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ABSTRACT 

Benchmarks are often used to assist brewers in identifying 
improvement opportunities; but a comparison of water and energy 
performances in breweries is deficient without normalising for 
differences between facilities. The normalisation of water and 
energy use was subsequently investigated, using SABMiller 
breweries as a case study. Drivers of water, electricity, and thermal 
energy usage obtained from the literature were selected, 
rationalised, and ranked in a Delphi survey of industry experts, and 
correlated with data from 64 SABMiller sites. The main drivers 
identified, and t he data from 58 SABMiller sites, were then used to 
develop multi -variable linear regression (MVLR) models. The 
models, tested with data from six separate SABMiller sites, were 
able to predict water, electrical, and thermal energy usage to 
within a seven pe r cent error. By eliminating the variability in 
drivers within the control of brewery staff, the MVLR models were 
used to normalise the performance indices, and enabled direct 
comparisons between plants.  

OPSOMMING 

Maatstawwe word dikwels gebruik om brouers  te help met die 
identifisering van geleenthede vir verbetering; maar õn vergelyking 
van water en energie vertonings in brouerye is gebrekkig sonder 
normalisering vir verskille tussen fasiliteite. Die normalisering van 
water en energie gebruik is dienooree nkomstig ondersoek, deur die 
gebruik van SABMiller brouerye as õn gevallestudie. Drywers van 
water, elektrisiteit en hitte -energie gebruik, verkry uit die 
literatuur, is gekies, gerasionaliseer en ingedeel in õn Delphi-
opname van kundiges in die bedryf, en  gekorreleer met die data van 
64 SABMiller fasiliteite. Die belangrikste drywers is geïdentifiseer, 
en data van 58 SABMiller fasiliteite, is toe aangewend om multi -
veranderlike lineêre regressie (MVLR) modelle te ontwikkel. Die 
modelle, getoets met data va naf ses aparte SABMiller fasiliteite, is 
in staat om water, elektrisiteit en hitte -energie gebruik te voorspel 
binne õn sewe persent fout. Deur die uitskakeling van die variasie in 
drywers binne die beheer van brouery personeel, is die MVLR 
modelle gebruik  om die prestasie-indekse te normaliseer, en is die 
direkte vergelykings tussen fasiliteite moontlik gemaak . 

 

1 INTRODUCTION 

The rise in demand for, and cost of, resources is increasing the brewing sectorõs risk from a 
sustainability perspective [1] . In response, brewers globally have embarked on efficiency 
improvement progra mmes, often accompanied by ambitious, publicly committed targets [2] . Surveys 
in the brewing industry confirm that the brewing community is rapidly improving its specific water 
and energy usages, and that the rate of improvement s made in the top -performing plants is similar 
to the sector average, as identified by BBPA [3], BIER [4], and  Campden BRI [5]. The variability in 
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plant performances thus cannot be fully ascribed to poor performance [6] , but should also include 
differences between plants that influence performance potentials.  
 
Benchmarks are often used to assist brewers in identifying improvement opportunities; but 
comparisons of water and energy performances in breweries are deficient without normalising for 
differences between plants. Published benchmarks are often not normali sed for differences between 
plants, but instead are given in ranges (NRC [7] , EBC [8] , WBG [9] ), making them difficult to use 
when determining improvement op portunities.  
 
Many drivers for water and energy efficiencies are identified in the literature, but there seems to 
be no consensus on which drivers are the most important ones to consider [2] . Most of the drivers 
from the literat ure are common to both water and energy efficiencies; but Pennartz [10] and Heuven 
et al . [11]  reported that they found no correlation between water and energy usages, and that no 
correlations could be found in their survey data of 225 breweries [11] . This was unexpected, as 
surveys showed improvements in both water and energy performances at most sites [3, 4, 5] . 

1.1  Objectives of this paper  

There is limited understanding from the literature of how benchmarking could be done. The 
normalisation of performances, or benchmarks, would enabl e more accurate comparisons between 
plants to be made, and potential improvements to be determined. This paper thus proposes variables 
(differences) and a normalisation model to enable breweries that have different water and energy 
usage performances to be compared for the purpose of benchmarking, and to identify improvement 
opportunities.  

 
The research questions, then, were:  
 

¶ What are the main variables (differences between breweries) that influence the water and 
energy performance potential of plants?  

¶ How can these variables be accounted for in normalising the performance, or in benchmarks?  

2 METHOD 

In order to answer the research questions, a literature review, a Delphi survey, and correlational 
methods were used, with SABMiller plants across the globe prov iding data as multiple case studies, 
as shown in Figure 1. The research design combined quantitative (correlation) and qualitative 
(Delphi survey and literature study) methods in order to triangulate findings and improve validity 
[12, 13, 14] . 
 
SABMiller was used as the overall case for the study, with 64 (sixty -four) individual plants used as 
multiple -case studies for inputs into the quantitative correlation method, and ultimately for testing 
the normalisation model that  was developed through the research process.  
 
The Delphi surveyõs panel consisted of beer industry consultants and industry experts from within 
SABMiller ð technical hub leaders and process specialists; and the literature review was used as an 
input into the first round of the survey to assist the pan ellists with a point of origin for their thoughts 
[15] . 
 
The Delphi survey and correlation method were used collectively to produce a prioritised list of 
drivers that were considered in the development of a normalisation model. Predicted relative water 
and energy usage ratios were used to test the normalisation model, and then to compare the results 
with plant data from six SABMiller sites.  
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Figure 1: Applied research methodology of the investigation [2]  

3 CONCEPTUAL METHOD FOR THE INVESTIGATION 

The list of drivers from Kirstein [2]  was incorporated into the first round of the Delphi survey, 
together with a breakdown of water and energy users in a brewery. This assisted the participants to 
consider the various process areas, while assessing the impact of th e drivers on a facility level. From 
the results of the Delphi survey, a prioritised list of 10 (ten) key drivers was obtained for use in the 
normalisation model. The level of consensus reached in the Delphi survey was measured by Kendallõs 
W coefficient of  concordance, as proposed by Schmidt [16] . 
 
A correlation analysis of the SABMiller plant data and the drivers identified from the literature was 
conducted to determine whether other drivers should be considered in the model, and to assess 
whether the drivers identified by the Delphi survey were supported by quantitative data to be key 
drivers. Where a driver consisted of more than one variable (such as packaging mix or water 
tre atment type), normalisation correction factors were used from internal benchmarks to transform 
the variables into a single ôequivalentõ driver that could be used for the regression model, as shown 
by Wouda [17] . 
 
To protect the confidentiality of the SABMiller data, the plant usages were first converted into usage 
indices by dividing each siteõs usage by the usage of the best-performing plant (of those assessed). 
Six sites (one from each global hub) were excluded from the development of the multi -variable 
linear regression (MVLR) model, for the purpose of testing the modelõs accuracy once developed.  
 
An MVLR model was developed for water and energy usage indices ð as shown in Figure 2 for water,  
as an example ð using the method of least squares to determine the best fit for the data. The 
variables indicated by black dots in Figures 3 to 5 (in the results section), were included in the 
development of the model.  
 
The MVLR takes the form: 

Ù ÍØ ÍØ Ễ Í Ø Ã 
where:  
 

¶ y is the predicted water, electrical, or thermal energy index usage being calculated;  

¶ mi are the coefficients calculated for the independent variables xi;  

¶ xi are the respective driver values of each plant being calculated; and  

¶ c is a constant.  
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Figure 2: Water usage index - Actual vs MVLR predicted [2]  

The adjusted coefficient of determination by Ling and Eang [18]  and the F-statistic were used to 
determine the proportion of the variance explained by the MVLR model, and to determine whether 
the observed relati onship between dependent and independent variables occurs by chance, or 
whether it can reasonably be ascribed to the variables under investigation.  
 
The MVLR model was tested by comparing actual water and energy ratios of six diverse SABMiller 
case-study plants (one from each global hub) with the regression modelõs predicted usages, as well 
as relative rankings. The expectation was that the model would be able to predict closely (within 
10% error) the actual usages, and predict correctly the relative rankin gs of the plants under 
investigation.  
 
The normalisation of plant performance was done by eliminating the variance in drivers considered 
to be under the control of the plant. The resulting ônormalisedõ performance, when compared with 
actual performance, co uld be used as a measure of a plantõs potential for improvement. 

4 RESULTS AND DISCUSSION 

The drivers identified in the literature review of Kirstein [2]  were introduced into the first round of 
the Delphi survey. Through iterative  rounds, ranked lists of drivers were established, given in Tables 
1 to 3. The survey revealed a strong consensus among the participants, as measured by Kendallõs W 
coefficient of concordance [16] .  
 
Although recycling of water was identified as the driver with the highest potential to influence site 
water usage, it was excluded from the correlation and normalisation analysis due to the limited 
number of plants actively recycling  water. Instead, recycled water was added back into the water 
usage ratios to eliminate it as a variable.  

Table 1: Delphi - Ranked drivers of water usage  

Ranked drivers of water usage in brewery  
Driver Average Rank 

Recycling of water  1 
Incoming water treatment type  2 
Capacity utilisation  3 
Frequency of change-overs 4 
Production volume 5 
Package type 6 
Hygiene score 7 
Technical capability  8 
Pasteurisation type  9 
Evaporation rate / Total evaporation  10 
Kendallõs W coefficient of concordance  0.741 
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Table 2: Delphi - Ranked drivers of electricity usage  

Ranked drivers of electrical energy usage in brewery  
Driver Average Rank 

Capacity utilisation  1 
Climate 2 
Incoming water temperature  3 
Technical capability  4 
Production volume 5 
Level of automation  6 
Energy management systems 7 
Package type 8 
Gravity of brew  9 
Cost of energy  10 
Kendall's W coefficient of concordance  0.535 

Table 3: Delphi - Ranked drivers of thermal energy usage  

Ranked drivers of water usage in brewery  
Driver Average Rank 

Recycling of water  1 
Incoming water treatment type  2 
Capacity utilisation  3 
Frequency of change-overs 4 
Production volume 5 
Package type 6 
Hygiene score 7 
Technical capability  8 
Pasteurisation type  9 
Evaporation rate / Total evaporation  10 
Kendall's W coefficient of concordance  0.741 

4.1  Correlation analysis - Water  

Figure 3 shows the results of the correlation analysis of the drivers identified from the literature, 
and the specific water usage of the 64 sites. The dark bars indicate a positive correlation (increase 
in the measure of the driver corresponds with an inc rease in the specific water usage, and vice 
versa), and the light bars indicate a negative correlation (increase in the measure of the driver 
corresponds with a decrease in the specific water usage, and vice versa).  
 
From Figure 3 a), representing the bre akdown of drivers from the literature, the following 
observations are made: 
 

¶ Of all the drivers, the strongest correlation with specific water usage are the specific electrical 
and thermal energy usages. This contradicts the findings of Pennartz [10]  and Heuven [11] . 

¶ The category of drivers that seem to have the strongest correlation is ômanagement and 
operating practicesõ as measured by the SABMiller Global Evaluation of Manufacturing (GEM) 
audit scores.  

¶ Of the ôproductionõ variables, the inverse of the production volume revealed the strongest 
correlation to specific water usage. It is interesting to note that the size of the plant and the 
frequency of  change-overs revealed negative correlations, while Delphi participants (and the 
literature reviewed) expected positive correlations. This can be explained by the tendency for 
breweries with larger volumes to boast larger footprints.  

¶ Of the ôproduction mixõ variables, it was shown that ônumber of brandsõ and ôSKUsõ (stock-
keeping units) had a negative correlation, indicating generally more flexibility in plants with 
lower water consumption, tying up with the negative correlation seen for ôfrequency of change-
oversõ. This too is counter to what the Delphi participants (and the literature) expected. An 
explanation for this is that larger plants tend to have more production lines, which would 
translate into fewer change -overs or SKUs per line, resulting in lowe r usages (positive 
correlation on a line -level); but since it is reported and correlated on a plant level, the opposite 
(a negative correlation) is observed.  

¶ Of the ôplant conditionõ variables, it was shown that the ôage of plantõ had a very weak negative 
correlation, which is counter to the expectations of the Delphi participants and the literature 
reviewed. This can be explained by the general tendency of new plants to be built smaller 
(with the ability to expand in the future) than older plants. Equipmen t is not always optimally 
sized for the commissioned capacity, but rather for a targeted future volume.  
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¶ It is also shown that ôhygiene standardsõ had a relatively strong negative correlation, which 
was counter to the expectations of the Delphi participants . The common expectation is that, 
to increase hygiene scores, more water would be required due to more frequent and more 
thorough cleaning. The data shows the opposite, indicating that good hygiene corresponds with 
lower water usage. This could in part be explained by arguing that wet surfaces are more prone 
to micro -growth, and also that designing cleaning equipment and practices to be effective 
would require less frequent cleaning, resulting in reduced water usage while delivering higher 
hygiene scores. 

¶ It is interesting to note that ôtotal evaporationõ displayed a negative correlation, which was 
counter to the expectations of the Delphi participants. An investigation revealed that many 
sites condense the water vapour in heat recovery systems, which enable s them to re -use the 
water. Sites with lower evaporation rates would not install heat recovery systems (due to the 
lower return on investment); and because they would be more prone to losing water from 
evaporation, they would use more water.  

¶ It is interes ting to note the positive correlation on water usage and ôcost of waterõ. This is also 
counter to the expectations of the Delphi participants.  

 
In Figure 3 b), which is the rank -ordered list of drivers from Figure 3 a) (excluding the specific energy 
and water scores), the top drivers of water usage, as identified in the Delphi survey (Table 1), are 
indicated by rectangular boxes, while the drivers used in the development of the normalisation 
model are indicated by black dots. As stated above, the recycling  of water (the highest -ranked driver 
from the Delphi survey) was excluded as a driver by adding the ratio of recycled water back to the 
specific water usage of those sites that reported to be recycling water. Due to the strong correlations 
shown by the GEM levers (the ôõmanagement and ôoperating practicesõ drivers at the bottom of 
Figure 3 a), the ôoverall GEM scoreõ was used instead of the ôtechnical capabilityõ selected by the 
Delphi participants, as the driver is already included (among others) in the ca lculation of the overall 
GEM score. 

4.2  Correlational analysis ð Electricity  

Figure 4 shows the results of the correlation analysis of the drivers identified from the literature 
and the specific electricity usage of the 64 sites. Again, the dark bars indicate a positive correlation, 
and the light bars indicate a negative correlation. From Figure 4 a), representing the breakdown of 
drivers from the literature, the following observations are made:  
 

¶ Specific electricity usage had a strong positive correlation with  water and thermal usages, and 
hence with total energy usage.  

¶ As with water, the category of drivers that seem to have the strongest correlation is 
ômanagement and operating practicesõ as measured by the SABMiller GEM scores. 

¶ The nature of the correlation s (positive or negative) was the same as for water, with the 
exception of ôproduction run lengthsõ, which had a negative correlation for electricity usage, 
while it had a positive correlation for water usage on the data assessed. The expectation is 
that th e correlation should be negative for both water and electricity, as fewer start -up losses 
will need to be accounted for.  

¶ Of the ôproductionõ variables, the inverse of the production volume revealed the strongest 
correlation to specific electricity usage. I t was interesting to note that ôsize of plantõ revealed 
a negative correlation, while Delphi participants (and the literature reviewed) expected a 
positive correlation. As with water, this could be due to the tendency for breweries with larger 
volumes also to boast larger footprints.  

¶ Of the ôproduction mixõ variables, it was shown that ônumber of brandsõ and ôSKUsõ had a 
negative correlation, indicating generally more flexibility in plants with lower electricity 
consumption. This ties up with the negative c orrelation seen for ôfrequency of change-oversõ. 
This is counter to what the Delphi participants (and the literature) expected. An explanation 
for this could be that larger plants would have more production lines, which would translate 
into fewer change -overs or SKUs per line, resulting in lower usages; but since it is reported and 
correlated on plant level, the opposite is seen.  

¶ Of the ôplant conditionõ variables, it was shown that ôage of plantõ had a negative correlation, 
which is counter to the expectat ions of the Delphi participants and the literature reviewed. 
Again, this can be explained by the general tendency of new plants to be built smaller (with 
the ability to expand in the future) than older plants. Equipment is not always optimally sized 
for th e commissioned capacity, but rather for a targeted future volume.  
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¶ It is also shown that ôhygiene standardsõ had a relatively strong negative correlation, which 
was counter to the expectations of the Delphi participants. This could in part be explained by 
arguing that designing cleaning equipment and practices to be effective would result in less 
frequent cleaning and reduced electricity usage, while delivering higher hygiene scores.  

¶ It is interesting to note the positive correlation of electricity usage and  ôcost of electricityõ. 
This is also counter to the expectations of the Delphi participants.  

 

 

a)                                                                            b)  
Figure 3: Water usage correlations  

In Figure 4 b), which is the rank -ordered list of drivers from Figure 4 a), ôenergy management 
systemsõ is represented by the GEM category ôenvironment managementõ. The rectangular boxes 
indicate the top drivers that were identified in the Delphi survey (T able 2), while the black dots 
indicate the drivers used in the development of a normalisation model. Due to the strong correlations 
shown by the GEM levers (the ômanagementõ and ôoperating practicesõ drivers at the bottom of 
Figure 4 a), it was decided, as  with water, to include ôoverall GEM scoreõ in the normalisation model 
rather than the ôtechnical capabilityõ, ôlevel of automationõ and ôenergy management systemsõ  
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a)                                                                        b)   
Figure 4: Electricity usage correlations  

4.3  Correlational analysis ð Thermal energy  

Figure 5 shows the results of the correlation analysis of the drivers identified from the literature 
and the specific thermal energy usage of the 64 sites. Fro m Figure 5 a), representing the breakdown 
of drivers from the literature, the following observations are made:  
 

¶ Specific thermal usage had a strong positive correlation with water and electrical usages, and 
hence with total energy usage.  

¶ As with water and  electricity, the category of drivers that seem to have the strongest 
correlation was ômanagement and operating practicesõ as measured by the SABMiller GEM 
scores. 

¶ The nature of the correlations (positive or negative) was the same as for electricity usages , 
with the exception of ôage of plantõ, ôtotal evaporationõ and ôwater stress areaõ, which had 
positive correlations for thermal energy, while having negative correlations with electricity 
usage. The direction of correlations for thermal energy seems to co rrelate better with the 
expectations of the Delphi participants (and the literature) than in the cases of water and 
electricity usages.  

¶ Of the ôproductionõ variables, the inverse of the production volume revealed the strongest 
correlation to specific therm al usage. It was shown that ôsize of the plantõ revealed a negative 
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correlation, while Delphi participants (and the literature reviewed) expected a positive 
correlation. As with water and electricity, this may be due to the tendency for breweries with 
larger volumes also to boast larger footprints.  

¶ Of the ôproduction mixõ variables, it was shown that ônumber of brandsõ and ôSKUsõ had a 
negative correlation, indicating generally more flexibility in plants with lower thermal 
consumption; and this ties up with  the negative correlation seen for ôfrequency of change-
oversõ. This is counter to what the Delphi participants (and the literature) expected, as with  
the explanation for electricity.  

¶ Of the ôplant conditionõ variables, it was shown that hygiene standards had a relatively strong 
negative correlation with thermal energy. This is counter -intuitive, as heat is often used to 
clean and sterilise surfaces. It could be argued that cold -cleaning and sterilisation solutions 
are becoming more prevalent, contributing  to plantsõ overall reduction in thermal energy. It 
could also be argued that better hygiene practices and standards result in a reduced need 
(lower frequency) for cleaning, and would result in a thermal energy reduction with improved 
hygiene scores. 

¶ It is  interesting to note the positive correlation on thermal usage and cost of thermal energy. 
This is also counter to the expectations of the Delphi participants.  
 

 

a)                                                                    b)  
Figure 5: Thermal energy usage correlations  

In Figure 5 b), which is the rank -ordered list of drivers from Figure 5 a), ôenergy management 
systemsõ is represented by the GEM category ôenvironment managementõ. The rectangular boxes 
indicate the top drivers that were identified in the Delphi survey (Table 3), while the black dots 
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indicate the drivers used in the development of a normalisation model. Due to the strong correlations 
shown by the GEM levers (the ômanagementõ and ôoperating practicesõ drivers at the bottom of 
Figure 5 a), it was again decided to include ôoverall GEM scoreõ in the normalisation model rather 
than the ôtechnical capabilityõ and ôenergy management systemsõ selected by the Delphi 
participants, as these drivers are alread y included (among others) in the calculation of the overall 
GEM score.  

4.4  Water regression model  

The parameters of the MVLR model developed for the water usage index are given in Table 4, and 
the visual representation of the actual vs predicted usages is shown in Figure 2 (above). Only  nine 
variables were considered in the development of the MVLR model, as the recycling of water was 
eliminated by adding back the ratio of water recycled to the usage ratios of the sites that reported 
to be recycling water.  
 
A good fit (R 2 and adjusted R2 both > 0.84) was achieved by considering the drivers identified; and 
the F-statistic indicates that the results were not obtained by chance (as the F -distribution 
probability <0.05).  

Table 4: MVLR for th e water usage index  

Driver description  MVLR coefficient  

Hygiene score   m1 -0.00658 

Capacity utilisation  m2 -0.04466 

Water treatment type equivalent  m3 0.56868 

3 mhl/Production volume  m4 0.03758 

Frequency of change-overs  m5 0.00174 

Package type equivalent  m6 0.07206 

Pasteurisation type equivalent  m7 0.00680 

Total evaporation  m8 0.63535 

F14 GEM Score m9 -0.11039 
 

c 1.86799 

Statistical results  

Coefficient of determination  R2 0.86 

Adjusted coefficient of determination  R2 adj  0.84 

Degrees of freedom df 48 

F-statistic  F 32.83 

F-distribution probability  p 8.84E-17 

 
In Figure 2 the dark markers indicate the MVLR predicted water usage index, while the square 
markers indicate actual site consumption. The visual representation confirms the statistical 
conclusion from Table 4, in that the modelõs predictions are accurate enough to use the model to 
investigate the effect of drivers on the water usage of SABMiller sites. Figure 2 also shows that the 
distribution of water usage within SABMiller plants follows a similar trend to the rest of the industry 
[4] . 
 
It is interesting to note that the ôworst performingõ sites within SABMiller use about 2.5 times the 
amount of water per hl of beer produced than the ôbest performingõ sites, which is similar to the 
range given for the rest of the industry [4] . 

4.5  Electricity regression model  

The parameters of the MVLR model developed for the electrical us age index are given in Table 5. 
Only eight variables were considered in the development of the MVLR model, as the F14 GEM score 
replaced the drivers ôenergy management systemsõ, ôlevel of automationõ, and ôtechnical capabilityõ 
identified by the Delphi par ticipants (see Figure 4).  
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A good fit (R2 and adjusted R2 both > 0.85) was achieved by considering the drivers identified; and 
the F-statistic indicates that the results were not obtained by chance (as the F -distribution 
probability <0.05).  

Table 5: MVLR for the electricity usage index  

Driver description  MVLR coefficient  

Capacity utilisation  m1 -0.08372 

3 mhl/Production volume  m2 0.04276 

Pack type equivalent  m3 -0.28383 

Gravity of brew  m4 -0.59660 

Average ambient temperature  m5 -0.02392 

Incoming water temperature  m6 0.05777 

Cost of energy  m7 0.70787 

F14 GEM score m8 -0.36060 

  c 2.29230 

Statistical results  

Coefficient of determination  R2 0.87 

Adjusted coefficient of determination  R2 adj  0.85 

Degrees of freedom df 49 

F-statistic  F 38.70 

F-distribution probability  p 1.30E-21 

 
There is more variability in the electricity usage than there is in the water usage. The predicted 
values for some of the high -volume sites tend to be lower than the actual usages. This is assumed 
to be due to ôhotel loadsõ, which are more prevalent in these larger sites, and could not be backed 
out (SABMiller policy). A visual representation of the MVLR predicted electrical usage index vs the 
actual site consumption confirms the statistical conclusion from Table 5: that the modelõs 
predictions are accurate  enough to use the model to investigate the effect of drivers on the 
electricity usage of SABMiller sites. Also, the distribution of electricity usage within SABMiller plants 
follows a similar trend to the energy consumption trends seen in the rest of the industry [4] . 
 
It is interesting to note that the ôworst performingõ sites in SABMiller use about three times the 
amount of electricity per hl of beer produced than the ôbest performingõ sites, which is similar to 
the range reported for the rest of the industry [4] . 

4.6  Thermal energy regression model  

The parameters of the MVLR model developed for the thermal energy usage index are given in 
Table 6. Only nine variables w ere considered in the development of the MVLR model, since the F14 
GEM score replaced the drivers ôenergy management systemsõ and ôtechnical capabilityõ identified 
by the Delphi participants (see Figure 5).  
 
A good fit (R2 and adjusted R2 both > 0.9) was achieved by considering the drivers identified; and 
the F-statistic indicates that the results were not obtained by chance (as the F -distribution 
probability <0.05).  
 
There is more variability in the thermal usage than there is in the water or electricity u sage. A visual 
representation of the MVLR predicted thermal energy usage index vs the actual site consumption 
confirms the statistical conclusion from Table 6: that the modelõs predictions are accurate enough 
to use the model to investigate the effect of d rivers on the thermal usage of SABMiller sites. Also, 
the distribution of thermal usage within SABMiller plants follows a similar trend to the energy 
consumption trends seen in the rest of the industry [4] . 
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Table 6: MVLR for the thermal energy usage index  

Driver description  MVLR coefficient  

Capacity utilisation  m1 0.20788 

3 mhl/Production volume  m2 0.05237 

Package type equivalent m3 -0.04600 

Pasteurisation equivalent  m4 0.20874 

Total evaporation  m5 6.87975 

Gravity of brew  m6 -0.52331 

Boiler efficiency  m7 -5.89090 

Average ambient temperature  m8 0.00144 

F14 GEM score m9 -0.53867 

Constant c 7.64866 

Statistical results  

Coefficient of determination  R2 0.92 

Adjusted coefficient of determination  R2 adj  0.91 

Degrees of freedom df 48 

F-statistic  F 55.93 

F-distribution probability  p 3.56E-25 

 
It is interesting to note that the ôworst performingõ sites in SABMiller use about 4.3 times the amount 
of thermal energy per hl of beer produced than the ôbest performingõ sites, which is higher than the 
range reported for the rest of the industry [4] . 

4.7  Testing the models  

The MVLR models for water, electricity, and thermal energy usages  were tested by comparing the 
actual usage index values of six SABMiller sites (one from each global hub) with the predicted usage 
index values of the respective MVLR models when populated using the sitesõ driver data. Table 7 
summarises the results. The complete results are provided elsewhere [2] . The MVLR model for water 
usage correctly predicted the water usage index of two of the sites, with a maximum error of six 
per cent (overestimated). The MVLR model for electricity usage  predicted the usages with a 
maximum error of seven per cent (overestimated), and the MVLR model for thermal energy usage 
predicted usages with a maximum error of six per cent (underestimated).  

Table 7: Summary of the MVLR modelsõ test results  

Site Water  Electricity  Thermal  

MVLR Actual  Error  MVLR Actual  Error  MVLR Actual  Error  

S14 1.42 1.33 -6% 2.31 2.14 -7% 3.09 3.13 1% 
S63 1.21 1.27 5% 1.77 1.83 4% 1.93 1.87 -3% 
S55 1.18 1.18 0% 1.41 1.37 -2% 1.85 1.96 6% 
S9 1.33 1.31 -2% 1.93 1.92 -1% 2.52 2.42 -4% 
S22 1.08 1.11 3% 1.33 1.37 3% 1.44 1.45 1% 
S51 1.10 1.10 0% 1.39 1.38 -1% 1.50 1.46 -2% 

 
From the results summarised in Table 7, it is concluded that the MVLR models are accurate enough 
(less than 10 per cent error) to be used to investigate the impact of drivers within a plantõs control 
on usage performance. The normalisation model was thus derived from the MVLR models.  

4.8  Normalisation of the modelsõ outputs 

Of the drivers used to develop the MVLR models for the water, elect ricity, and thermal energy usage 
indices, not all are strictly beyond the control of the site personnel. The MVLR models were then 
used to derive a normalisation model by eliminating (all or most of) the variances on the drivers that 
are under the siteõs control (such as the GEM scores).  
 
Of the drivers used in the development of the MVLR model for water usage, the hygiene score, total 
evaporation, pasteurisation type, and GEM score can, with focused initiatives and projects, be 
influenced by site personne l. For the purpose of normalisation, these drivers were eliminated by 
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assigning each site an equal score in the MVLR model: 100 per cent for hygiene, 100 per cent for 
pasteurisation type, 4 per cent for evaporation, and 4 per cent  for the GEM score. 
 
The five drivers that remain ð capacity utilisation, water treatment requirements, volume, package 
types and frequency of changes overs ð are not in the direct control of site personnel, but may be 
influenced by other parts of the supply chain. For the purpose of normalisation, these variables were 
kept unchanged. The result of the normalised MVLR model for water usage index is shown in Figure 
6, revealing that, apart from a couple of sites (just under two million hl in capacity), the predicted 
usages follow mainly a hyperbolic path (driven by volume). The sites that break the trend are sites 
that require an extraordinary amount of water treatment due to incoming water quality constraints.  

 

 

Figure 6: Water use index ð actual vs normalised predicted  

It is also apparent from comparing Figure 6 with Figure 2 that most of the variability in the water 
usage between sites (other than volume) is caused by drivers that are within the plant personnelõs 
control. The normalised predicted us ages could be likened to a proposed benchmark for each site, 
considering the drivers beyond the control of the site that influence usage potential. The difference 
between the actual and the normalised water use indices in Figure 6 indicate the opportunity each 
site has for improvement.  
 
Figure 7 shows the plots of the opportunity ranking (gap between actual and normalised predicted 
values) and the current rank based on actual usages. A rank of ô1õ is given to the plant with the 
lowest current usage (for the  current rank given in bars), and to the plant with the lowest potential 
for improvement (for opportunity given with markers). It is interesting to note that, although the 
general trend is similar ð that is, the sites with the biggest opportunities are als o the sites with the 
highest current usages ð there are exceptions. It is noted that the plant S50, currently the best 
performing site in SABMiller, is ranked number 15 when considering its potential for improvement. 
It is also noted that the site S8, alth ough ranked 51 out of 64 sites in terms of current performance, 
actually has the least opportunity for improvement.  
 
Further, it is interesting to note that, after normalisation, even though ratios have improved, there 
still is a variance of around 2.5 tim es between the ôbestõ and ôworstõ water ratios. This suggests that 
the full variance in performance cannot be ascribed to ôpoor performanceõ or to ôopportunity for 
improvementõ, as is often done in the literature [6] ,  but instead can be attributed to known drivers 
such as capacity utilisation, water treatment requirements, volume, package types, and frequency 
of changes-overs, all of which are beyond the control of the sites.  
 
Of the drivers used in the development of the MVLR model for electricity usage, only the gravity of 
the brew and the GEM score can, with focused initiatives and projects, be influenced by site 
personnel. For normalisation, these drivers were eliminated by assigning each site an equal score in 
the MVLR model: 44 per cent for dilution ratio, and 4 per cent  for the GEM score. 
 
The six drivers that remain ð capacity utilisation, volume, package types, ambient and water 
temperature, and cost of energy ð are not in the direct control of site personnel, but may be 
influenced by other parts of the supply chain. For normalisation, these variables were kept 
unchanged. As with water usage, when comparing the actual and the normalised predicted usages, 
much variability between sites is observed. For electricit y usage, most of the variability is thus due 
to drivers that are beyond the control of site personnel.  
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Figure 7: Water usage ð Current ranking vs normalised opportunity  

The normalised predicted usages could be likened to a propos ed benchmark for each site, 
considering the drivers beyond the control of the site that influence usage potential. The difference 
between the actual and the normalised electricity usage indices indicates the opportunity each site 
has for improvement.  
 
Good performing sites (S30 ranked number 2 currently) tend to rank high on the opportunity list (S30 
is ranked number 1 on opportunity, indicating the smallest opportunity to improve), but again there 
are exceptions. It is noted that the best performing site i n SABMiller (S27) is ranked number 16 when 
considering its potential for improvement. It is also noted that the site S42, ranked 39 out of 64 sites 
in terms of current performance, is ranked as having the fifth lowest opportunity for improvement.  
 
It is i nteresting to note that, after normalisation, even though the ratios have improved, there is 
still a variance of around three times between the ôbestõ and ôworstõ electricity usage ratios. Similar 
to water usage, this suggests that the full variance in per formance cannot be ascribed only to ôpoor 
performanceõ or ôopportunity for improvementõ, but instead can be attributed to known drivers, 
such as capacity utilisation, volume, package types, ambient and water temperature, and cost of 
energy, all of which ar e beyond the control of the sites.  
 
Of the drivers used in the development of the MVLR model for thermal energy usage, the 
pasteurisation type, total evaporation, gravity of the brew, boiler efficiency, and GEM score can, 
with focused initiatives and proj ects, be influenced by site personnel. For normalisation, these 
drivers were eliminated by assigning each site an equal score in the MVLR model: 100 per cent for 
pasteurisation equivalent, four per cent for total evaporation, 44 per cent for dilution ratio , and 4 
per cent  for the GEM score. The boiler efficiency was constrained to a minimum of 85 per cent ð 
that is, sites with efficiencies lower than 85 per cent were normalised to 85 per cent, and sites with 
efficiencies greater than 85 per cent were allowe d to maintain higher performances.  
 
The four drivers that remain ð capacity utilisation, volume, package types, and ambient temperature 
ð are not in the direct control of site personnel. For the purpose of normalisation, these variables 
were kept unchanged. As with water and energy usages, the normalised predicted thermal usage 
index follows a hyperbolic path (volume driven), and almost all of the variability has disappeared 
from the data. It can thus be concluded that most of the variability in thermal ene rgy performance 
between sites is due to drivers that are within the control of the site personnel.  
 
The trend of rankings follows much closer for thermal energy than it does for electricity or water 
usage. There are still some exceptions. It is noted, for example, that plant S19, currently ranked 
number 11, should be ranked number 26 when considering its potential for improvement. We also 
see that site S8, currently ranked 30 th, should be ranked 12 th when considering its potential for 
improvement.  




