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ABSTRACT 

 
A consistent asymptotic normal (CAN) estimator and confidence limits for the steady-state 
availability of series and parallel systems subject to unit failures, common-cause shock (CCS) 
failures and human error are studied. This paper also deals with the estimation from a 
Bayesian viewpoint with a number of prior distributions assumed for the unknown parameters 
in the system, which reflect different degrees of belief on the failure mechanisms. A Monte 
Carlo simulation is used to derive the posterior distribution for the steady-state availability 
and subsequently the highest posterior density (HPD) intervals.  A numerical example 
illustrates the results. 
 

OPSOMMING 
 
'n Konsekwente asimptotiese normaalberamer en vertroueintervalle vir die 
ewewigstoestandsbeskikbaarheid van stelsels in serie en parallel, wat onderworpe is aan 
eenheids-, gemeenskaplike skok- en menslike foutfalings, word bestudeer.  In die artikel word 
ook 'n Bayes-benadering gevolg vir die beraming deur 'n aantal a priori-verdelings vir die 
onbekende parameters in die stelsel, wat verskillende grade van vertroue in die 
falingsmeganismes weerspieël, te aanvaar.  Monte Carlo-simulasie word gebruik om die a 
posteriori-verdeling vir die ewewigstoestandsbeskikbaarheid en daarna die hoogste a 
posteriori-digtheidsintervalle (HPD) af te lei.  'n Numeriese voorbeeld illustreer die resultate. 
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1.  INTRODUCTION  
 
Vesely [10] referred to the Reactor Safety study (WASH-1400 [9]) that states that the 
treatment of CCS failures is extremely important in assessments of the risk associated with 
nuclear power plant accidents.  The CCS failure could be attributed to internal factors like 
design deficiencies, fabrication, etc. and external ones like environmental conditions 
(temperature, dust, humidity), power failure, fire, flood, earthquake, etc. The concept of  
human error according to Dhillon and Rayapati [3] is defined as a failure to perform a 
prescribed task (or the performance of a prohibited action), which could result in damage to 
equipment and property or disruption of scheduled operations.  According to the work by 
Meister [7] about 30% of failures are directly or indirectly due to human errors.  Some of the 
causes of human errors are wrong actions, maintenance errors, misinterpretation of 
instruments, etc.  In order to predict realistic reliability and availability of systems, the 
occurrence of CCS failures and human errors must be considered [4]. 
   
El-Damcese [5] presented a model representing two unit multiplex systems with CCS failure 
and human error. In this paper a CAN estimator and confidence limits for the performance 
measure, steady-state availability, are derived for this two unit system, as well as the HPD 
intervals using a number of prior distributions. The advantages of the Bayes approach are that 
prior information and/or technical knowledge of the system can be incorporated into the 
inferential procedure and interval estimates can be obtained without relying on asymptotic 
results; hence are accurate even for small and moderate samples. It is assumed that prior 
knowledge is available about the parameters of the model, based on past experience with 
similar reliability data and that this prior knowledge can be mathematically translated into 
suitable prior densities as in section 4. With little or no prior information about a parameter, a 
non-informative prior distribution can be used to represent the knowledge of the parameter, 
this is also discussed in section 4. 
 
Section 2 presents the necessary notation, description of the model and the expressions for the 
steady-state availability of the two different configurations. The confidence limits for steady-
state availability are studied in section 3 and the Bayesian approach to this problem is 
introduced in section 4.  The results are illustrated numerically in the last section.  
 
2.  SYSTEM DESCRIPTION AND NOTATION  
 
The following assumptions are associated with the model: 
 
(i) The system consists of two identical units. The failure rate and the repair rate are 

constant with parameters λ and µ respectively. 
(ii) The system consists of CCS failures which are S-independent.  The failure rate and 

repair rate of CCS failures are constant with parameters λc and µc respectively. 
(iii) If the system fails due to human error, the failure rate and repair rate in that case are 

assumed to be exponential with parameters λh and µh respectively. 
(iv) The unit failure, CCS failure and human error are assumed to be independent. 
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Notation 

Pi(t) Probability that the system is in state i (i = 0, 1, 2) at time t  

AS(∞) Steady-state availability of the series configuration in the 
presence of CCS failures and human error. 

AP(∞) Steady-state availability of the parallel configuration in the 
presence of CCS failures and human error. 

 
The expressions for steady-state availability of the two configurations are as follows (see El-
Damcese [5]): 
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3.  CONFIDENCE LIMITS FOR STEADY-STATE AVAILABILITY 
 
Let ( )

111211 ...,,, nUUU ,  ( )
222221 ...,,, nUUU  and ( )

333231 ...,,, nUUU  be random samples of 
unit failures, CCS failures and failures due to human error with sample sizes n1, n2 and n3 
respectively.  Let ( )

444241 ...,,, nUUU ,  ( )
555251 ...,,, nUUU  and ( )

666261 ...,,, nUUU  be 
random samples of repairs of a unit, of the system due to a CCS failure and failure due to 
human error with sample sizes n4, n5 and n6 respectively. All these samples are drawn from 
exponential populations. In particular we assume that ni = n;  i=1, 2,…, 6.   
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estimator (MLE) of θi is given by  ∑
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By an application of the Multivariate Central Limit Theorem [8], it follows that 
 

( ) ( )Σ− ,06NdXn θ  
where 
 

( ) ( )654321654321 ,,,,,  and,,,,, θθθθθθθ == UUUUUUX  
 
The dispersion matrix [ ]∑ ×

=
66ijσ  is given by 

 
( )2

6
2
5

2
4

2
3

2
2

2
1 ,,,,,diag θθθθθθ=Σ  
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Now, let ( )θσσ ˆˆ 22

jj =  be the estimator of ( )θσ 2
j , obtained by replacing θ  by its consistent 

estimator 
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Since ( )θσ 2

j  is a continuous function of θ, 2ˆ jσ  is a consistent estimator of ( )θσ 2
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By Slutzky's theorem 
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Hence, the 100(1 - α)% asymptotic confidence limits for Aj(∞) are given by 
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4.  BAYESIAN ANALYSIS OF STEADY-STATE AVAILABILITY 

 
The likelihood function is given by 
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4.1  Two parameter gamma density 
 
If the analyst possesses more detailed information on λ, for example in terms of the mean 
value ω1 and a standard deviation σ1, he can formalize his prior information through a gamma 
prior distribution (denoted by ( )11;γνG ) for λ with probability density function (p.d.f.) 
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Similary, assume ( ) 6...,,3,2,; =iG ii γν  as prior distributions for chc µµλλ ,,,  and hµ  
respectively. Assume independence among the parameters chc µµλλλ ,,,,  and hµ . The 
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flexibility present in the gamma family through the choices of the hyperparameters allows the 
analyst to select the model that best expresses the current state of knowledge about the 
parameter. 
 
The joint posterior distribution, according to Bayes' theorem (using (3) and (4)) is defined by 
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Remark 
 

1. The Jeffreys' prior for ( )hchc µµµλλλ ,,,,,  [2] is given by 

           ( ) ( ) 0,,,,,;
,

1,,,,, >∝ hchc
hchc

hchcg µµµλλλ
µµµλλλ

µµµλλλ   

(7) 
 
      with the joint posterior distribution as 
 
        ( ) ( ) ( )6543211,,,,, TTTTTTn

hchchchc
hchcedatag µµµλλλµµµλλλµµµλλλ +++++−−∝   

(8) 
 

If ( )6...,,2,10 === iii γν  then (6) simplifies to (8). 
 
2. If the standard gamma prior with p.d.f. 
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 is assumed for λ, the joint posterior distribution follows from (6) with 

( ).6...,,2,11 == iiγ  
 

From the joint posterior distribution (6), AS(∞) and AP(∞) are obtained using Monte Carlo 
simulation methods, since each parameter is unconditionally gamma distributed. Values are 
generated from these 3 gamma distributions and substituted in (1) and (2) respectively- the 
expressions for the steady-state availability of the two configurations. Subsequently the 
posterior distribution are simulated for the steady-state availability for series and parallel 
systems, from which the HPD intervals can be obtained. 
 
4.2  Beta distribution 
 
If the prior distribution is chosen to be a beta distribution of the second kind (beta-prime or 
inverted-beta-2; denoted by BP(m1;r1)) for λ with p.d.f. 
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with suitable values of the hyperparameters as 
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where 1ω  and 2
1σ  are the prior mean and variance respectively.  Similarly, assume  

BP(mi;ri), i = 2, …, 6, as prior distributions for chc µµλλ ,,,  and hµ  respectively. Assume 
independence among the parameters chc µµλλλ ,,,,  and hµ . The joint posterior distribution 
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From (12), follows that each parameter is generalized gamma distributed as defined by 
Agarwal and Kalla [1] with the normalizing constant that can be represented in terms of the 
confluent hypergeometric function of the second kind (or the generalized gamma function 
defined by Kobayshi [6]).  Monte Carlo simulation-methods can be used again, or 
alternatively Gibbs sampling to obtain the posterior distribution for the steady-state 
availability for series and parallel systems, from which the HPD intervals follows. 
 
5.  SIMULATION STUDY AND COMPARISIONS  
 
To illustrate the results in sections 3 and 4, different exponentially distributed samples were 
simulated for the six variables in the system.  The sample information is given in Appendix A.  
The following specific selection of parameter values:  
λ = 0.1; λc = λh = 0.07; µ = µc = µh = 3 were used in the illustration, except in Table 3.  Since 
it is a simulation study the true values for the steady-state availability for the two 
configurations are known (AS(∞) = 0.87134; AP(∞) = 0.97009, except in Table 3).  Table 1 
shows the CAN estimator and confidence intervals (C.I.) for AS(∞) and AP(∞). 
 
Initially 10 000 values are simulated from each distribution of the 6 parameters and 
subsequently the distribution of the steady-state availability is obtained.  Figure 1 shows the 
99% HPD intervals and posterior means (PM) for AS(∞) for increasing sample sizes 
(assuming Jeffreys' prior).  The variation can most probably be ascribed to the effect of 
sampling (also see Table 2). 
 
In tables 2, 3, 4a, 4b and 5, the Bayesian estimation study of the steady-state availability for 
both parallel and series system is presented for different sample sizes. It is evident that the 
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intervals are much smaller for the larger sample sizes.   
 

 AS(∞) AP(∞) 

n MLE 95% C.I. 99% C.I. MLE 95% C.I. 99% C.I. 

40 0.8311 (0.7891; 0.8731) (0.7759; 0.8863) 0.9648 (0.9544; 0.9751) (0.9512; 0.9784) 

100 0.8497 (0.8253; 0.8741) (0.8176; 0.8818) 0.9694 (0.9635; 0.9752) (0.9617; 0.9770) 

500 0.8631 (0.8534; 0.8728) (0.8504; 0.8759) 0.9701 (0.9675; 0.9727) (0.9667; 0.9735) 

700 0.8648 (0.8567; 0.8729) (0.8542; 0.8754) 0.9705 (0.9683; 0.9726) (0.9676; 0.9733) 

1000 0.8692 (0.8627; 0.8757) (0.8606; 0.8778) 0.9705 (0.9686; 0.9723) (0.9680; 0.9729) 

 
Table 1:   CAN estimator and C.I. for AS(∞) and AP(∞) 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 1:  99% HPD interval and PM for AS(∞) for different sample sizes 
ο : PM        � : upper limit       ∆ : lower limit 

 
Finally, the different priors are examined. Tables 4a, 4b and 5 show the posterior means and 
95% HPD intervals for AS(∞) and AP(∞) respectively, under the prior distributions (i) Jeffreys' 
prior (see (7)), (ii) standard gamma prior density (see (9)), (iii) two parameter gamma prior 
density (see (4)) and (iv) beta prior (see (10)). The results are compared for gamma and beta 
priors. Different values for the hyperparameters of λh are used to illustrate different prior 
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information.  The influence on the posterior mean and the intervals is clear from the tables.  
 

 AS(∞) AP(∞) 

n PM st.dev. 95% HPD 99% HPD PM st.dev. 95% HPD 99% HPD 

10 0.7604 0.0601 (0.6292; 0.8608) (0.5988; 0.8807) 0.9538 0.0148 (0.9203; 0.9768) (0.9096; 0.9811) 

20 0.8301 0.0290 (0.7699; 0.8819) (0.7501; 0.8912) 0.9635 0.0076 (0.9461; 0.9773) (0.9409; 0.9805) 

40 0.8293 0.0209 (0.7862; 0.8677) (0.7756; 0.8817) 0.9644 0.0055 (0.9523; 0.9739) (0.9472; 0.9764) 

100 0.8474 0.0128 (0.8211; 0.8714) (0.8093; 0.8791) 0.9688 0.0031 (0.9625; 0.9745) (0.9601; 0.9766) 

500 0.8628 0.0052 (0.8519; 0.8727) (0.8470; 0.8759) 0.9700 0.0013 (0.9675; 0.9725) (0.9666; 0.9739) 

700 0.8649 0.0041 (0.8568; 0.8729) (0.8547; 0.8745) 0.9705 0.0011 (0.9685; 0.9726) (0.9675; 0.9729) 

1000 0.8692 0.0032 (0.8629; 0.8755) (0.8612; 0.8792) 0.9704 0.0009 (0.9685; 0.9721) (0.9683; 0.9728) 

 
Table 2:   PM and HPD intervals for AS(∞) and AP(∞) 

 
 

(n = 40; Jeffreys' prior is assumed for the hyperparameters) 
 

 AS(∞) AP(∞) 

  PM st.dev. 95% HPD PM st.dev. 95% HPD 

λh = 0.07 0.8212 0.0218 (0.7746; 0.8616) 0.9567 0.0062 (0.9440; 0.9682) 

λh = 0.1 0.7953 0.0253 (0.7424; 0.8408) 0.9508 0.0070 (0.9360; 0.9637) 

 

λ = λc = 0.1 

 

µ =µc = µh = 3 λh = 0.4 0.5908 0.0469 (0.5025; 0.6808) 0.8940 0.0162 (0.8592; 0.9241) 

µ =µc = µh = 1 0.6112 0.0374 (0.5401; 0.6859) 0.9084 0.0118 (0.8843; 0.9295) 

µ =µc = µh = 3 0.8293 0.0209 (0.7862; 0.8677) 0.9644 0.0055 (0.9523; 0.9740) 

 

λ = 0.1 

 

λc = λh = 0.07 µ =µc = µh = 5 0.8907 0.0155 (0.8573; 0.9188) 0.9778 0.0035 (0.9703; 0.9841) 

 

Table 3:   PM and HPD intervals for AS(∞) and AP(∞) 
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(Two parameter gamma prior; Standard gamma prior and Jeffreys' prior assumed) 
 

* Two parameter gamma prior Standard gamma prior Jeffreys' prior 

(ν1; γ1) = (0.125;1.25); (ν2; γ2) = (1.225;17.5) ν1 = 0.1; ν2 = ν3 = 0.07   

(ν4; γ4) = (ν5; γ5) = (ν6; γ6) = (10;3.3333) ν4 = ν5 = ν6 = 3  

(ν3; γ3) = (0.49;7) (ν3; γ3) = (2.45;35)   

n 

PM 95% HPD PM 95% HPD PM 95% HPD PM 95% HPD 

10 0.8000 (0.7104;0.8801) 0.8109 (0.7207; 0.8827) 0.7772 (0.6556; 0.8722) 0.7604 (0.6292; 0.8608) 

20 0.8391 (0.7849; 0.8846) 0.8412 (0.7825; 0.8858) 0.8337 (0.7750; 0.8839) 0.8301 (0.7699; 0.8819) 

40 0.8318 (0.7872; 0.8718) 0.8359 (0.7925; 0.8720) 0.8278 (0.7832; 0.8663) 0.8293 (0.7862; 0.8677) 

100 0.8490 (0.8205; 0.8732) 0.8494 (0.8203; 0.8721) 0.8482 (0.8215; 0.8725) 0.8474 (0.8211; 0.8714) 

500 0.8629 (0.8517; 0.8726) 0.8631 (0.8525; 0.8722) 0.8629 (0.8525; 0.8735) 0.8628 (0.8519; 0.8727) 

 
Table 4a:   PM and HPD intervals for AS(∞) 

 
* Two parameter gamma prior Standard gamma prior Jeffreys' prior 

(ν1; γ1) = (0.125;1.25); (ν2; γ2) = (1.225;17.5) ν1 = 0.1; ν2 = ν3 = 0.07   

(ν4; γ4) = (ν5; γ5) = (ν6; γ6) = (10;3.3333) ν4 = ν5 = ν6 = 3  

(ν3; γ3) = (0.49;7) (ν3; γ3) = (2.45;35)   

n 

PM 95% HPD PM 95% HPD PM 95% HPD PM 95% HPD 

100 0.9613 (0.9401; 0.9782) 0.9630 (0.9403; 0.9793) 0.9567 (0.9223; 0.9777) 0.9538 (0.9203; 0.9768) 

20 0.9646 (0.9511; 0.9781) 0.9649 (0.9492; 0.9774) 0.9636 (0.9451; 0.9771) 0.9635 (0.9461; 0.9773) 

40 0.9645 (0.9529; 0.9729) 0.9646 (0.9532; 0.9745) 0.9639 (0.9527; 0.9732) 0.9644 (0.9523; 0.9739) 

100 0.9690 (0.9630; 0.9748) 0.9689 (0.9632; 0.9746) 0.9687 (0.9621; 0.9741) 0.9688 (0.9625; 0.9745) 

500 0.9701 (0.9670; 0.9725) 0.9701 (0.9672; 0.9728) 0.9699 (0.9660; 0.9725) 0.9700 (0.9675; 0.9725) 

 
*Assumed prior information for two parameter gamma 

 
Values of hyperparameters of λh 
ω3 = 0.07;   2

3σ = 0.01 ν3 = 0.49;   γ3 = 7 { ω3 = 0.07;   2
3σ = 0.002 ν3 = 2.45;   γ3 = 35 

 
 Values of hyperparameters of λ, λc, µ , µ c and µh 

 ω1 = 0.1;                    2
1σ = 0.08 ν1 = 0.125;    γ1 = 1.25 

and ω2 = 0.07;                  2
2σ = 0.004 ν2 = 1.225;   γ2 = 17.5 

 ω4 = ω5 = ω6  = 3      2
4σ = 2

5σ = 2
6σ = 0.9 ν4 = ν5 = ν6 = 10   γ4 = γ5 = γ6 = 3.3333 

 

Table 4b:   PM and HPD intervals for Ap(∞) 
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(Beta prior assumed) 
 

 AS(∞) AP(∞) 

 (m3; r3) = (5.313;76.9) (m3; r3) = (1.1186;16.98) (m3; r3) = (5.313;76.9) (m3; r3) = (1.1186;16.98) 

n PM 95% HPD PM 95% HPD PM 95% HPD PM 95% HPD 

10 0.8157 (0.7330;0.8771) 0.8004 (0.7022; 0.8745) 0.9640 (0.9417; 0.9797) 0.9610 (0.9331; 0.9804) 

20 0.8412 (0.7838; 0.8910) 0.8337 (0.7716; 0.8855) 0.9651 (0.9491; 0.9768) 0.9638 (0.9485; 0.9757) 

40 0.8313 (0.7856; 0.8676) 0.8290 (0.7788; 0.8679) 0.9641 (0.9532; 0.9733) 0.9635 (0.9518; 0.9726) 

100 0.8484 (0.8221; 0.8726) 0.8491 (0.8220; 0.8737) 0.9688 (0.9629; 0.9745) 0.9690 (0.9621; 0.9747) 

500 0.8630 (0.8520; 0.8733) 0.8631 (0.8528; 0.8734) 0.9701 (0.9675; 0.9726) 0.9701 (0.9676; 0.9727) 

 
Values of hyperparameters of λh 
ω3 = 0.07;   2

3σ = 0.01 m3 = 1.1186;   r3 = 16.98 { ω3 = 0.07;   2
3σ = 0.001 m3 = 5.313;   r3 = 76.9 

 
 Values of hyperparameters of λ, λc, µ , µc and µh 
 ω1 = 0.1;                    2

1σ = 0.09 m1 = 0.22222;    r1 = 3.2222 

and ω2 = 0.07;                  2
2σ = 0.008 m2 = 0.72538;   r2 = 11.363 

 ω4 = ω5 = ω6  = 3      2
4σ = 2

5σ = 2
6σ = 1.5 m4 = m5 = m6 = 27   r4 = r5 = r6 = 10 

 
Table 5:  PM and HPD intervals for AS(∞) and AP(∞) 

 
6.  CONCLUSIONS 
 
A two component series and parallel system with common-cause shock failures and human 
error has been studied.  The steady-state availability for these systems are obtained as a 
system measure. Using the classical estimation (Table 1) and the Bayesian estimation (Table 
2, 3, 4a, 4b and 5 and Figure 1), the confidence limits for the steady-state availability has been 
obtained. From these two procedures, it can be concluded that, as the sample size increases 
the steady-state availability increases for different parameters. From all the intervals it is clear 
that the system availability for the parallel configuration is higher than the system availability 
for the series configuration. One can influence the human error factor by reducing the failure 
rate λh through specialized training.  Similar options can be chosen for the other 
hyperparameters.  Depending on the prior belief one can achieve good results for small 
sample sizes as well. The simulated samples are shown in Table 6. The results obtained have 
justified the models we studied. 
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1U  2U  3U  4U  5U  6U  

λ = λc = 0.1;  λh = 0.1 µ = µc = µh = 3 n = 40 9.5531 9.3588 6.6019 0.4219 0.2965 0.3419 

λ = λc = 0.1;  λh = 0.4 µ = µc = µh = 3 n = 40 9.5531 9.3588 1.6505 0.4219 0.2965 0.3419 

λ = λc = 0.1;  λh = 0.07 µ = µc = µh = 3 n = 40 9.5531 9.3588 9.4312 0.4219 0.2965 0.3419 

λ = 0.1; λ = λc = 0.07 µ = µc = µh = 3 n = 40 9.5531 13.3696 9.4312 0.4219 0.2965 0.3419 

λ = 0.1; λ = λc = 0.07 µ = µc = µh = 5 n = 40 9.5531 13.3696 9.4312 0.2531 0.1779 0.2051 

λ = 0.1; λ = λc = 0.07 µ = µc = µh = 1 n = 40 9.5531 13.3696 9.4312 1.2657 0.8895 1.0256 

λ = 0.1; λ = λc = 0.07 µ = µc = µh = 3 n = 40 9.8909 17.4877 7.6879 0.5142 0.3412 0.5007 

λ = 0.1; λ = λc = 0.07 µ = µc = µh = 3 n = 20 10.9477 14.4626 8.5106 0.3998 0.3318 0.3405 

λ = 0.1; λ = λc = 0.07 µ = µc = µh = 3 n = 100 8.5011 14.3940 13.1298 0.3763 0.2956 0.3430 

λ = 0.1; λ = λc = 0.07 µ = µc = µh = 3 n = 500 9.5615 14.3971 13.9151 0.3407 0.3174 0.3665 

λ = 0.1; λ = λc = 0.07 µ = µc = µh = 3 n = 700 9.7978 14.4616 13.4949 0.3386 0.3141 0.3580 

λ = 0.1; λ = λc = 0.07 µ = µc = µh = 3 n= 1000 9.9816 14.3897 13.7572 0.3292 0.3224 0.3475 

 
Table 6:  Sample means 
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