output arcs are connected to the source transitions, which are led to the sink transitions of

𝑆, and all arc weights are unitary.
The Vs input arcs are connected from the stealing places of 𝑆, and all arc weights are unitary.
M0A(Vs) = M0(𝑆)-1, where M0A(Vs) is an initial marking of a monitor.
Step 3: Iterate step 2 until all computed strict minimal siphons are considered.
Step 4: Insert all monitors into the original net (N, Mo), and the obtained net is represented as (N1,
M1).
Step 5: Output (N1, M1).
Step 6: End.

To demonstrate the above algorithm, consider the Petri net model illustrated in Figure 2(a). The
model comprises of a single robot R, which holds a part at a time; one machine M, which processes
a part at a time; one loading buffer (I1); and an unloading buffer (O1). One part type is processed
in the manufacturing system (PA). The robot reaches the loading buffer, grips, and loads PA to the
M. If M finishes its operation, the robot reaches the machine, grips, and unloads the part to the
unloading buffer. The Petri net model comprises four transitions and six places. The places can be
described as the following set partition: P0 = {p1}, PR = {p5, p6}, and PA = {p2, p3, p4}, where P0, PR

 ,
and PA

 are the input, resources, and operation places respectively. The model has five reachable
markings and four minimal siphons, one of which is a strict minimal siphon. Its augmented siphon is
𝑆 = {p4, p5, p6}. Table 2 shows the required monitor using the adopted algorithm. Figure 2(b) displays
the controlled Petri net model.

5

Figure 1: Steps involved in the proposed methodology

Table 2: Control place computations

SMS ‖𝑰‖+ 𝑯(𝒓𝑹) [𝑺] •Vsi Vsi
• MoA(Vsi)

S = {𝑝4, 𝑝5, 𝑝6},
SA= {𝑝4},

SR= {𝑝5, p6}.

‖Ip5‖
+
= {p

3
, p

5
},

‖Ip6‖
+
= {p

2
, p

4
, p

6
}.

H(r5) = {p2 ,p
7
},

H(r6) = {p
3
, p

6
}.

[S] = {p
2
, p

3
} t3 t1 1

5

t1

t2

t3

t4

p2

p3

p4

p1

M

p5

R

p6
I1/O1

Vs1

5

t1

t2

t3

t4

p2

p3

p4

p1

M

p5

R

p6
I1/O1

(a) (b)

X1

X2

X3

X4

Q0.1

Q0.2

Q0.3

Place with

capacity >=1

Place with

capacity = 1

T1

T2

T3

Vs1

5

t1

t2

t3

t4

p2

p3

p4

p1

M

p5

R

p6
I1/O1

M0.1

M0.2

M0.3

M0.4 M0.5

M0.6

F2

F3

F4

M1.1

M1.2

M1.3

M1.4

F1
F5

F6

FS1

M0.0

X1

X2

X3

X4

Q0.1

Q0.2

Q0.3

T1

T2

T3

Vs1

5

t1

t2

t3

t4

p2

p3

p4

p1

M

p5

R

p6

I1/O1

(c) (d)

Figure 2: (a) Petri net model of an AMS, (b) Controlled Petri net model using algorithm 1, (c)
ACPN for the controlled system, and (d) Equivalent CTPL

Build the PN for the system

Detect the deadlocks in the system

Apply deadlock prevention methods to prevent

the deadlocks.

Using automation Petri net technique (APN)

Using token-passing logic technique (TPL)

Using a Siemens Step 7-1200 PLC

Step 1: Build uncontrolled Petri net model of the system

(PN) and design the controlled Petri net model (CPN).

Step 2: Convert the CPN into the automation-controlled

Petri net model (ACPN).

Step 3: Convert the ACPN into controlled token-passing

logic model (CTPL).

Step 4: Convert the CTPL into ladder diagrams (LDs).

Using human machine interface (HMI) Siemens

step 7-1200 PLC
Step 5: Simulate and validate the LDs.

6

3.2 Step 2: Convert the controlled Petri net model (CPN) into the automation-controlled Petri
net model (ACPN).

In this step, the automation-controlled Petri net model that proposed by Uzam et al. [37] and Jones
et al. [38] is used to convert the CPN into ACPN to determine the firing conditions X, actions Q, and
the capacity of the places. For example, consider the CPN model presented in Figure 2(b), where
the firing conditions X1, X2, and X3 are assigned to t1, t2, and t3 respectively. Moreover, actions Q0.1,
Q0.2, and Q0.3 are assigned to robot loading operation (p2), machine operation (p3), and robot
unloading operation (p4) respectively. Time delays T1 (3 seconds), T2 (4 seconds), and T3 (3 seconds)
are assigned to robot loading operation, machine operation, and robot unloading operation
respectively. Finally, places p1, p5, p6, and Vs1 have 5, 1, 1, and 1 tokens capacities respectively.
Figure 2(c) displays the automation-controlled Petri net model of this example.

3.3 Step 3: Convert the automation-controlled Petri net model (ACPN) into a controlled token-
passing logic model (CTPL).

In this step, a token-passing logic technique that proposed by Jones et al. [38] is used to facilitate
the direct transformation of an automation Petri net into a control logic, which can be achieved
with a ladder diagram program. Each place in an ACPN corresponds to a place in a CTPL. The
simulated movement of tokens at each place in the CTPL is accomplished by deploying memory
words (16 bits) at each one; each place has at least a related memory word in TPL, where the
capacity of each place is at least 1. If the stored value of a memory word of a place in the TPL is at
least 1 and the firing condition X of a transition that related to that place becomes enabled, then
the memory word at the input and output places might be respectively decreased and increased.
Note that the flags can be used instead of memory bits Jones et al. [38]. Figure 2(d) illustrates the
equivalent CTPL for the ACPN of the numerical example.

3.4 Step 4: Convert the CTPL model into ladder diagrams (LDs).

In this step, the conversion of the CTPL model to ladder diagrams is proposed in Uzam et al. [37].
The conversion is achieved by using a SIEMENS Step 7-1200 PLC. First, we have proposed a general
methodology to carry out the conversion from a CTPL into LDs, which is shown by considering the
following structures: initial markings (states), firing transition CTPL, CTPL without action, CTPL with
action, CTPL with conflict, CTPL with inhibitor and enabling arcs, CTPL with weighted arc, and
timed-place CTPL.

Initial markings (states): An initial marking describes the initial state of the manufacturing system
resources, input buffers, and control places before starting, and needs to be inserted into the
beginning of the LD to guarantee correct operation. To insert an initial marking into an LD at the
first rungs of the LD, consider the CTPL model illustrated in Figure 3(a), where the firing conditions
X1 and X2 are assigned to t1 and t2 respectively. Moreover, flags F1 and F2 are assigned to resource
operation (p1) and resource state (p2) respectively. F1 and F2 are denoted as coils where, if the
token numbers in F1 and F2 are more than zero, the coils case is set (F1 and F2 =1); else the case is
reset (F1 and F2 =0). When the firing conditions X1 or X2 fire, F2 will be decreased or increased by 1
token respectively. To convert this into LD, counter up and down is used to simulate the case of F2,
where the present value of the counter is 1. When the firing conditions X1 and X2 are satisfied for t1

and t2, the counter value is decreased and increased by 1 respectively. Therefore, if the current
counter value is more than or equal to the value at the PV, then a signal state ‘1’ is assigned to F2;
otherwise a signal state ‘0’ is assigned to F2. Figure 3(b) illustrates the LD for the CTPL displayed in
Figure 3(a).

Firing transition CTPL: The transition indicates the start or end event of any operation. To represent
transition events in LDs, consider the CTPL model shown in Figure 4(a), where flags F1 and F2 are
assigned to p1 and p2 respectively, and firing condition X1 is assigned to an immediate transition t1.
When the firing condition X1 is satisfied (all the input places F1 and F2 have non-zero tokens), the
transition is enabled to fire. To represent this via an LD, X1 is denoted as a coil, where, if F1 and F2
have a signal state ‘1’ or X1 has a signal state ‘1’, the coil case is set (X1 =1); otherwise the case is
reset (X1 =0). Figure 4(b) shows the LD for the TPL value in Figure 4(a). The initial marking is not
presented in the LD.

CTPL without Action: Consider the CTPL model shown in Figure 5(a). A place with no action is
assigned to p2. To represent a place with no action in LD, p2 is represented as a flag F2 where, if the
transition X1 fires, it withdraws a token from the input place F1 and deposits a token to the output

7

place F2. F2 is denoted as coil if the number of tokens at F2 is at least 1, and the coil case is set (F2
=1); otherwise it is reset (F2 =0). To convert this into LDs, coil F2 has a signal state ‘1’ if X1 has a
signal state ‘1’ or F2 has a signal state ‘1’; otherwise a signal state ‘0’ is assigned to F2. Figure 5(b)
shows the LD for the CTPL displayed in Figure 5(a). The initial marking is not presented in the LD.

X1

X2

M1.1

M0.0

M0.1

F2

t1

t2

M1.0
F1p2 p1

(a) (b)

Figure 3: (a) CTPL with initial marking, and (b) Equivalent LD

X1

M1.0

M0.0

F1

t1

M1.1
F2p1 p2

M1.2
F3p3

(a) (b)

Figure 4: (a) Firing transition CTPL, and (b) Equivalent LD

X1

M1.0

M0.0

F1

t1

p1

M1.1
F2 p2

Place with no action

(a) (b)

Figure 5: (a) CTPL without action, and (b) Equivalent LD

CTPL with Action: A CTPL is shown in Figure 6(a). An action Q0.0 is assigned to place p2. This action
occurs only if the token number at p2 is at least 1. To represent an action in LDs, F2 is represented
as a coil, where, if the transition X1 fires and transition X2 is not enabled to fire, the coil case is set
(F2 =1); else it is reset (F2 =0). The action of resource operation is represented as a coil, where, if
the memory state of F2 has a signal state ‘1’, the action case is set; if the signal state is ‘0’ at F2,
the action is reset. Figure 6(b) displays the LD for the CTPL illustrated in Figure 6(a). The initial
marking is not presented in the LD.

CTPL with Conflict: Conflict occurs in a Petri net when there is an input place that has more than
one output transition. To resolve the conflict case, a priority is assigned to each of the transitions
by selecting which transition is to be permitted to fire; this selection often depends on a priority
scheme. Consider the CTPL model shown in Figure 7(a). If there is one token in place p1 and firing
conditions X1, X2, and X3 appear simultaneously, the conflict can be found. In LDs, the conflict can
be resolved by deciding the order of priorities for the conflicting transitions, where the PLC
automatically scans from left to right, top to bottom; the output place that is mentioned will fire
first, followed by others. Thus it can be seen from Figure 7(b) that transition t1 of TPL has priority
over transitions t2 and t3, and transition t2 has priority over transition t3. Figure 7(b) shows the LD
for the CTPL shown in Figure 7(a). The initial marking is not presented in the LD.

8

CTPL with inhibitor and enabling arcs: In Figure 8(a), the inhibitor and enabling arcs in a CTPL are
illustrated. The places p1, p2, and p3 are connected to a transition t1, where p1 has an enabling arc
En (p2, t1), and p3 has an inhibitor arc In (p2, t1). Places p1, p2, p3, and p4 are represented as flags
F1, F2, F3, and F4 respectively. The transition t1 (X1) can be fired when the token number in each of
the input places p1

and p2 is at least 1 and p3 has no token. Thus the firing condition X1 appears. If a

transition t1 fires, it withdraws a token from p2 and stores a token in output place p4. Note that the
markings of places p1 and p3 do not change. To convert this into LD, F1, F2, and F3 are denoted as
coils; if F1 and F2 have at least 1 token, the coils case is set (F1 and F2 =1); otherwise it is reset (F1
and F2 =0). Moreover, if F3 has no token, the coil case is set (F3 =1); otherwise it is reset (F3 =0).
The coil F4 has a signal state ‘1’ if X1 has a signal state ‘1’ or F4 has a signal state ‘1’; otherwise a
signal state ‘0’ is assigned to F4. Figure 8(b) shows the LD for the CTPL shown in Figure 8(a). Note
that the initial state is not presented in the LD.

CTPL with a weighted arc: The CTPL with a weighted arc is displayed in Figure 9(a). The transition
t1 is fired if the token number at the input place p1 is more than or equal to the arc weight 2 and
the firing condition X1 appears. If a transition t1 fires, it withdraws two tokens from p1 and deposits
two tokens in output place p2. Flags F5 and F6 are assigned to p1 and p2 respectively. Firing condition
X1 is assigned to an immediate transition t1. To convert the CTPL into an LD, if a transition t1 is
fired, it will withdraw two tokens from F1 and place two tokens in the F2. This can be achieved by
reducing the value of F5 by 2, using a subtraction instruction (SUB) and increasing the value of F6
by 2, using an addition instruction (ADD). Figure 9(b) shows the LD for the CTPL displayed in Figure
9(a). The initial marking is considered in the LD.

Timed-place CTPL: In Figure 10(a), the timed-place CTPL is illustrated. The places p1 and p2 are
denoted as the operation and state of resources respectively. Places p1 and p2 are represented as
flags F1 and F2 respectively. The resource operation takes 3 seconds to complete. If this time has
elapsed, effectively the transition t2 will be fired. To convert the CTPL into LD, an ON-delay timer
is used to represent the time delay for transition t2 to be fired. If the flag F1 is set, action Q0.0 is
activated, and it will take 3 seconds to complete. If the time has elapsed, effectively transition t2
is fired; thus F1 is reset and action Q0.0 is deactivated. Figure 10(b) shows the LD for the CTPL
displayed in Figure 10(a). The initial state is not presented in the LD.

X1

M1.0

M0.0

F1

t1

M1.2
F3

p1

p3

M1.1
F2p2

X2M0.1 t2

Resource operation

(Action)
Q0.0

(a) (b)

Figure 6: (a) CTPL with action and (b) Equivalent LD

9

X1

M1.0

M0.0

F1

t1

M1.1
F2

p1

p2

M1.2
F3p3

M1.3
F4p4

X2

M0.1

t2 X3
M0.2
t3

Q1.0 Q1.1 Q1.2
Action 1 Action 2 Action 3

(a) (b)

Figure 7: (a) CTPL with Conflict, and (b) Equivalent LD

X1

M1.0

M0.0

F1

t1

M1.1
F2p1 p2

M1.3
F4p4

M1.2
F3p3

(a) (b)

Figure 8: (a) CTPL with inhibitor and enabling arcs, and (b) Equivalent LD

5

X1

MW1

M0.0

F5

t1

p5

MW2

F6p6

2

2

(a) (b)

Figure 9: (a) CTPL with weighted arc, and (b) Equivalent LD

10

X1M0.0 t1

M1.1
F2p2

M1.0
F1p1

X2M0.1 t2

Resource operation

T1: 3 secQ0.0

(a) (b)

Figure 10: (a) CTPL with timed-place, and (b) Equivalent LD

Based on the above conversions, the LD obtained for the CTPL, shown in Figure 2(d), is given in
Figure 11. The LD can be described as follows. Rungs 1 to 4 indicate the set and reset of the input
buffer, resources available states, and control place, which are F1, F5, F6, and FS1 respectively.
Moreover, rungs 5 to 8 represent the enabling rules and firing conditions of transitions and time
delays of resource operations (X1, X2, X3, X4) respectively. Similarly, rungs 9 to 11 represent the
memory states of resource operations (F2, F3, F4) respectively. Finally, rungs 12 to 14 denote the
actions of resources (F2, F3, F4) respectively.

Figure 11: LD obtained for the CTPL shown in Figure 2(d)

4 MANUFACTURING SYSTEM CASE STUDY

4.1 Description of the system and Petri net model

The AMS used in this case paper is illustrated in Figure 12. The scheme of the system is shown in
Figure 13. This system is located in King Saud University (Computer Integrated Manufacturing [CIM]

11

lab). There are machining stations M1 (milling machine) and M2 (turning machine), assembly and
inspection stations, input and output buffer, conveyor for transporting the parts among machines
and stations, and three robots R1–R3. Each machine (robot) processes (holds) one part at the same
time. Two part types A and B are produced in the system under consideration. Both parts A and B
have similar routing (M1 then M2) and are subsequently assembled in an assembly station; the
assembled part is inspected at an inspection station; and then the final product leaves the
manufacturing cell. In this case study, robots work in a mutually exclusive manner: R1 loads/unloads
part A on M1 from the conveyor, R2 loads/unloads part B into M2 from the conveyor, and R3
loads/unloads parts A and B onto the assembly and inspection stations from the conveyor. The Petri
net model is illustrated in Figure 14. The properties of the developed Petri net models are obtained
using an integrated net analyser (INA). It has been found that the system is not live (deadlock).

4.2 Controlled system for case study

The suggested deadlock-prevention algorithm was applied to this case study. The system model has

five strict minimal siphons that can be empty, which are S1={p
7
,p

16
,p

21
}, S2={p

6
,p

15
,p

20
},

S3={p10,p12
,p

13
,p

17
,p

22
}, S4={p12,p13

,p
17

,p
18

,p
22

}, and S5={p8,p12
,p

13
,p

18
,p

22
}. Each siphon requires

a control place to make the siphon controlled. Table 3 displays the required control places using the
algorithm from Ezpeleta et al. [6]. Figure 15 shows the controlled Petri net model after addition of
the control places.

Figure 12: Automated manufacturing system

Figure 13: Layout of an automated manufacturing system

Table 3: Computation of control places with SMS

i •Vsi Vsi
• MoA(Vsi)

1 t6 t2 1

2 t5 t1 1

3 2t10 t7, t8 2

4 t10, t12, t13 t7,t8 3

5 t12, t13 t10 1

12

6

t1

t3

t5

t7

p2

p4

p6

p1

M1

operationp15

PA
I1/O1

t2

t4

t6

t8

p3

p5

p7

p16

R1

p20

R2

p21

2

2

2

R3

p22

p19

p14

t9

t10

p8

p9

p10

t11

p11

p17

t12

p12

t14

t13

p13

t15

p18

6p23

PB
I2/O2

R1

load

operation

M2

operation

Assembly

operation

Inspection

operation

R2

load

operation

R1

unload

operation

R2

unload

operation

R3

load

operation

R3

load

operation

R3

accepted Part

load operation

R3

Rejected Part

load operation

Figure 14: Petri net model of the system

4.3 APN model for the controlled system

The obtained controlled system lacks identification and recognition of the two part types at the
milling machine, turning machine, and assembly station. To solve this problem, four sensors are
added to the conveyor. Sensor 1 (a proximity sensor) and sensor 2 (an infrared reflective sensor) are
added to recognise parts A and B in the milling and turning machines respectively. After machining
the two parts, they can be recognised at the assembly station. Therefore, sensor 3 (a proximity
sensor) and sensor 4 (an infrared reflective sensor) are added to detect parts A and B respectively
in the assembly station. An APN model designed for the controlled system using the algorithm from
Ezpeleta et al. [6] is shown in Figure 16. In the APN model, there are 34 places (VS1, VS2, …, VS5, p2,
p3, …, p29) and 17 transitions (X1, X2, ..., X17). The model consists of eight resources: the conveyor,
robot 1, robot 2, milling machine, turning machine, robot 3, assembly station, and inspection
station. Initially, the conveyor is off, and the remaining resources are idle. In the conveyor, places
p28 and p29 represent the conveyor off and on states respectively. In robot 1, places p2, p6, and p20
describe the loading operation, unloading operation, and idle/busy states of robot 1 respectively. A
time delay of 3 s is assigned to each operation that is required for the robot 1 operations. In robot
2, places p3, p7, and p21 represent the loading operation, unloading operation, and idle/busy states
of robot 1 respectively. A time delay of 3 s is assigned to each operation that is required for the
robot 2 operations. In robot 3, places p8, p10, p12, p13, and p22 represent the loading operation,
unloading operation, unloading operation, unloading operation, and idle/busy states of robot 3
respectively. A time delay of 3 s is assigned to each operation that is required for the robot 3
operations. Further, in the milling machine, places p4 and p15 denote the milling operation and
idle/busy states of the milling machine respectively. A time delay of 4 s is assigned to each operation
that is required for the milling operations. The same situation for the turning machine, assembly,
and inspection stations: places p5, p9, and p11 represent the operations and places p16, p17, and p18

denote the idle/busy states respectively. Times delays of 5 s, 6 s, and 4 s respectively are assigned
to each operation that is required for the operations. Places p14, p19, p24, and p25 are used to
represent the sensors 3, 4, 1, and 2 respectively. Place p1 denotes part A and part B on the conveyor

13

coming toward the milling and turning operations, while places p26 and p27 denote an accepted
assembled part and rejected assembled part respectively. Places p28 and p29 describe the off and on
states of the conveyor motor respectively. Finally, places Vs1, Vs2, Vs3, Vs4, and Vs5 are used to
represent the obtained controllers. The transitions are characterised as follows: If there is a part A
at the milling area and sensor 1 detects it (with I0.0), and VS2 has one token, then R1 is starting (X1)
to pick it up and is trying to upload M1. When the loading time has elapsed, M1 begins to mill part
A (X3). When the milling time has ended, R1 begins to unload part A from M1 to the conveyor (X5).
If there is a part B at the turning area and sensor 2 detects it (with I0.1), and VS1 has one token,
then R2 is starting (X2) to pick it up and is trying to upload M2. When the loading time has elapsed,
M2 begins to turn part B (X4). When the turning time has elapsed, R2 begins to unload part B from
M2 to conveyor (X6). If there are parts A and part B at the assembly area, sensor 3 detects part A
(with I0.2), sensor 4 detects part B (with I0.3), and VS3 and VS4 have more than one token; then R3
is starting to pick up two parts A (X7) and B (X8) and is trying to upload the assembly station. When
the loading time has elapsed for each part, M2 begins to assemble two parts (X9). When the assembly
time has elapsed, R3 begins to unload an assembled part from the assembly station to the inspection
station (X10). When the unload time has elapsed, the inspection station begins to check an assembled
part (X11). If an assembled part is accepted, R3 begins to unload an accepted part from the inspection
station to an accepted sink (X12). Otherwise, R3 begins to unload a rejected part from the inspection
station to a rejected sink (X13).

6

t1

t3

t5

t7

p2

p4

p6

p1

M1

operationp15

PA
I1/O1

t2

t4

t6

t8

p3

p5

p7

p16

R1

p20

R2

p21

2

2

2

R3

p22

p19

p14

t9

t10

p8

p9

p10

t11

p11

p17

t12

p12

t14

t13

p13

t15

p18

6
p23

PB
I2/O2

R1

load

operation

M2

operation

Assembly

operation

Inspection

operation

R2

load

operation

R1

unload

operation

R2

unload

operation

R3

load

operation

R3

load

operation

R3

accepted Part

load operation

R3

Rejected Part

load operation

Vs1 t2

t6

Vs2 t1

t5

2

Vs3 t7

t10

2
t8

33

Vs4 t7

t10

t8

t12
t13

Vs5 t10

t13

t12

Figure 15: Controlled PN model

Spec. 1. The motor of the conveyor is switched on through transition t16, and appears if there are
no parts A and B on the milling, turning, or assembly areas and R1, R2, or R3 are empty. This is
realised by adding inhibitor arcs from places p24, p25, p14, and p19 to transitions t16, In (p24, t16) = 1,
In (p25, t16) = 1, In (p14, t16) = 1, and In (p19, t16) = 1 respectively. Moreover, by adding enabling arcs
from places p20, p21, and p22 to transitions t16, En (p20, t16) = 1, En (p21, t16) = 1, and En (p22, t16) = 1
respectively, the operation of the conveyor is achieved with one token in place p29, and is realised
by an action Q0.0. The motor of the conveyor is switched off through transition t17, and appears
when there are parts A and B on the milling, turning, or assembly areas and R1, R2, or R3 are empty.

14

This is realised by adding enabling arcs from places p24, p25, p14, and p19 to transitions t16, En (p24,
t16) = 1, En (p25, t16) = 1, En (p14, t16) = 1, and En (p19, t16) = 1 respectively. Moreover, inhibitor arcs
are added from places p20, p21, and p22 to transitions t16, In (p20, t16) = 1, In (p21, t16) = 1, and In (p22,
t16) = 1 respectively.

Spec. 2. R1 (loading operation) is switched on through transition t1 if there is a part A in the M1 area
— i.e., M (p24) = 1, R1 is idle — i.e., M (p20) = 1, VS2 has one token — i.e., M (VS2) = 1, and there is no
operation in M1 — i.e. M (p4) = 0. R1 (Loading operation) is achieved with one token in place p2, and
is realised by a level action (Q0.1). R1 (Loading operation) is switched off through transition t3, and
appears when the presence of part A in the M1 machine is detected. When the loading time in R1
has elapsed, the M1 operation is switched on through transition t3, and appears when M1 is idle —
i.e., M (p15) = 1; the M1 operation is achieved with a token in place p4, and is realised by a level
action (Q0.3). R1 (unloading operation) is switched on through transition t5 if the M1 operation time
has elapsed and R1 is idle — i.e., M (p20) = 1. R1 (unloading operation) is achieved with a token in
place p6, and is realised by a level action (Q0.5). R1 (unloading operation) is switched off when the
unloading time has elapsed.

Spec. 3. R2 (loading operation) is switched on through transition t2 if there is a part B in the M2 area
— i.e., M (p25) = 1, R2 is idle — i.e., M (p21) = 1, VS1 has one token — i.e., M (VS1) = 1, and no operation
in M2 — i.e., M (p5) = 0. R2 (Loading operation) is achieved with a token in place p3, and is realised
by a level action (Q0.2). R1 (Loading operation) is switched off through transition t4, and appears
when the presence of part B in the M2 machine is detected. When the loading time in R2 has elapsed,
the M2 operation is switched on through transition t4, and appears when M2 is idle — i.e., M (p16) =
1; the M2 operation is achieved with a token in place p5, and is realised by a level action (Q0.4). R2
(unloading operation) is switched on through transition t6 if the M2 operation time has elapsed and
R2 is idle — i.e., M (p21) = 1. R1 (unloading operation) is achieved with a token in place p7, and is
realised by a level action (Q0.6). R2 (unloading operation) is switched off when the unloading time
has elapsed.

Spec. 4. R3 (loading operation) is switched on through transitions t7 or t8, and appears if R3 is idle
— i.e., M(p22) = 1, VS3 and VS4 have more than one token — i.e., M(VS3) ≥ 1 and M(VS4) ≥ 1 respectively,
no assembly operation — i.e., M(p9) = 0, and there is a part A or a part B in the assembly area —
i.e., M(p14) = 1 or M(p19) = 1 respectively. R3 (loading operation) is achieved with a token in place
p8, and is realised by a level action (Q0.7). R3 (loading operation) is switched off through transition
t9, and occurs when the presence of parts A and B in the assembly station is detected. If the R3
loading time has then elapsed and the assembly station is idle — i.e., M (p17) = 1, the assembly
operation is switched on through transition t9. Therefore, the assembly operation is achieved with
a token in place p9, and is realised by a level action (Q1.0). The assembly operation is switched off
through transition t10, and appears when the assembly time has elapsed. R3 (unloading operation) is
switched on through transition t10, and appears when the assembly operation time has elapsed and
R3 is idle — i.e., M (p22) = 1. R3 (unloading operation) is achieved with a token in place p10, and is
realised by a level action (Q1.1). R3 (unloading operation) is switched off through transition t11,

when the unloading time has elapsed.

Spec. 5. The inspection operation is switched on through transition t11, and appears when the
inspection station is idle — i.e., M (p18) = 1. The inspection operation is achieved with a token in
place p11, and is realised by a level action (Q1.2). The inspection operation is switched off through
transition t12 (accepted assembled part) or t13 (rejected assembled part), and appears when the
inspection time has elapsed.

Spec. 6. R3 (unloading operation) is switched on through transition t12 (accepted assembled part) or
t13 (rejected assembled part), and appears when there is an assembled part in the inspection station,
and R3 is idle — i.e., M (p22) = 1. R3 (unloading operation) is achieved with a token in place p12 or
p13, and is realised by a level action Q1.3 or Q1.4 respectively. R3 (loading operation) is switched
off through transitions t14 or t15, and appears when the unloading time has elapsed.

Spec. 7. To record the number of accepted and rejected assembled parts, places p26 and p27 are
used respectively. When transitions t14 and t15 fire, the token number in these places is increased.
Thus the token numbers in these places denote the number of accepted and rejected assembled
parts respectively in the manufacturing system.

15

4.4 TPL for the APN Model

The TPL methodology introduced in section 3 is used to convert the APN model into an LD for
implementation on a PLC. Specifically, an APN model can be converted into TPL by assigning memory
bits (Mx.x) to places and transitions. An ON-delay timer is associated with timed places to realise
the timing requirements. Moreover, output bits (Qx.x) are assigned to the operation places to
describe actions at places. Sensor readings are represented by input registers (Ix.x). A designed TPL
model for the APN model using Algorithm 1 is illustrated in Figure 17. In the TPL model, flags (FS1,
FS2, …, FS5, F2, F3,…, F29) are assigned to the places (VS1, VS2, …, VS5, p2, p3, …, p29) respectively.
Moreover, memory bits (M8.0, M8.1, …, M8.4, M3.1, M3.2, …, M3.7, M4.0, M4.1, …, M4.4, M4.5, M4.6,
M5.0, M5.1, M5.2, M5.3, M5.4, M5.5, M5.6) are assigned to the places (VS1, VS2, …, VS5, p2, p3, …, p8,
p9, p10, …, p13, p15, p16, p17, p18, p20, p21, p22, p26, p27) respectively. Likewise, memory bits (M1.0,
M1.1, …, M1.7, M2.0, M2.1, …, M2.6,) are assigned to the firing conditions (X1, X2, …, X8, X9, X10, …,
X15) respectively. Input registers (I0.0, I0.1, I0.3, I0.4) are assigned to the sensor places (p24, p25,
p14, p19) respectively. Finally, output bits (Q0.0, Q0.1, Q0.2, … Q0.7, Q1.0, Q1.1, …, Q1.4) are
assigned to the places (p29, p2, p3, …, p8, p9, p10, …, p13) respectively.

4.5 LD for the TPL Model

The TPL model using Algorithm 1 is converted directly into the LD code for implementation. The
obtained LD code, as shown in Figure 18, is constructed as follows: rungs 1 to 12 indicate the set
and reset of control places and resources available states, which are FS1, FS2, FS3, FS4, FS5, M1,
M2, assembly station, inspection station, R1, R2, and R3 respectively. Moreover, rungs 12 to 26
represent the firing conditions and time delays of resource operations (X1, X2, …, X15) respectively.
Similarly, rungs 27 to 38 represent the memory states of resource operations (F2, F3, …, F13)
respectively. Rungs 39 and 40 imply memory states of accepted assembled parts and rejected
assembled parts respectively. Rungs 41 and 42 represent memory states of switches start and end
respectively, which are used in the validation LD step for starting and stopping the system during
the simulation. To display whether the output of the inspection station is accepting or rejecting the
assembled part, rungs 43 and 44 represent memory states of the accepted and rejected assembled
parts via the inspection station respectively. A problem that may occur in the system model is that
the assembled part may comprise the same two parts (two part As or two part Bs). To avoid this
problem, rungs 45 to 48 are designed. For recording the number of accepted assembled parts and
rejected assembled parts in the collection sinks, rungs 49 and 50 respectively are used. When the
system is switched on, all resources are idle, and all sensors have value 0; the conveyor motor
(action Q0.0) must be in operation and can be realised by rungs 51 and 52. Finally, rungs 53 to 64
represent the actions of resource operations (F2, F3, …, F13) respectively.

4.6 Validation of LD

Validation of the obtained LD is carried out to test the applicability, drawbacks, and strengths of
the suggested deadlock-control method. A human-machine interface (HMI) is used to introduce a
visual representation of a control system and provide real-time data acquisition on its LCD screen.
A combination HMI-PLC plays a significant role in the design of a truly lean automation solution,
providing many benefits throughout the life cycle of machine automation. To validate the suggested
LD using HMI, other components that are pivotal to the operation of a manufacturing control system
are considered, in addition to the on/off buttons and various input/output sensors that monitor the
arrived parts. Subsequently, a decision is taken about the PLC that will get the data from the
input/output sensors and convert the data into logical combinations. Programming of the HMI
includes assigning tags to screen elements. A tag is a connection or link between an address in the
PLC and a screen element of the HMI. Figure 19 shows the HMI window that is designed for the
selected system to validate the obtained LD, as illustrated in Figure 18. Controller simulation is
carried out to check the response between the LD and the HMI programs. The simulation results
show that the suggested AMS controller is applicable and correct. In addition, the HMI program is
proportionate with a real-time view of the system model, locates faults rapidly, and enables the
reduction in the troubleshooting time for faults.

http://www.anaheimautomation.com/products/hmi/integrated-hmi-plc-list.php?cID=429

16

t1

t3

t5

t7

p2

p4

p6

p1

p15

t2

t4

t6

t8

p3

p5

p7

p16

p20 p21

2

2

2 p22

t9

t10

p8

p9

p10

t11

p11

p17

t12

p12

t14

t13

p13

t15

p18

p23

Vs1 t2

t4

Vs2 t1

t3

2

Vs3 t7

t10

2
t8

33

Vs4 t7

t10

t8

t12
t13

Vs5 t10

t13

t12

Source of Part BSource of Part A

Sensor 1

I0.0

p24

t1

t16

t17

Sensor 2

I0.1

p25

t2

t16

t17

Sensor 3

I0.2

p14

t7

t16

t17

Sensor 4

I0.3

p19

t8

t16

t17

p20

p21

p22

p20

p21

p22

t16 t17

Conveyor

p28

p29

Off

On
Q0.0

X16 X17

X1 X2

X3 X4

X5 X6

X7 X8

X9

X10

X11

X12 X13

X14 X15

Q0.1

T1:3 sec

Q0.2

T2:3 sec

Q0.3

T3:4 sec
Q0.4

T4:5 sec

Q0.5

T5:3 sec
Q0.6

T6:3 sec

Q0.7 T7:3 sec

Q1.0 T8:6 sec

Q1.1T9:3 sec

Q1.2

T10:4 sec

Q1.3T11:3 sec Q1.4 T12:3 sec

p27p26

Figure 16: APN model of the controlled system

17

t1

t3

t5

t7

p2

p4

p6

p1

p15

t2

t4

t6

t8

p3

p5

p7

p16

p20 p21

2

2

2 p22

t9

t10

p8

p9

p10

t11

p11

p17

t12

p12

t14

t13

p13

t15

p18

p23

Vs1 t2

t4

Vs2 t1

t3

2

Vs3 t7

t10

2
t8

33

Vs4 t7

t10

t8

t12
t13

Vs5 t10

t13

t12

Source of Part BSource of Part A

Sensor 1

I0.0

p24

t1

t16

t17

Sensor 2

I0.1

p25

t2

t16

t17

Sensor 3

I0.2

p14

t7

t16

t17

Sensor 4

I0.3

p19

t8

t16

t17

p20

p21

p22

p20

p21

p22

t16 t17

Conveyor

p28

p29

Off

On
Q0.0

X16 X17

X1 X2

X3 X4

X5 X6

X7 X8

X9

X10

X11

X12 X13

X14 X15

Q0.1

T1:3 sec

Q0.2

T2:3 sec

Q0.3

T3:4 sec
Q0.4

T4:5 sec

Q0.5

T5:3 sec
Q0.6

T6:3 sec

Q0.7 T7:3 sec

Q1.0 T8:6 sec

Q1.1T9:3 sec

Q1.2

T10:4 sec

Q1.3T11:3 sec Q1.4 T12:3 sec

p27p26

M1.0 M1.1

M1.2 M1.3

M1.4 M1.5

M1.6 M1.7

M2.0

M2.1

M2.2

M2.3 M2.4

M2.5 M2.6

M0.0

M8.0

FS1

M8.1

FS2

M8.2

FS3

M8.3

FS4

M8.4

FS5

M3.1 M3.2

M3.3

F2 F3

F4 F5

M3.4

F6 F7

M3.5 M3.6

M3.7
F8

M4.0F9

M4.1 F10

M4.2
F11

M4.3 F12 M4.4F13

M5.6F27M5.5 F26

M4.5

F15
M5.2
F20

M5.3
F21

M4.6

F16

M5.4

F22
M5.0

F17

M5.1
F18

Figure 17: TPL model of the APN model

18

Figure 18: Part of the LD code for the TPL

19

Figure 18 (continued): Part of the LD code for the TPL

20

Figure 18 (continued): Part of the LD code for the TPL

21

Figure 18 (continued): Part of the LD code for the TPL

Figure 19: HMI of the LD using SMS algorithm

5 CONCLUSIONS

The paper presents a methodology based on Petri nets, including deadlock-prevention methods and
converting the methods into PLC codes (ladder diagrams). A real-time application of AMS is used to
demonstrate the proposed methodology, which can be implemented in a wide range of discrete
event manufacturing systems. Moreover, the proposed methodology is appropriate for multiproduct
manufacturing systems, and provides an effective PLC implementation. In addition to model and
control an AMS using multi-step look-ahead control policies Gu et al. [41] and state-tree structure
Gu et al. [42], the research could be extended in several ways:

1. In this paper, it is assumed that the machines, robots, motors, actuators, and sensors are

working without failures. Unreliable resources or fault occurrences are common in real-world
systems. Therefore, the extension of this research could involve fault tolerance and a supervisor
under dynamic control specifications of the system design.

2. Most of the developed deadlock-control methods have been designed for pure Petri nets (not
involving self-loops, inhibitor arcs, or enabling arcs) and might not lead to optimally controlled
systems. Nevertheless, deadlock-control methods with non-pure Petri nets might exist that
might lead to optimally controlled systems. However, mathematically representing a non-pure
Petri net is difficult, and requires significant research effort.

ACKNOWLEDGMENT

The authors would like to thank Deanship of scientific research for funding and supporting this
research through the initiative of DSR Graduate Students Research Support (GSR), King Saud
University.

22

REFERENCES

[1] Li, Z., Zhou, M. and Wu, N. 2008. A survey and comparison of Petri net-based deadlock prevention policies
for flexible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 38(2), pp. 173-188.

[2] Li, Z., Wu, N. and Zhou, M. 2012. Deadlock control of automated manufacturing systems based on Petri
nets — A literature review. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, 42(4), pp. 437-462.

[3] El-Tamimi, M., Nasr, E.A., Al-Ahmari, A., Kaid, H. and Li, Z. 2015. Evaluation of Deadlock Control Designs
in Automated Manufacturing Systems, International Conference on Industrial Engineering and Operations
Management,

[4] Chen, Y., Li, Z., Barkaoui, K. and Giua, A. 2015. On the enforcement of a class of nonlinear constraints
on Petri nets. Automatica, 55, pp. 116-124.

[5] Chen, Y., Li, Z., Khalgui, M. and Mosbahi, O. 2011. Design of a maximally permissive liveness-enforcing
Petri net supervisor for flexible manufacturing systems. IEEE Transactions on Automation Science and
Engineering, 8(2), pp. 374-393.

[6] Ezpeleta, J., Colom, J.M. and Martinez, J. 1995. A Petri net based deadlock prevention policy for flexible
manufacturing systems. IEEE Transactions on Robotics and Automation, 11(2), pp. 173-184.

[7] Huang, Y., Jeng, M., Xie, X., and Chung, S. 2001. A deadlock prevention policy for flexible manufacturing
systems using siphons, IEEE International Conference on Robotics and Automation. Proceedings 2001 ICRA,
1, pp. 541-546.

[8] Uzam, M. and Zhou, M. 2004. Iterative synthesis of Petri net based deadlock prevention policy for flexible
manufacturing systems, IEEE International Conference on Systems, Man and Cybernetics, 5, pp. 4260-4265.

[9] Li, Z. and Zhou, M. 2004. Elementary siphons of Petri nets and their application to deadlock prevention in
flexible manufacturing systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, 34(1), pp. 38-51.

[10] Huang, Y., Jeng, M., Xie, X., and Chung, D. 2006. Siphon-based deadlock prevention policy for flexible
manufacturing systems, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,
36(6), pp. 1248-1256.

[11] Uzam, M. and Zhou, M. 2007. An iterative synthesis approach to Petri net-based deadlock prevention
policy for flexible manufacturing systems, IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, 37(3), pp. 362-371.

[12] Li, Z. W., Hu, H. S., and Wang, A. R. 2007. Design of liveness-enforcing supervisors for flexible
manufacturing systems using Petri nets, IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 37(4), pp. 517-526.

[13] Huang, Y. 2007. Design of deadlock prevention supervisors using Petri nets, The International Journal of
Advanced Manufacturing Technology, 35(3-4), pp. 349-362.

[14] Li, Z., Zhou, M., and Jeng, M. 2008. A maximally permissive deadlock prevention policy for FMS based on
Petri net siphon control and the theory of regions, IEEE Transactions on Automation Science and
Engineering, 5(1), pp. 182-188.

[15] Li, Z. and Zhou, M. 2008. Control of elementary and dependent siphons in Petri nets and their application,
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 38(1), pp. 133-148.

[16] Chao, D.Y. 2010. Fewer monitors and more efficient controllability for deadlock control in S3PGR2 (systems
of simple sequential processes with general resource requirements), The Computer Journal, 53(10), pp.
1783-1798.

[17] Chen, Y. and Li, Z. 2011. Design of a maximally permissive liveness-enforcing supervisor with a compressed
supervisory structure for flexible manufacturing systems, Automatica, 47(5), pp. 1028-1034.

[18] Li, S.Y., Li, Z.W., and Hu, H.S. 2011. Siphon extraction for deadlock control in flexible manufacturing
systems by using Petri nets, International Journal of Computer Integrated Manufacturing, 24(8), pp. 710-
725.

[19] Chen, Y., Li, Z., and Barkaoui, K. 2014. Maximally permissive liveness-enforcing supervisor with lowest
implementation cost for flexible manufacturing systems, Information Sciences, 256, pp. 74-90.

[20] Chen, Y., Li, Z., and Zhou, M. 2014. Optimal supervisory control of flexible manufacturing systems by
Petri nets: A set classification approach, IEEE Transactions on Automation Science and Engineering, 11(2),
pp. 549-563.

[21] Qin, M., Li, Z., and Al‐Ahmari, A. M. 2015. Elementary siphon based control policy for flexible
manufacturing systems with partial observability and controllability of transitions, Asian Journal of Control,
17(1), pp. 327-342.

[22] Li, Z., Liu, G., Hanisch, H.-M., and Zhou, M. 2012. Deadlock prevention based on structure reuse of Petri
net supervisors for flexible manufacturing systems, IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, 42(1), pp. 178-191.

[23] Li, Z. and Zhao, M. 2008. On controllability of dependent siphons for deadlock prevention in generalized
Petri nets, IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 38(2), pp.
369-384.

[24] Chen, Y., Li, Z., Barkaoui, K., and Uzam, M. 2014. New Petri net structure and its application to optimal
supervisory control: Interval inhibitor arcs, IEEE Transactions on Systems, Man, and Cybernetics: Systems,
44(10), pp. 1384-1400.

23

[25] Uzam, M., Li, Z., Gelen, G., and Zakariyya, R. S. 2016. A divide-and-conquer-method for the synthesis of
liveness enforcing supervisors for flexible manufacturing systems, Journal of Intelligent Manufacturing,
27(5), pp. 1111-1129.

[26] Chao, D. Y. 2009. Direct minimal empty siphon computation using MIP, The International Journal of
Advanced Manufacturing Technology, 45(3-4), pp. 397-405.

[27] Chao, D. Y. 2011. Improvement of sub-optimal siphon- and FBM-based control model of a well-known S3PR,
IEEE Transactions on Automation Science and Engineering, 8(2), pp. 404-411.

[28] Ghaffari, A., Rezg, N., and Xie, X. 2003. Design of a live and maximally permissive Petri net controller
using the theory of regions, IEEE Transactions on Robotics and Automation, 19(1), pp. 137-141.

[29] Uzam, M. 2004. The use of the Petri net reduction approach for an optimal deadlock prevention policy for
flexible manufacturing systems, The International Journal of Advanced Manufacturing Technology, 23(3-
4), pp. 204-219.

[30] Nasr, E. A., El-Tamimi, A. M., Al-Ahmari, A., and Kaid, H. 2015. Comparison and evaluation of deadlock
prevention methods for different size automated manufacturing systems, Mathematical Problems in
Engineering, 501, pp. 1-19.

[31] Lautenbach, K. 1987. Linear algebraic calculation of deadlocks and traps, in Concurrency and nets, first
ed. US: Springer, pp. 315-336.

[32] Venkatesh, K., Zhou, M., and Caudill, R. J. 1994. Comparing ladder logic diagrams and Petri nets for
sequence controller design through a discrete manufacturing system, IEEE Transactions on Industrial
Electronics, 41(6), pp. 611-619.

[33] Venkatesh, K., Zhou, M., and Caudill, R. 1994. Evaluating the complexity of Petri nets and ladder logic
diagrams for sequence controllers design in flexible automation, IEEE Symposium on Emerging Technologies
and Factory Automation, pp. 428-435.

[34] Satoh, T., Oshima, H., Nose, K., and Kumswai, S. 1992. Automatic generation system of ladder list
program by Petri net, IEEE International Workshop on Emerging Technologies and Factory Automation, pp.
128-133.

[35] Jafari, M. A. and Boucher, T. O. 1994. A rule-based system for generating a ladder logic control program
from a high-level systems model, Journal of Intelligent Manufacturing, 5(2), pp. 103-120.

[36] Burns, G. L. and Bidanda, B. 1994. The use of hierarchical Petri nets for the automatic generation of
ladder logic programs, Proc. of ESD IPC, 94, pp. 169-179.

[37] Uzam, M. and Jones, A. 1998. Discrete event control system design using automation Petri nets and their
ladder diagram implementation, The International Journal of Advanced Manufacturing Technology, 14(10),
pp. 716-728.

[38] Jones, A., Uzam, M., and Ajlouni, N. 1996. Design of discrete event control systems for programmable
logic controllers using T-timed Petri nets, Proceedings of the 1996 IEEE International Symposium on
Computer-Aided Control System Design, pp. 212-217.

[39] Uzam, M., Jones, A., and Ajlouni, N. 1996. Conversion of Petri net controllers for manufacturing systems
into ladder logic diagrams, Proceedings of the 1996 IEEE International Symposium on Emerging Technologies
and Factory Automation, 2, pp. 649-655.

[40] Uzam, M. and Jones, A. 1996. Towards a unified methodology for converting coloured Petri net controllers
into ladder logic using TPLL: Part I — Methodology. Proceedings of International Workshop on Discrete
Event Systems, Edinburgh, UK, pp. 178-183.

[41] Gu, C., Li, Z. W., Wu, N. Q., Khalgui, M., Qu, T., and Al-Ahmari A. 2018 Improved multi-step look-ahead
control policies for automated manufacturing systems. IEEE Access, 6(1), pp. 68824-68838.

[42] Gu, C., Wang, X., and Li, Z. W. 2019. Synthesis of supervisory control with partial observation on normal
state tree structures. IEEE Transactions on Automation Science and Engineering, 16(2), pp. 984-997.

