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ABSTRACT 

Petri nets are robust mathematical tools for the modelling, 
handling, and control of deadlock problems in automated 
manufacturing systems (AMSs). Several methods have been 
proposed to prevent deadlocks in AMSs. However, it is important to 
convert the controlled system represented by Petri nets into the 
program of a programmable logic controller (PLC) for the 
implementation of automation tasks. This study proposes a 
methodology based on Petri nets for deadlock prevention, and 
generates PLC codes for an AMS. In the suggested methodology, a 
Petri net model of an uncontrolled system is built, and the 
controlled Petri net model is developed using a deadlock-prevention 
method. The controlled Petri net model is then transformed into an 
automation-controlled Petri net model, which is further converted 
into a controlled token-passing logic model. The controlled token-
passing logic model is utilised to generate the ladder diagrams for 
the AMS under consideration. The proposed methodology was tested 
using a real-world AMS at King Saud University labs. It provides an 
effective method for PLC implementation from a controlled system 
model represented by Petri nets. 

OPSOMMING 

Petri-nette is robuuste wiskundige instrumente wat gebruik word 
om dooiepunt probleme in geoutomatiseerde vervaardigingstelsels 
(AMSe) te modelleer, hanteer en te beheer. Verskeie metodes is al 
voorgestel om dooiepunte in AMSe te verhoed, maar dit is belangrik 
om die beheerde stelsel deur die Petri-nette voorgestel om te 
skakel na die rekenaarkode van ŉ programmeerbare logiese 
beheerder (PLC) sodat dit geïmplementeer kan word. ŉ Metodologie 
gegrond op Petri-nette vir dooiepunt voorkoming word voorgehou 
en genereer PLC rekenaarkode vir AMSe. In die voorgestelde 
metodologie word ŉ Petri-netmodel van ŉ onbeheerde stelsel 
geskep en die beheerde Petri-netmodel is dan ontwikkel met die 
dooiepuntvoorkomingsmetode. Die beheerde Petri-net model word 
dan getransformeer tot ŉ outomasiebeheerde Petri-netmodel wat 
dan verder omskep word in ŉ beheerde kenteken-aanstuur logiese 
model. Hierdie model word dan gebruik om leerdiagramme vir die 
AMS te genereer. Dié metodologie is getoets in ŉ reële wêreld AMS 
by die King Saudi Universiteit se laboratoriums. Dit verskaf ŉ 
effektiewe metode vir PLC implementering van ŉ beheerde stelsel 
wat deur Petri-nette voorgestel word. 

 

1 INTRODUCTION 

An automated manufacturing system (AMS) is a conglomeration of robots, machine tools, fixtures, 
and buffers. Different types of products enter the manufacturing system at separate points of time; 
the system can process these parts based on a specified sequence of operations and resource sharing. 
The sharing of resources leads to the occurrence of deadlock states in an AMS through its operation, 
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in which the local or global system is incapacitated Li et al.  [1], Li et al.  [2], El-Tamimi et al.  [3], 
and Chen et al.  [4]. Thus there is a need for an effective deadlock-control algorithm to ensure that 
these deadlocks do not occur in an automated manufacturing system. Petri nets are a mathematical 
and major graphical tool that is suitable for modelling, analysing, and controlling deadlocks in AMSs. 
Petri nets are used to describe the characteristics and behaviour of an AMS, such as synchronisation, 
conflict, and sequences. In addition, they could be used to provide behavioural properties — for 
example, boundedness and liveness Chen et al. [5].  
 
In the last three decades, there has been a deluge of deadlock-control algorithms, based on Petri 
nets that were developed for deadlock prevention in AMSs Ezpeleta et al.  [6], Huang et al.  [7], 
Uzam and Zhou [8], Li and Zhou [9], Huang et al.  [10], Uzam and Zhou [11], Li et al.  [12], Huang 
[13], Li et al.  [14], Li and Zhou [15], Chao [16], Chen and Li [17], Li et al.  [18], Chen et al. [19], 
Chen et al. [20], Qin et al. [21], Li et al.  [22], Li and Zhao [23], Chen et al. [24], and Uzam et al.  
[25]. Most of the deadlock-control policies have been proposed via the structural analysis of Petri 
nets Chao [26, 27] or reachability graph analysis of Petri nets Uzam and Zhou [8], Ghaffari et al.  
[28], Uzam [29], and Nasr et al.  [28]. Deadlock-control algorithms (policies) based on reachability 
graph analysis can usually become a maximally permissive liveness-enforcing supervisor; but the 
former can lead to a sub-optimally controlled system, and the monitor number in a sub-optimal 
supervisor depends on the Petri net size Lautenbach [31]. The latter may encounter a problem of 
explosion state, since listing a portion or all of the reachable markings is necessary. 
 
The control policies to prevent deadlocks in an AMS lead to a controlled system described by a Petri 
net. However, the results obtained in the supervisory control literature are mostly related to the 
theoretic studies as opposed to practical (implementation) studies. After designing a controller 
(supervisor), it is a need to have an automatic ways for the generation of control code from the 
controller to test the applicability of the deadlock prevention methods for real world systems and 
determining which methods are suitable for these systems that can definitely lead to the maximal 
permissiveness, structural complexity, and computational complexity. It is necessary to convert a 
controlled Petri net system representation into a programmable logic controller (PLC) 
implementation to evaluate the applicability of deadlock control methods to the execution of 
automation tasks. PLCs have appeared as a robust tool in the fulfillment of automation operations 
in industrial production systems. Ladder diagrams (LDs) are the most popular language used to 
program a PLC. The main problem with LDs is that programming is done heuristically. In simple 
manufacturing systems, it is not difficult to develop PLC programs with these methods. Nevertheless, 
when multiple systems are considered, the problem is magnified. Indeed, it is difficult to find ladder 
logic programs when the manufacturing system is single and has multiproduct types that are 
implemented using heuristic approaches Venkatesh et al. [32, 33]. To overcome this problem, Petri 
nets can be used to provide a successful solution for the conceptual design, and the heuristic design 
is replaced by the transformation of Petri nets into LDs, which is introduced in Satoh et al.  [34], 
Jafari and Boucher [35], Burns and Bidanda [36], and Uzam et al.  [37]. In Jones et al. [38], a token-
passing logic (TPL) technique has been introduced that provides options to involve counters, flags, 
and timers. This technique is used in the transformation of an automation Petri Net (APN) into LDs. 
Moreover, the same technique has been used to handle the timed-transition Petri nets Uzam et al. 
[39], timed place Petri nets Uzam et al.  [39] and Uzam et al.  [40], and colored Petri nets Uzam et 
al. [39]. 
 
This paper proposes a methodology based on Petri nets for deadlock prevention, and generates PLC 
codes (ladder diagrams) for an AMS to elucidate the weaknesses or disadvantages of the existing 
methods in the literature. In addition, the contributions of this research are clearly emphasised. 
The rest of the paper is structured as follows. Section 2 introduces Petri nets. The proposed 
methodology is described in Section 3. A real-world AMS case study is presented in Section 4. Finally, 
the conclusions and future research are given in Section 5. 

2 BASICS OF PETRI NETS 

A place/transition net or Petri net N [12, 19, 30] is a quadruple (P, T, F, W), where P is a non-empty 
and finite set of places, and T is a non-empty and finite set of transitions. Elements in P ∪ T are 
called nodes with P ∪ T≠∅ and P ∩ T=∅. P and T are graphically described by circles and bars 
respectively. F ⊆ (P × T) ∪ (T × P) is the set of directed arcs (with arrows) that join the places with 
transitions, and vice versa. W: (P × T) ∪ (T P × T)  is a mapping that allocates a weight to an arc, 
where  = {0, 1, 2, ...}. N is called an ordinary or unweighted net if ∀ (p, t) ∈ F((t, p)∈ F), W(p, t) 
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= 1 (W(t, p) = 1), denoted as N = (P, T, F). N is called a weighted net if there is an arc between p 
and t with W(p, t) >1 or W(t, p) >1. If there is no arc between a place p and a transition t, we have 
W(p, t) = W(t, p) = 0. 
 
Assume that a net N = (P, T, F, W) and node a ∈ P ∪ T, •a = {b ∈ P ∪ T | (b, a) ∈ F} is called the 
preset of node a, while a• = {b ∈ P ∪ T|(a, b) ∈ F} is called the post-set of node a. A marking M of N 
is a mapping M: P → . (N, Mo) is a marked net or a net system, denoted as PN = (P, T, F, W, Mo), 
where Mo is an initial marking. For a Petri net modelling an AMS, Mo indicates the various raw parts 
that are to be simultaneously processed in an AMS, and the initial capacity configuration of resources 
such as robots and machines. A transition t ∈ T is enabled at marking M if ∀ p ∈ •t, M(p) ≥ W(p, t), 
which is indicated as M[𝑡⟩. If a transition t fires, it withdraws W(p, t) tokens from each place p∈ •t, 
and stores W(t, p) tokens in each place p ∈ t•. Thus it reaches a new marking M′, indicated as M[𝑡⟩M′, 
where M′(p) = M(p) − W(p, t) + W(t, p). A Petri net is pure or self-loop free if ∀ a, b ∈ P ∪ T, W(b, a) 
= 0 and W(a, b) > 0. Incidence matrix [N] is an integer matrix of a net N, which consists of |T| 
columns and |P| rows with [N](p, t) = W(t, p) −W(p, t). 
 
Suppose (N, M0) is a net with N = (P, T, F, W). It can be said that a transition t ∈ T is live if for all M 
∈ R(N, M0), ∃ M ∈ R(N, M), there exists a firing sequence such that M[𝑡⟩M′. A transition is in a deadlock 
state at Mo if ∄ t ∈ T, M0[𝑡⟩ holds. M′ is said to be reachable from M if there is a firable finite 
transition sequence δ = t1t2t3. . . tn, and markings M1, M2, M3, . . ., and Mn−1 such that M[t1⟩ 
M1[t2⟩M2[t3⟩M2 . . . Mn−1[tn⟩ M1 that is represented as M[𝛿⟩M′, satisfying the state equation M′  = M 

+ [N] 𝛿, where 𝛿 : T →  is a mapping from T to the number of appearances of t in δ, and called a 
firing count vector or a Parikh vector. The reachable set of markings from M in N is called the 
reachability set of a net (N, M), and is indicated as R(N, M). Petri net N with an initial marking Mo is 

said to be k-bounded if  M ∈ R(N, M0), M(p) ≤ k (k ). Petri net N is said to be safe if all its places 
are safe, each place p does not have more than one token. 
 
P-vectors (place vectors) and T-vectors (transition vectors) are column vectors. A P-vector I: P → Z 
catalogued by P is said to be a place invariant or P-invariant if I ≠ 0 and IT. [N] = 0T, and a T-vector 
J: T → Z catalogued by T is said to be a transition invariant or T-invariant if J ≠ 0 and [N].J = 0, 
where Z is the set of integers. When each element of I is non-negative, the place invariant I is called 
a place semiflow or P-semiflow. Assume that I is a P-invariant of a net with (N, Mo) and M is a 
reachable marking from the initial marking Mo. Then ITM = ITMo. Let ||I|| = {p |I(p) ≠ 0} be the 
support of P-invariant I. The supports of P-invariant I are classified into three types: (1) ||I||+ is the 
positive support of P-invariant I with ||I||+= {p|I(p) > 0}. (2) ||I||− is the negative support of P-
invariant I with ||I||− = {p |I(p) < 0}. (3) I is a minimal P-invariant if ||I|| is not a superset of the 
support of any other one and its components are mutually prime. Let li be the coefficients of P-

invariant I if  pi ∈ P, li = I(pi). Since regular (ordinary and weighted) Petri nets do not handle both 
actuators and sensors, an extended Petri net has been developed to handle both actuators and 
sensors Uzam et al.  [37] and Uzam et al. [39], which is called an automation Petri net (APN). An 
APN is an octuple (P, T, F, In, En, X, Q, Mo), where P, T, F, and Mo are explained above. In is an 
inhibitor arc, graphically represented by an arc with a small circle (not an arrow). An inhibitor arc 
connects an input place p to a transition t, and the transition t is enabled if the input place p has 
tokens that are less than the inhibitor arc weight In(p, t). En is an enabling arc represented by an 
arc with an empty arrow. An enabling arc connects an input place p to a transition t. The transition 
t is enabled if the input place p has tokens whose number is at least equal to the enabling arc weight 
En(p, t). X = {x1, x2, …, xm} is the set of firing conditions associated with the transitions, which can 
be known as external events — for example, sensor readings. Q = {q1, q2, …, qn} is the actions set, 
which can be allocated to the places. Q may represent more than one action in any place. In the 
APN, the movement of tokens between their places represents the behaviour of an APN, which is 
achieved via the firing of the transitions that are enabled. 

3 THE PROPOSED METHODOLOGY 

The proposed methodology is based on a deadlock-prevention method proposed by Ezpeleta et al.  
[6]. Figure 1 illustrates the steps of the proposed methodology, which are described as follows:  
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3.1 Step 1: Build the Petri net model of the uncontrolled system, and obtain the controlled 
Petri net model  

In this step, a deadlock-prevention method based on strict minimal siphons (SMSs) is adopted to 
design a controlled Petri net model. This method is adopted from Ezpeleta et al. [6]. A siphon in a 
net N is defined as a set of places 𝑆 = {p1, . . . , pk}. A substantial characteristic of a siphon is that, 
at a given marking, once a siphon is emptied it remains emptied at any subsequent marking 
reachable from the given marking. 
 

Definition 1. Let N be a net. A place set 𝑆 ⊆ P, 𝑆 ≠ ∅ , satisfying •𝑆 ⊆ 𝑆•, is said to be a siphon. 

When a siphon does not include other siphons, it is said to be a minimal siphon. A minimal siphon 𝑆 
is said to be strict if •𝑆 ⊊ 𝑆•. 
 
Siphons play an essential part in the Petri net liveness examination, particularly in an unweighted 
Petri net. When a siphon 𝑆 at a marking in a Petri net is unmarked, there are no enabled transitions 
in 𝑆•, and all the transitions associated with 𝑆 cannot be fired. Therefore, the transitions are in a 
deadlock state, leading to the absence of liveness in the system. In Ezpeleta et al. [6], a monitor or 
control place is added to each SMS to fulfill the liveness of a Petri net. The proposed policy is simple 
and guarantees success. However, it leads to a more complex Petri-net-controlled system than the 
original Petri net model, since the number of added control places is equal to that of the SMSs in 
the target Petri net model, and the added arcs are more than those of the added control places. 
The strict minimal siphon control based on the complementary set of a siphon is used to create the 
monitors. A complementary set [S] of a siphon 𝑆 is the set of operation places that are the holders 
of the resources in 𝑆 but that do not belong to 𝑆. Moreover, [𝑆]∪ 𝑆 is the P-invariant support that 
indicates the places of operations in [𝑆] that will contend for the resources in 𝑆 with the places of 
operations belonging to 𝑆. 𝑆 will be unmarked when all tokens in 𝑆 flow into [𝑆]. Before constructing 
the control algorithm, we state the following notations that will be used. 𝑆 represents a strict 
minimal siphon that cannot include the place p semiflow support (i.e., siphons that can be 
unmarked). Assuming that 𝑆 is a siphon, we have 𝑆 = 𝑆A ∪ 𝑆R, 𝑆R = 𝑆 ∩ PR, 𝑆A =𝑆 \ 𝑆R, where 𝑆A 
denotes the places of operations and 𝑆R denotes the places of resources. [𝑆] indicates the following 

set of state places: [𝑆]=(Ur∈𝑆R
H(r))∖𝑆A, where H(r) = {𝑝∖p ∈ 𝑃𝐴, 𝑝 ∈ ||𝐼𝑟||+∖{r} } indicates the P-

invariant positive support I, ∀ i,j∈{1,2,…,n},i≠j, H(ri)∩H(rj)=∅. Assume that [S] is a set of 

complements of S: design and add a monitor for [S], and the initial marking of the monitor can be 
computed as M0A(VS) = M0(S)-1. According to the strict minimal siphon concept, the developed 
deadlock prevention algorithm proposed by Ezpeleta et al. [6] is shown in Table 1. 

Table 1: The strict minimal siphon-based algorithm 

Input: Original Petri net model (N, Mo) of an automated manufacturing system. 
Step 1: Compute all strict minimal siphons for N. 
Step 2: Design a monitor Vs for each strict minimal siphon, and consider the following: 
The Vs output arcs are connected to the source transitions, which are led to the sink transitions of 

𝑆, and all arc weights are unitary. 
The Vs input arcs are connected from the stealing places of 𝑆, and all arc weights are unitary. 
M0A(Vs) = M0(𝑆)-1, where M0A(Vs) is an initial marking of a monitor. 
Step 3: Iterate step 2 until all computed strict minimal siphons are considered. 
Step 4: Insert all monitors into the original net (N, Mo), and the obtained net is represented as (N1, 
M1). 
Step 5: Output (N1, M1). 
Step 6: End. 

 
To demonstrate the above algorithm, consider the Petri net model illustrated in Figure 2(a). The 
model comprises of a single robot R, which holds a part at a time; one machine M, which processes 
a part at a time; one loading buffer (I1); and an unloading buffer (O1). One part type is processed 
in the manufacturing system (PA). The robot reaches the loading buffer, grips, and loads PA to the 
M. If M finishes its operation, the robot reaches the machine, grips, and unloads the part to the 
unloading buffer. The Petri net model comprises four transitions and six places. The places can be 
described as the following set partition: P0 = {p1}, PR = {p5, p6}, and PA = {p2, p3, p4}, where P0, PR

 , 
and PA

 are the input, resources, and operation places respectively. The model has five reachable 
markings and four minimal siphons, one of which is a strict minimal siphon. Its augmented siphon is 
𝑆 = {p4, p5, p6}. Table 2 shows the required monitor using the adopted algorithm. Figure 2(b) displays 
the controlled Petri net model. 
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Figure 1: Steps involved in the proposed methodology 

Table 2: Control place computations 
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Figure 2: (a) Petri net model of an AMS, (b) Controlled Petri net model using algorithm 1, (c) 
ACPN for the controlled system, and (d) Equivalent CTPL 

Build the PN for the system 

Detect the deadlocks in the system  

Apply deadlock prevention methods to prevent 

the deadlocks. 

Using automation Petri net technique (APN)  

Using token-passing logic technique (TPL)  

Using a Siemens Step 7-1200 PLC 

Step 1: Build uncontrolled Petri net model of the system 

(PN) and design the controlled Petri net model (CPN).  

Step 2: Convert the CPN into the automation-controlled 

Petri net model (ACPN).  

Step 3: Convert the ACPN into controlled token-passing 

logic model (CTPL).  

Step 4: Convert the CTPL into ladder diagrams (LDs). 

Using human machine interface (HMI) Siemens 

step 7-1200 PLC 
Step 5: Simulate and validate the LDs. 
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3.2 Step 2: Convert the controlled Petri net model (CPN) into the automation-controlled Petri 
net model (ACPN). 

In this step, the automation-controlled Petri net model that proposed by Uzam et al.  [37] and Jones 
et al. [38] is used to convert the CPN into ACPN to determine the firing conditions X, actions Q, and 
the capacity of the places. For example, consider the CPN model presented in Figure 2(b), where 
the firing conditions X1, X2, and X3 are assigned to t1, t2, and t3 respectively. Moreover, actions Q0.1, 
Q0.2, and Q0.3 are assigned to robot loading operation (p2), machine operation (p3), and robot 
unloading operation (p4) respectively. Time delays T1 (3 seconds), T2 (4 seconds), and T3 (3 seconds) 
are assigned to robot loading operation, machine operation, and robot unloading operation 
respectively. Finally, places p1, p5, p6, and Vs1 have 5, 1, 1, and 1 tokens capacities respectively. 
Figure 2(c) displays the automation-controlled Petri net model of this example. 

3.3 Step 3: Convert the automation-controlled Petri net model (ACPN) into a controlled token-
passing logic model (CTPL). 

In this step, a token-passing logic technique that proposed by Jones et al. [38] is used to facilitate 
the direct transformation of an automation Petri net into a control logic, which can be achieved 
with a ladder diagram program. Each place in an ACPN corresponds to a place in a CTPL. The 
simulated movement of tokens at each place in the CTPL is accomplished by deploying memory 
words (16 bits) at each one; each place has at least a related memory word in TPL, where the 
capacity of each place is at least 1. If the stored value of a memory word of a place in the TPL is at 
least 1 and the firing condition X of a transition that related to that place becomes enabled, then 
the memory word at the input and output places might be respectively decreased and increased. 
Note that the flags can be used instead of memory bits Jones et al. [38]. Figure 2(d) illustrates the 
equivalent CTPL for the ACPN of the numerical example. 

3.4 Step 4: Convert the CTPL model into ladder diagrams (LDs). 

In this step, the conversion of the CTPL model to ladder diagrams is proposed in Uzam et al.  [37]. 
The conversion is achieved by using a SIEMENS Step 7-1200 PLC. First, we have proposed a general 
methodology to carry out the conversion from a CTPL into LDs, which is shown by considering the 
following structures: initial markings (states), firing transition CTPL, CTPL without action, CTPL with 
action, CTPL with conflict, CTPL with inhibitor and enabling arcs, CTPL with weighted arc, and 
timed-place CTPL. 
 
Initial markings (states): An initial marking describes the initial state of the manufacturing system 
resources, input buffers, and control places before starting, and needs to be inserted into the 
beginning of the LD to guarantee correct operation. To insert an initial marking into an LD at the 
first rungs of the LD, consider the CTPL model illustrated in Figure 3(a), where the firing conditions 
X1 and X2 are assigned to t1 and t2 respectively. Moreover, flags F1 and F2 are assigned to resource 
operation (p1) and resource state (p2) respectively. F1 and F2 are denoted as coils where, if the 
token numbers in F1 and F2 are more than zero, the coils case is set (F1 and F2 =1); else the case is 
reset (F1 and F2 =0). When the firing conditions X1 or X2 fire, F2 will be decreased or increased by 1 
token respectively. To convert this into LD, counter up and down is used to simulate the case of F2, 
where the present value of the counter is 1. When the firing conditions X1 and X2 are satisfied for t1 

and t2, the counter value is decreased and increased by 1 respectively. Therefore, if the current 
counter value is more than or equal to the value at the PV, then a signal state ‘1’ is assigned to F2; 
otherwise a signal state ‘0’ is assigned to F2. Figure 3(b) illustrates the LD for the CTPL displayed in 
Figure 3(a). 
 
Firing transition CTPL: The transition indicates the start or end event of any operation. To represent 
transition events in LDs, consider the CTPL model shown in Figure 4(a), where flags F1 and F2 are 
assigned to p1 and p2 respectively, and firing condition X1 is assigned to an immediate transition t1. 
When the firing condition X1 is satisfied (all the input places F1 and F2 have non-zero tokens), the 
transition is enabled to fire. To represent this via an LD, X1 is denoted as a coil, where, if F1 and F2 
have a signal state ‘1’ or X1 has a signal state ‘1’, the coil case is set (X1 =1); otherwise the case is 
reset (X1 =0). Figure 4(b) shows the LD for the TPL value in Figure 4(a). The initial marking is not 
presented in the LD. 
 
CTPL without Action: Consider the CTPL model shown in Figure 5(a). A place with no action is 
assigned to p2. To represent a place with no action in LD, p2 is represented as a flag F2 where, if the 
transition X1 fires, it withdraws a token from the input place F1 and deposits a token to the output 
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place F2. F2 is denoted as coil if the number of tokens at F2 is at least 1, and the coil case is set (F2 
=1); otherwise it is reset (F2 =0). To convert this into LDs, coil F2 has a signal state ‘1’ if X1 has a 
signal state ‘1’ or F2 has a signal state ‘1’; otherwise a signal state ‘0’ is assigned to F2. Figure 5(b) 
shows the LD for the CTPL displayed in Figure 5(a). The initial marking is not presented in the LD. 
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M1.1

M0.0

M0.1

F2

t1

t2

M1.0
F1p2 p1

 

 

(a) (b) 

Figure 3: (a) CTPL with initial marking, and (b) Equivalent LD 
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Figure 4: (a) Firing transition CTPL, and (b) Equivalent LD 
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(a) (b) 

Figure 5: (a) CTPL without action, and (b) Equivalent LD 

CTPL with Action: A CTPL is shown in Figure 6(a). An action Q0.0 is assigned to place p2. This action 
occurs only if the token number at p2 is at least 1. To represent an action in LDs, F2 is represented 
as a coil, where, if the transition X1 fires and transition X2 is not enabled to fire, the coil case is set 
(F2 =1); else it is reset (F2 =0). The action of resource operation is represented as a coil, where, if 
the memory state of F2 has a signal state ‘1’, the action case is set; if the signal state is ‘0’ at F2, 
the action is reset. Figure 6(b) displays the LD for the CTPL illustrated in Figure 6(a). The initial 
marking is not presented in the LD. 
 
CTPL with Conflict: Conflict occurs in a Petri net when there is an input place that has more than 
one output transition. To resolve the conflict case, a priority is assigned to each of the transitions 
by selecting which transition is to be permitted to fire; this selection often depends on a priority 
scheme. Consider the CTPL model shown in Figure 7(a). If there is one token in place p1 and firing 
conditions X1, X2, and X3 appear simultaneously, the conflict can be found. In LDs, the conflict can 
be resolved by deciding the order of priorities for the conflicting transitions, where the PLC 
automatically scans from left to right, top to bottom; the output place that is mentioned will fire 
first, followed by others. Thus it can be seen from Figure 7(b) that transition t1 of TPL has priority 
over transitions t2 and t3, and transition t2 has priority over transition t3. Figure 7(b) shows the LD 
for the CTPL shown in Figure 7(a). The initial marking is not presented in the LD. 
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CTPL with inhibitor and enabling arcs: In Figure 8(a), the inhibitor and enabling arcs in a CTPL are 
illustrated. The places p1, p2, and p3 are connected to a transition t1, where p1 has an enabling arc 
En (p2, t1), and p3 has an inhibitor arc In (p2, t1). Places p1, p2, p3, and p4 are represented as flags 
F1, F2, F3, and F4 respectively. The transition t1 (X1) can be fired when the token number in each of 
the input places p1

 
and p2 is at least 1 and p3 has no token. Thus the firing condition X1 appears. If a 

transition t1 fires, it withdraws a token from p2 and stores a token in output place p4. Note that the 
markings of places p1 and p3 do not change. To convert this into LD, F1, F2, and F3 are denoted as 
coils; if F1 and F2 have at least 1 token, the coils case is set (F1 and F2 =1); otherwise it is reset (F1 
and F2 =0). Moreover, if F3 has no token, the coil case is set (F3 =1); otherwise it is reset (F3 =0). 
The coil F4 has a signal state ‘1’ if X1 has a signal state ‘1’ or F4 has a signal state ‘1’; otherwise a 
signal state ‘0’ is assigned to F4. Figure 8(b) shows the LD for the CTPL shown in Figure 8(a). Note 
that the initial state is not presented in the LD. 
 
CTPL with a weighted arc: The CTPL with a weighted arc is displayed in Figure 9(a). The transition 
t1 is fired if the token number at the input place p1 is more than or equal to the arc weight 2 and 
the firing condition X1 appears. If a transition t1 fires, it withdraws two tokens from p1 and deposits 
two tokens in output place p2. Flags F5 and F6 are assigned to p1 and p2 respectively. Firing condition 
X1 is assigned to an immediate transition t1. To convert the CTPL into an LD, if a transition t1 is 
fired, it will withdraw two tokens from F1 and place two tokens in the F2. This can be achieved by 
reducing the value of F5 by 2, using a subtraction instruction (SUB) and increasing the value of F6 
by 2, using an addition instruction (ADD). Figure 9(b) shows the LD for the CTPL displayed in Figure 
9(a). The initial marking is considered in the LD. 
 
Timed-place CTPL: In Figure 10(a), the timed-place CTPL is illustrated. The places p1 and p2 are 
denoted as the operation and state of resources respectively. Places p1 and p2 are represented as 
flags F1 and F2 respectively. The resource operation takes 3 seconds  to complete. If this time has 
elapsed, effectively the transition t2 will be fired. To convert the CTPL into LD, an ON-delay timer 
is used to represent the time delay for transition t2 to be fired. If the flag F1 is set, action Q0.0 is 
activated, and it will take 3 seconds to complete. If the time has elapsed, effectively transition t2 
is fired; thus F1 is reset and action Q0.0 is deactivated. Figure 10(b) shows the LD for the CTPL 
displayed in Figure 10(a). The initial state is not presented in the LD. 
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Figure 6: (a) CTPL with action and (b) Equivalent LD 
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Figure 7: (a) CTPL with Conflict, and (b) Equivalent LD 
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Figure 8: (a) CTPL with inhibitor and enabling arcs, and (b) Equivalent LD 

5

X1

MW1

M0.0

F5

t1

p5

MW2

F6p6

2

2

 

 

(a) (b) 

Figure 9: (a) CTPL with weighted arc, and (b) Equivalent LD 
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X1M0.0 t1

M1.1
F2p2

M1.0
F1p1

X2M0.1 t2

Resource operation 

T1: 3 secQ0.0

 

 

(a) (b) 

Figure 10: (a) CTPL with timed-place, and (b) Equivalent LD 

Based on the above conversions, the LD obtained for the CTPL, shown in Figure 2(d), is given in 
Figure 11. The LD can be described as follows. Rungs 1 to 4 indicate the set and reset of the input 
buffer, resources available states, and control place, which are F1, F5, F6, and FS1 respectively. 
Moreover, rungs 5 to 8 represent the enabling rules and firing conditions of transitions and time 
delays of resource operations (X1, X2, X3, X4) respectively. Similarly, rungs 9 to 11 represent the 
memory states of resource operations (F2, F3, F4) respectively. Finally, rungs 12 to 14 denote the 
actions of resources (F2, F3, F4) respectively. 
 

 

Figure 11: LD obtained for the CTPL shown in Figure 2(d) 

4 MANUFACTURING SYSTEM CASE STUDY 

4.1 Description of the system and Petri net model 

The AMS used in this case paper is illustrated in Figure 12. The scheme of the system is shown in 
Figure 13. This system is located in King Saud University (Computer Integrated Manufacturing [CIM] 
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lab). There are machining stations M1 (milling machine) and M2 (turning machine), assembly and 
inspection stations, input and output buffer, conveyor for transporting the parts among machines 
and stations, and three robots R1–R3. Each machine (robot) processes (holds) one part at the same 
time. Two part types A and B are produced in the system under consideration. Both parts A and B 
have similar routing (M1 then M2) and are subsequently assembled in an assembly station; the 
assembled part is inspected at an inspection station; and then the final product leaves the 
manufacturing cell. In this case study, robots work in a mutually exclusive manner: R1 loads/unloads 
part A on M1 from the conveyor, R2 loads/unloads part B into M2 from the conveyor, and R3 
loads/unloads parts A and B onto the assembly and inspection stations from the conveyor. The Petri 
net model is illustrated in Figure 14. The properties of the developed Petri net models are obtained 
using an integrated net analyser (INA). It has been found that the system is not live (deadlock). 

4.2 Controlled system for case study 

The suggested deadlock-prevention algorithm was applied to this case study. The system model has 

five strict minimal siphons that can be empty, which are S1={p
7
,p

16
,p

21
},  S2={p

6
,p

15
,p

20
}, 

S3={p10,p12
,p

13
,p

17
,p

22
}, S4={p12,p13

,p
17

,p
18

,p
22

}, and  S5={p8,p12
,p

13
,p

18
,p

22
}. Each siphon requires 

a control place to make the siphon controlled. Table 3 displays the required control places using the 
algorithm from Ezpeleta et al. [6]. Figure 15 shows the controlled Petri net model after addition of 
the control places.  
 

 

Figure 12: Automated manufacturing system 

 

Figure 13: Layout of an automated manufacturing system 

Table 3: Computation of control places with SMS 

i •Vsi Vsi
• MoA(Vsi) 

1 t6 t2 1 

2 t5 t1 1 

3 2t10 t7, t8 2 

4 t10, t12, t13 t7,t8 3 

5 t12, t13 t10 1 
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Figure 14: Petri net model of the system 

4.3 APN model for the controlled system 

The obtained controlled system lacks identification and recognition of the two part types at the 
milling machine, turning machine, and assembly station. To solve this problem, four sensors are 
added to the conveyor. Sensor 1 (a proximity sensor) and sensor 2 (an infrared reflective sensor) are 
added to recognise parts A and B in the milling and turning machines respectively. After machining 
the two parts, they can be recognised at the assembly station. Therefore, sensor 3 (a proximity 
sensor) and sensor 4 (an infrared reflective sensor) are added to detect parts A and B respectively 
in the assembly station. An APN model designed for the controlled system using the algorithm from 
Ezpeleta et al. [6] is shown in Figure 16. In the APN model, there are 34 places (VS1, VS2, …, VS5, p2, 
p3, …, p29) and 17 transitions (X1, X2, ..., X17). The model consists of eight resources: the conveyor, 
robot 1, robot 2, milling machine, turning machine, robot 3, assembly station, and inspection 
station. Initially, the conveyor is off, and the remaining resources are idle. In the conveyor, places 
p28 and p29 represent the conveyor off and on states respectively. In robot 1, places p2, p6, and p20 
describe the loading operation, unloading operation, and idle/busy states of robot 1 respectively. A 
time delay of 3 s is assigned to each operation that is required for the robot 1 operations. In robot 
2, places p3, p7, and p21 represent the loading operation, unloading operation, and idle/busy states 
of robot 1 respectively. A time delay of 3 s is assigned to each operation that is required for the 
robot 2 operations. In robot 3, places p8, p10, p12, p13, and p22 represent the loading operation, 
unloading operation, unloading operation, unloading operation, and idle/busy states of robot 3 
respectively. A time delay of 3 s is assigned to each operation that is required for the robot 3 
operations. Further, in the milling machine, places p4 and p15 denote the milling operation and 
idle/busy states of the milling machine respectively. A time delay of 4 s is assigned to each operation 
that is required for the milling operations. The same situation for the turning machine, assembly, 
and inspection stations: places p5, p9, and p11 represent the operations and places p16, p17, and p18 

denote the idle/busy states respectively. Times delays of 5 s, 6 s, and 4 s respectively are assigned 
to each operation that is required for the operations. Places p14, p19, p24, and p25 are used to 
represent the sensors 3, 4, 1, and 2 respectively. Place p1 denotes part A and part B on the conveyor 
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coming toward the milling and turning operations, while places p26 and p27 denote an accepted 
assembled part and rejected assembled part respectively. Places p28 and p29 describe the off and on 
states of the conveyor motor respectively. Finally, places Vs1, Vs2, Vs3, Vs4, and Vs5 are used to 
represent the obtained controllers. The transitions are characterised as follows: If there is a part A 
at the milling area and sensor 1 detects it (with I0.0), and VS2 has one token, then R1 is starting (X1) 
to pick it up and is trying to upload M1. When the loading time has elapsed, M1 begins to mill part 
A (X3). When the milling time has ended, R1 begins to unload part A from M1 to the conveyor (X5). 
If there is a part B at the turning area and sensor 2 detects it (with I0.1), and VS1 has one token, 
then R2 is starting (X2) to pick it up and is trying to upload M2. When the loading time has elapsed, 
M2 begins to turn part B (X4). When the turning time has elapsed, R2 begins to unload part B from 
M2 to conveyor (X6). If there are parts A and part B at the assembly area, sensor 3 detects part A 
(with I0.2), sensor 4 detects part B (with I0.3), and VS3 and VS4 have more than one token; then R3 
is starting to pick up two parts A (X7) and B (X8) and is trying to upload the assembly station. When 
the loading time has elapsed for each part, M2 begins to assemble two parts (X9). When the assembly 
time has elapsed, R3 begins to unload an assembled part from the assembly station to the inspection 
station (X10). When the unload time has elapsed, the inspection station begins to check an assembled 
part (X11). If an assembled part is accepted, R3 begins to unload an accepted part from the inspection 
station to an accepted sink (X12). Otherwise, R3 begins to unload a rejected part from the inspection 
station to a rejected sink (X13).  
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Figure 15: Controlled PN model 

Spec. 1. The motor of the conveyor is switched on through transition t16, and appears if there are 
no parts A and B on the milling, turning, or assembly areas and R1, R2, or R3 are empty. This is 
realised by adding inhibitor arcs from places p24, p25, p14, and p19 to transitions t16, In (p24, t16) = 1, 
In (p25, t16) = 1, In (p14, t16) = 1, and In (p19, t16) = 1 respectively. Moreover, by adding enabling arcs 
from places p20, p21, and p22 to transitions t16, En (p20, t16) = 1, En (p21, t16) = 1, and En (p22, t16) = 1 
respectively, the operation of the conveyor is achieved with one token in place p29, and is realised 
by an action Q0.0. The motor of the conveyor is switched off through transition t17, and appears 
when there are parts A and B on the milling, turning, or assembly areas and R1, R2, or R3 are empty. 
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This is realised by adding enabling arcs from places p24, p25, p14, and p19 to transitions t16, En (p24, 
t16) = 1, En (p25, t16) = 1, En (p14, t16) = 1, and En (p19, t16) = 1 respectively. Moreover, inhibitor arcs 
are added from places p20, p21, and p22 to transitions t16, In (p20, t16) = 1, In (p21, t16) = 1, and In (p22, 
t16) = 1 respectively. 
 
Spec. 2. R1 (loading operation) is switched on through transition t1 if there is a part A in the M1 area 
— i.e., M (p24) = 1, R1 is idle — i.e., M (p20) = 1, VS2 has one token — i.e., M (VS2) = 1, and there is no 
operation in M1 — i.e. M (p4) = 0. R1 (Loading operation) is achieved with one token in place p2, and 
is realised by a level action (Q0.1). R1 (Loading operation) is switched off through transition t3, and 
appears when the presence of part A in the M1 machine is detected. When the loading time in R1 
has elapsed, the M1 operation is switched on through transition t3, and appears when M1 is idle — 
i.e., M (p15) = 1; the M1 operation is achieved with a token in place p4, and is realised by a level 
action (Q0.3). R1 (unloading operation) is switched on through transition t5 if the M1 operation time 
has elapsed and R1 is idle — i.e., M (p20) = 1. R1 (unloading operation) is achieved with a token in 
place p6, and is realised by a level action (Q0.5). R1 (unloading operation) is switched off when the 
unloading time has elapsed. 
 
Spec. 3. R2 (loading operation) is switched on through transition t2 if there is a part B in the M2 area 
— i.e., M (p25) = 1, R2 is idle — i.e., M (p21) = 1, VS1 has one token — i.e., M (VS1) = 1, and no operation 
in M2 — i.e., M (p5) = 0. R2 (Loading operation) is achieved with a token in place p3, and is realised 
by a level action (Q0.2). R1 (Loading operation) is switched off through transition t4, and appears 
when the presence of part B in the M2 machine is detected. When the loading time in R2 has elapsed, 
the M2 operation is switched on through transition t4, and appears when M2 is idle — i.e., M (p16) = 
1; the M2 operation is achieved with a token in place p5, and is realised by a level action (Q0.4). R2 
(unloading operation) is switched on through transition t6 if the M2 operation time has elapsed and 
R2 is idle — i.e., M (p21) = 1. R1 (unloading operation) is achieved with a token in place p7, and is 
realised by a level action (Q0.6). R2 (unloading operation) is switched off when the unloading time 
has elapsed. 
 
Spec. 4. R3 (loading operation) is switched on through transitions t7 or t8, and appears if R3 is idle 
— i.e., M(p22) = 1, VS3 and VS4 have more than one token — i.e., M(VS3) ≥ 1 and M(VS4) ≥ 1 respectively, 
no assembly operation — i.e., M(p9) = 0, and there is a part A or a part B in the assembly area — 
i.e., M(p14) = 1 or M(p19) = 1 respectively. R3 (loading operation) is achieved with a token in place 
p8, and is realised by a level action (Q0.7). R3 (loading operation) is switched off through transition 
t9, and occurs when the presence of parts A and B in the assembly station is detected. If the R3 
loading time has then elapsed and the assembly station is idle — i.e., M (p17) = 1, the assembly 
operation is switched on through transition t9. Therefore, the assembly operation is achieved with 
a token in place p9, and is realised by a level action (Q1.0). The assembly operation is switched off 
through transition t10, and appears when the assembly time has elapsed. R3 (unloading operation) is 
switched on through transition t10, and appears when the assembly operation time has elapsed and 
R3 is idle — i.e., M (p22) = 1. R3 (unloading operation) is achieved with a token in place p10, and is 
realised by a level action (Q1.1). R3 (unloading operation) is switched off through transition t11, 

when the unloading time has elapsed. 
 
Spec. 5. The inspection operation is switched on through transition t11, and appears when the 
inspection station is idle — i.e., M (p18) = 1. The inspection operation is achieved with a token in 
place p11, and is realised by a level action (Q1.2). The inspection operation is switched off through 
transition t12 (accepted assembled part) or t13 (rejected assembled part), and appears when the 
inspection time has elapsed. 
 
Spec. 6. R3 (unloading operation) is switched on through transition t12 (accepted assembled part) or 
t13 (rejected assembled part), and appears when there is an assembled part in the inspection station, 
and R3 is idle — i.e., M (p22) = 1. R3 (unloading operation) is achieved with a token in place p12 or 
p13, and is realised by a level action Q1.3 or Q1.4 respectively. R3 (loading operation) is switched 
off through transitions t14 or t15, and appears when the unloading time has elapsed. 
 
Spec. 7. To record the number of accepted and rejected assembled parts, places p26 and p27 are 
used respectively. When transitions t14 and t15 fire, the token number in these places is increased. 
Thus the token numbers in these places denote the number of accepted and rejected assembled 
parts respectively in the manufacturing system. 
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4.4  TPL for the APN Model 

The TPL methodology introduced in section 3 is used to convert the APN model into an LD for 
implementation on a PLC. Specifically, an APN model can be converted into TPL by assigning memory 
bits (Mx.x) to places and transitions. An ON-delay timer is associated with timed places to realise 
the timing requirements. Moreover, output bits (Qx.x) are assigned to the operation places to 
describe actions at places. Sensor readings are represented by input registers (Ix.x). A designed TPL 
model for the APN model using Algorithm 1 is illustrated in Figure 17. In the TPL model, flags (FS1, 
FS2, …, FS5, F2, F3,…, F29) are assigned to the places (VS1, VS2, …, VS5, p2, p3, …, p29) respectively. 
Moreover, memory bits (M8.0, M8.1, …, M8.4, M3.1, M3.2, …, M3.7, M4.0, M4.1, …, M4.4, M4.5, M4.6, 
M5.0, M5.1, M5.2, M5.3, M5.4, M5.5, M5.6) are assigned to the places (VS1, VS2, …, VS5, p2, p3, …, p8, 
p9, p10, …, p13, p15, p16, p17, p18, p20, p21, p22, p26, p27) respectively. Likewise, memory bits (M1.0, 
M1.1, …, M1.7, M2.0, M2.1, …, M2.6,) are assigned to the firing conditions (X1, X2, …, X8, X9, X10, …, 
X15) respectively. Input registers (I0.0, I0.1, I0.3, I0.4) are assigned to the sensor places (p24, p25, 
p14, p19) respectively. Finally, output bits (Q0.0, Q0.1, Q0.2, … Q0.7, Q1.0, Q1.1, …, Q1.4) are 
assigned to the places (p29, p2, p3, …, p8, p9, p10, …, p13) respectively. 

4.5 LD for the TPL Model 

The TPL model using Algorithm 1 is converted directly into the LD code for implementation. The 
obtained LD code, as shown in Figure 18, is constructed as follows: rungs 1 to 12 indicate the set 
and reset of control places and resources available states, which are FS1, FS2, FS3, FS4, FS5, M1, 
M2, assembly station, inspection station, R1, R2, and R3 respectively. Moreover, rungs 12 to 26 
represent the firing conditions and time delays of resource operations (X1, X2, …, X15) respectively. 
Similarly, rungs 27 to 38 represent the memory states of resource operations (F2, F3, …, F13) 
respectively. Rungs 39 and 40 imply memory states of accepted assembled parts and rejected 
assembled parts respectively. Rungs 41 and 42 represent memory states of switches start and end 
respectively, which are used in the validation LD step for starting and stopping the system during 
the simulation. To display whether the output of the inspection station is accepting or rejecting the 
assembled part, rungs 43 and 44 represent memory states of the accepted and rejected assembled 
parts via the inspection station respectively. A problem that may occur in the system model is that 
the assembled part may comprise the same two parts (two part As or two part Bs). To avoid this 
problem, rungs 45 to 48 are designed. For recording the number of accepted assembled parts and 
rejected assembled parts in the collection sinks, rungs 49 and 50 respectively are used. When the 
system is switched on, all resources are idle, and all sensors have value 0; the conveyor motor 
(action Q0.0) must be in operation and can be realised by rungs 51 and 52. Finally, rungs 53 to 64 
represent the actions of resource operations (F2, F3, …, F13) respectively. 

4.6 Validation of LD 

Validation of the obtained LD is carried out to test the applicability, drawbacks, and strengths of 
the suggested deadlock-control method. A human-machine interface (HMI) is used to introduce a 
visual representation of a control system and provide real-time data acquisition on its LCD screen. 
A combination HMI-PLC plays a significant role in the design of a truly lean automation solution, 
providing many benefits throughout the life cycle of machine automation. To validate the suggested 
LD using HMI, other components that are pivotal to the operation of a manufacturing control system 
are considered, in addition to the on/off buttons and various input/output sensors that monitor the 
arrived parts. Subsequently, a decision is taken about the PLC that will get the data from the 
input/output sensors and convert the data into logical combinations. Programming of the HMI 
includes assigning tags to screen elements. A tag is a connection or link between an address in the 
PLC and a screen element of the HMI. Figure 19 shows the HMI window that is designed for the 
selected system to validate the obtained LD, as illustrated in Figure 18. Controller simulation is 
carried out to check the response between the LD and the HMI programs. The simulation results 
show that the suggested AMS controller is applicable and correct. In addition, the HMI program is 
proportionate with a real-time view of the system model, locates faults rapidly, and enables the 
reduction in the troubleshooting time for faults. 
 

http://www.anaheimautomation.com/products/hmi/integrated-hmi-plc-list.php?cID=429
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Figure 16: APN model of the controlled system 
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Figure 17: TPL model of the APN model 
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Figure 18: Part of the LD code for the TPL 
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Figure 18 (continued): Part of the LD code for the TPL  
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Figure 18 (continued): Part of the LD code for the TPL  
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Figure 18 (continued): Part of the LD code for the TPL  

 

Figure 19: HMI of the LD using SMS algorithm 

5 CONCLUSIONS 

The paper presents a methodology based on Petri nets, including deadlock-prevention methods and 
converting the methods into PLC codes (ladder diagrams). A real-time application of AMS is used to 
demonstrate the proposed methodology, which can be implemented in a wide range of discrete 
event manufacturing systems. Moreover, the proposed methodology is appropriate for multiproduct 
manufacturing systems, and provides an effective PLC implementation. In addition to model and 
control an AMS using multi-step look-ahead control policies Gu et al.  [41] and state-tree structure 
Gu et al.  [42], the research could be extended in several ways: 
 
1. In this paper, it is assumed that the machines, robots, motors, actuators, and sensors are 

working without failures. Unreliable resources or fault occurrences are common in real-world 
systems. Therefore, the extension of this research could involve fault tolerance and a supervisor 
under dynamic control specifications of the system design. 

2. Most of the developed deadlock-control methods have been designed for pure Petri nets (not 
involving self-loops, inhibitor arcs, or enabling arcs) and might not lead to optimally controlled 
systems. Nevertheless, deadlock-control methods with non-pure Petri nets might exist that 
might lead to optimally controlled systems. However, mathematically representing a non-pure 
Petri net is difficult, and requires significant research effort. 
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