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Benchmarks are often used to assist brewers in identifying
improvement opportunities; but a comparison of water and energy
performances in breweries is deficient without normalising for
differences between facilities. The normalisation of water and
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energy use was subsequently investigated, using SABMiller
breweries as a case study. Drivers of water, electricity, and thermal
energy usage obtained from the literature were selected,
rationalised, and ranked in a Delphi survey of industry experts, and
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correlated with data from 64 SABMiller sites. The main drivers
identified, and t he data from 58 SABMiller sites, were then used to
develop multi -variable linear regression (MVLR) models. The
models, tested with data from six separate SABMiller sites, were
able to predict water, electrical, and thermal energy usage to
within a seven per cent error. By eliminating the variability in
drivers within the control of brewery staff, the MVLR models were
used to normalise the performance indices, and enabled direct
comparisons between plants.
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OPSOMMING

Maatstawwe word dikwels gebruik om brouers te help met die

identifisering van gel eenthede
van water en energie vertonings in brouerye is gebrekkig sonder
normalisering vir verskille tussen fasiliteite. Die normalisering van
water en energie gebruik is dienooree nkomstig ondersoek, deur die
gebrui k van SABMiller brouerye
water, elektrisiteit en hitte -energie gebruik, verkry uit die
l'iteratuur, i s geki es, gerasional.i
opname van kundiges in die bedryf, en gekorreleer met die data van

64 SABMiller fasiliteite. Die belangrikste drywers is geidentifiseer,
en data van 58 SABMiller fasiliteite, is toe aangewend om multi -
veranderlike lineére regressie (MVLR) modelle te ontwikkel. Die
modelle, getoets met data va naf ses aparte SABMiller fasiliteite, is

in staat om water, elektrisiteit en hitte  -energie gebruik te voorspel
binne 6n sewe persent fout. Deur
drywers binne die beheer van brouery personeel, is die MVLR
modelle gebruik om die prestasie-indekse te normaliseer, en is die
direkte vergelykings tussen fasiliteite moontlik gemaak .
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1 INTRODUCTION

The rise in
sustainability perspective

improvement progra mmes, often accompanied by ambitious, publicly committed targets

demand

for, and cost of , resoumrac e s
[1]. In response, brewers globally have embarked on efficiency
[2]. Surveys

in the brewing industry confirm that the brewing community is rapidly improving its specific water
and energy usages, and that the rate of improvement s made in the top -performing plants is similar
to the sector average, as identified by BBPA [3], BIER [4], and Campden BRI [5] The variability in
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plant performances thus cannot be fully ascribed to poor performance [6], but should also include
differences between plants that influence performance potentials.

Benchmarks are often used to assist brewers in identifying improvement opportunities; but
comparisons of water and energy performances in breweries are deficient without normalising for
differences between plants. Published benchmarks are often not normali  sed for differences between
plants, but instead are given in ranges (NRC [7], EBC[8], WBG [9]), making them difficult to use
when determining improvement op portunities.

Many drivers for water and energy efficiencies are identified in the literature, but there seems to

be no consensus on which drivers are the most important ones to consider [2]. Most of the drivers
from the literat ure are common to both water and energy efficiencies; but Pennartz  [10] and Heuven
et al. [11] reported that they found no correlation between water and energy usages, and that no
correlations could be found in their survey data of 225 breweries [11]. This was unexpected, as
surveys showed improvements in both water and energy performances at most sites [3, 4, 5] .

1.1 Obijectives of this paper

There is limited understanding from the literature of how benchmarking could be done. The
normalisation of performances, or benchmarks, would enabl e more accurate comparisons between
plants to be made, and potential improvements to be determined. This paper thus proposes variables
(differences) and a normalisation model to enable breweries that have different water and energy
usage performances to be compared for the purpose of benchmarking, and to identify improvement
opportunities.

The research questions, then, were:

1  What are the main variables (differences between breweries) that influence the water and
energy performance potential of plants?
1 How can these variables be accounted for in normalising the performance, or in benchmarks?

2 METHOD

In order to answer the research questions, a literature review, a Delphi survey, and correlational
methods were used, with SABMiller plants across the globe providing data as multiple case studies,
as shown in Figure 1. The research design combined quantitative (correlation) and qualitative
(Delphi survey and literature study) methods in order to triangulate findings and improve validity
[12, 13, 14].

SABMiller was used as the overall case for the study, with 64 (sixty -four) individual plants used as
multiple -case studies for inputs into the quantitative correlation method, and ultimately for testing
the normalisation model that was developed through the research process.

The Del phi surveyods panel consisted of beer indus
SABMiller d technical hub leaders and process specialists; and the literature review was used as an

input into the first round of the survey to assist the pan ellists with a point of origin for their thoughts

[15].

The Delphi survey and correlation method were used collectively to produce a prioritised list of
drivers that were considered in the development of a normalisation model. Predicted relative water
and energy usage ratios were used to test the normalisation model, and then to compare the results
with plant data from six SABMiller sites.
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Industry Experts R
Global Plant data Normalisation Model

Test Plant Data T developed and applied
est

Figure 1: Applied research methodology of the investigation [2]
3 CONCEPTUAL METHOD HOTHE INVESTIGATION

The list of drivers from Kirstein [2] was incorporated into the first round of the Delphi survey,

together with a breakdown of water and energy users in a brewery. This assisted the participants to

consider the various process areas, while assessing the impact of th e drivers on a facility level. From
the results of the Delphi survey, a prioritised list of 10 (ten) key drivers was obtained for use in the

nor mal i sation model . The | evel of consensus reached

W coefficient of concordance, as proposed by Schmidt [16].

A correlation analysis of the SABMiller plant data and the drivers identified from the literature was
conducted to determine whether other drivers should be considered in the model, and to assess
whether the drivers identified by the Delphi survey were supported by quantitative data to be key
drivers. Where a driver consisted of more than one variable (such as packaging mix or water
tre atment type), normalisation correction factors were used from internal benchmarks to transform

the variables into a single d6equivalentd driver

by Wouda [17].

To protect the confidentiality of the SABMiller data, the plant usages were first converted into usage

indices by dividing each si t-peffosming plantyd thdse/assedsesl). us ag e

Six sites (one from each global hub) were excluded from the development of the multi -variable

Il inear regression (MVLR) model, for the purpose

An MVLR model was developed for water and energy usage indicesdas shown in Figure 2 for water,
as an example 0 using the method of least squares to determine the best fit for the data. The
variables indicated by black dots in Figures 3 to 5 (in the results section), were included in the
development of the model.

The MVLR takes the form:

where:

i y is the predicted water, electrical, or thermal energy index usage being calculated;
i m; are the coefficients calculated for the independent variables  x;;

i X; are the respective driver values of each plant being calculated; and

1 c is a constant.
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Figure 2: Water usage index - Actual vs MVLR predicted [2]

The adjusted coefficient of determination by Ling and Eang

determine the proportion of the variance explained by the MVLR model, and to determine whether
the observed relati onship between dependent and independent variables occurs by chance, or

whether it can reasonably be ascribed to the variables under investigation.

[18] and the F-statistic were used to

The MVLR model was tested by comparing actual water and energy ratios of six diverse SABMiller
from each
as relative rankings. The expectation was that the model would be able to predict closely (within
10% error) the actual usages, and predict correctly the relative rankin gs of the plants under

casestudypl ants (one

investigation.

The normalisation of plant performance was done by eliminating the variance in drivers considered

to be under the

actual performance,coul d be

4 RESULTS AND DISCUSH

control

used

as

The drivers identified in the literature review of Kirstein
the Delphi survey. Through iterative rounds, ranked lists of drivers were established, given in Tables

1lto3. The survey
coefficient of concordance [16].

reveal

ed

of

a

a

gl obal

hub) with

the r

the plant. The resul ti

measure of a plantds

[2] were introduced into the first round of

strong

consensus

Although recycling of water was identified as the driver with the highest potential to influence site
water usage, it was excluded from the correlation and normalisation analysis due to the limited
number of plants actively recycling water. Instead, recycled water was added back into the water
usage ratios to eliminate it as a variable.

Table 1: Delphi - Ranked drivers of water usage

Ranked drivers of water usage in brewery

Driver

Average Rank

Recycling of water

Incoming water treatment type
Capacity utilisation

Frequency of change-overs
Production volume

Package type

Hygiene score

Technical capability

Pasteurisation type

Evaporation rate / Total evaporation
K e n d aw cbeffisient of concordance

©CoO~NOUTA WNPE

0.741

among
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Table 2: Delphi - Ranked drivers of electricity usage

Ranked drivers of electrical energy usage in brewery
Driver Average Rank

Capacity utilisation

Climate

Incoming water temperature
Technical capability
Production volume

Level of automation

Energy management systems
Package type

Gravity of brew

OCoOoO~NOUORAWNE

Cost of energy 10
Kendall's W coefficient of concordance 0.535

Table 3: Delphi - Ranked drivers of thermal energy usage

Ranked drivers of water usage in brewery
Driver Average Rank

Recycling of water

Incoming water treatment type
Capacity utilisation

Frequency of change-overs
Production volume

Package type

Hygiene score

Technical capability
Pasteurisation type

O©CoOoO~NO O~ WNE

Evaporation rate / Total evaporation 10
Kendall's W coefficient of concordance 0.741

4.1

Correlation analysis - Water

Figure 3 shows the results of the correlation analysis of the drivers identified from the literature,
and the specific water usage of the 64 sites. The dark bars indicate a positive correlation (increase

in the measure of the driver corresponds with an inc rease in the specific water usage, and vice
versa), and the light bars indicate a negative correlation (increase in the measure of the driver
corresponds with a decrease in the specific water usage, and vice versa).

From Figure 3 a), representing the breakdown of drivers from the literature, the following
observations are made:

1
f
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Of all the drivers, the strongest correlation with specific water usage are the specific electrical
and thermal energy usages. This contradicts the findings of Pennartz [10] and Heuven[11].
The category of drivers that seem to have the str

operating practicesd as GlobleEsauatiendof Mayufadtunng (GEM)BMi | | er
audit scores.
Of the O6productiondé variabl es, the inverse of the

correlation to specific water usage. It is interesting to note that the size of the plant and the
frequency of change-overs revealed negative correlations, while Delphi participants (and the
literature reviewed) expected positive correlations. This can be explained by the tendency for
breweries with larger volumes to boast larger footprints.

Of the O&pr oduvcatriioanb | lisx it was shown that Hnumber
keeping units) had a negative correlation, indicating generally more flexibility in plants with

|l ower water consumption, tying up with theenegative
over so. This too is counter to what the Del phi par

explanation for this is that larger plants tend to have more production lines, which would

translate into fewer change -overs or SKUs per line, resulting in lower usages (positive

correlation on a line -level); but since it is reported and correlated on a plant level, the opposite

(a negative correlation) is observed.

Of the O6plant conditiond variables, it was shown th
correlation, which is counter to the expectations of the Delphi participants and the literature

reviewed. This can be explained by the general tendency of new plants to be built smaller

(with the ability to expand in the future) than older plants. Equipmen  tis not always optimally

sized for the commissioned capacity, but rather for a targeted future volume.



i It is also shown that 6hygiene standards® had

was counter to the expectations of the Delphi participants . The common expectation is that,

to increase hygiene scores, more water would be required due to more frequent and more
thorough cleaning. The data shows the opposite, indicating that good hygiene corresponds with

lower water usage. This could in part be explained by arguing that wet surfaces are more prone

to micro -growth, and also that designing cleaning equipment and practices to be effective

would require less frequent cleaning, resulting in reduced water usage while delivering higher

hygiene scores.

as

i It is interesting to note that o6total evaporati

counter to the expectations of the Delphi participants. An investigation revealed that many
sites condense the water vapour in heat recovery systems, which enable s them to re -use the
water. Sites with lower evaporation rates would not install heat recovery systems (due to the
lower return on investment); and because they would be more prone to losing water from
evaporation, they would use more water.

i Itisinterest i ng to note the positive correlation on
counter to the expectations of the Delphi participants.

In Figure 3 b), which is the rank -ordered list of drivers from Figure 3 a) (excluding the specific energy

and water scores), the top drivers of water usage, as identified in the Delphi survey (Table 1), are

indicated by rectangular boxes, while the drivers used in the development of the normalisation

model are indicated by black dots. As stated above, the recycling of water (the highest -ranked driver

from the Delphi survey) was excluded as a driver by adding the ratio of recycled water back to the

specific water usage of those sites that reported to be recycling water. Due to the strong correlations
shown by the GEMI ever s (the ©6dmanagement and 6operating
Figure 3 a), the o6éoverall GEM scored was wused in
Delphi participants, as the driver is already included (among others) in the ca Iculation of the overall

GEM score.

4.2 Correlational analysis 0 Electricity

Figure 4 shows the results of the correlation analysis of the drivers identified from the literature
and the specific electricity usage of the 64 sites. Again, the dark bars indicate  a positive correlation,
and the light bars indicate a negative correlation. From Figure 4 a), representing the breakdown of
drivers from the literature, the following observations are made:

i Specific electricity usage had a strong positive correlation with  water and thermal usages, and
hence with total energy usage.
1 As with water, the category of drivers that seem to have the strongest correlation is

W ¢

O6management and operating practicesd as measur e

1 The nature of the correlation s (positive or negative) was the same as for water, with the

exception of ©&é6production run |l engths®d, which ha

while it had a positive correlation for water usage on the data assessed. The expectation is
that th e correlation should be negative for both water and electricity, as fewer start  -up losses
will need to be accounted for.
9 Of the 6productiond variabl es, the inverse of

1

correlation to specific electricity usage.| t was interesting to note tha

a negative correlation, while Delphi participants (and the literature reviewed) expected a
positive correlation. As with water, this could be due to the tendency for breweries with larger
volumes also to boast larger footprints.

9 Of the &éproduction mixd variabl es, it was s howl

negative correlation, indicating generally more flexibility in plants with lower electricity

consumption. This ties up with the negativec or r el ati on seen f orovdrrsedyg.ue

This is counter to what the Delphi participants (and the literature) expected. An explanation
for this could be that larger plants would have more production lines, which would translate
into fewer change -overs or SKUs per line, resulting in lower usages; but since it is reported and
correlated on plant level, the opposite is seen.

i Of the o6plant conditiond variables, it was showl

which is counter to the expectat ions of the Delphi participants and the literature reviewed.
Again, this can be explained by the general tendency of new plants to be built smaller (with
the ability to expand in the future) than older plants. Equipment is not always optimally sized
for th e commissioned capacity, but rather for a targeted future volume.
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i It is also shown that ©&éhygiene standardsd had a r e
was counter to the expectations of the Delphi participants. This could in part be explained by
arguing that designing cleaning equipment and practices to be effective would result in less
frequent cleaning and reduced electricity usage, while delivering higher hygiene scores.

1 It is interesting to note the positive correlation of electricity usage and 6cost of electric
This is also counter to the expectations of the Delphi participants.
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Figure 3: Water usage correlations

In Figure 4 b), which is the rank -or der ed | i st of drivers from Figure
systems6 is represented by the GEM category &éenviron
indicate the top drivers that were identified in the Delphi survey (T  able 2), while the black dots

indicate the drivers used in the development of a normalisation model. Due to the strong correlations

shown by the GEM | evers (the O&dmanagementd and O6éoper a
Figure 4 a), itwas decided,as wi t h wat er , to include O6overalll GEM scol
rather than the 6technical capabilityd, o6l evel of aut
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4.3

Figure 5 shows the results of the correlation analysis of the drivers identified from the literature

Electrical Correlations

Bive O-ve

1] 0.2 06 08 1 1.2

water score |

Energy Score

Elec split kwh/nl |
Thermal spiit My/hi T

1/ Production volume

Production Capacity

Capacity Utilization

Size of plant {in m2)

Size of brews

0.4

Production

Production run lengths
Frequency of change-overs
Number of Brands

SKUs

Raw materials used (% ADJUNCT)
Number Pack Lines

% Returnable bottles
% Tunnel Pasteurised
Pack type equivalent
Pasteurisation type equivalent

Age of plant
]
[T

roduction Mix

P

Hygiene standards
Gravity of brew
Settling/Aeration/Flocculation/Sedim...
Carbon Filters
Softening/Hardening
Chlorination/Dechlorination
Reverse Osmosis (RO)
Incoming water treatment type...
Filling temperature
Heavy Fuel Oil
Coal
Gas
Purchased steam
Bio Mass (Rice Husk)
Boiler Efficiency
Total Evaporation
Geographic Location
Water Stress Area
“Average ambient temp
Max ambient temps
Heating degree days (HDD)
Cooling degree days (CDD)

Plant Conditions

Natural
Conditions

incoming water temperature
Overall GEM Score
Quality Management

Level of Automation
Asset Care

performance Management...
Manufacturing Flexibility
Health & Safety Management
Focussed Improvement

55"

Technical Capability

Cost of thermal energy...
Cost of electrical energy...
Cost of Water $/m3

Management and Operating Practices

Electrical Correlations

m+ve O-ve

0 01 02 03 04 05 06 07 08

Environment Management | T ]
Avg ambient temp

Overall GEM Score
Manufacturing Flexibility
Focussed Improvement

1/ Production volume
Asset Care

5"S"

Hygiene standards |

[ Level of Automation

Performance
Technical Capabiity |

HDD

Filling temperature

Quality Management [
Autonomous Manintenance
% Tunnel Pasteurised

Geographic Location
Pasteurisation type equivalent
Boiler Efficiency

Health & Safety N

Gas

oD

Carbon Filters

Size of brews

Coal

Max ambient temps
Softening/Hardening

Incoming water treatment type..
Costs of thermal energy S/MJ

Gravity of brew
Production Capacity |

‘ Costs of electrical energy 5/kwh |
Chlorination/Dechiorination |
Costs of Water S/m3 |
' Capacity Utilization |
Age of plant
Bio Mass (Rice Husk)
Heavy Fuel Oil
Purchased steam
% Returnable bottles
Frequency of change-overs
Number of Brands
SKUs
Reverse Osmosis (RO)
Production run lengths
Raw materials used (% ADIUNCT)
Size of plant (in m2)
Number Pack Lines
! Pack type equivalent -
Water Stress Area
Total Evaporation
Settling/Aeration/Flocculation/Sedi.

SN [SI0T T D

| |

a)

Figure 4: Electricity usage correlations

Correlational analysis 8 Thermal energy

and the specific thermal energy usage of the 64 sites. Fro m Figure 5 a), representing the breakdown
of drivers from the literature, the following observations are made:

f
1

Specific thermal usage had a strong positive correlation with water and electrical usages, and

hence with total energy usage.

As with water and electricity, the category of drivers that seem to have the strongest

correlati

scores.

on wa s

O6management

and operat

The nature of the correlations (positive or negative) was the same as for electricity usages

with the exception

positive correlations for thermal energy, while having negative correlations with electricity
usage. The direction of correlations for thermal energy seems to co rrelate better with the

of 6éage of plantéd,

expectations of the Delphi participants (and the literature) than in the cases of water and

electricity usages.
Of the ©O6productiond
correlation to specific therm a |

usage. It

the i
shown t

variabl es,

nv
was h a

ing praci
6tot al e v
erse of 1
t 0size
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correlation, while Delphi participants (and the literature reviewed) expected a positive
correlation. As with water and electricity, this may be due to the tendency for breweries with
larger volumes also to boast larger footprints.

systems®6 is represented by the GEM category
indicate the top drivers that were identified in the Delphi survey (Table 3), while the black dots

22

1 Of the &édproduction mix0®6 variabl es, it was shown t |
negative correlation, indicating generally more flexibility in plants with lower thermal
consumption; and this ties up with t he negative correlation seen for
overs6. This is counter to what the Del phi partici
the explanation for electricity.

1T Of the O6plant conditiond vari abl éadlarelativelywtcosg s hown t |
negative correlation with thermal energy. This is counter -intuitive, as heat is often used to
clean and sterilise surfaces. It could be argued that cold -cleaning and sterilisation solutions
are becoming more prevalent, contributing t o pl ant sé overall reduction i
could also be argued that better hygiene practices and standards result in a reduced need
(lower frequency) for cleaning, and would result in a thermal energy reduction with improved
hygiene scores.

1 It is interesting to note the positive correlation on thermal usage and cost of thermal energy.
This is also counter to the expectations of the Delphi participants.
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Figure 5: Thermal energy usage correlations

In Figure 5 b), which is the rank-or der ed | i st of drivers from Figure
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indicate the drivers used in the development of a normalisation model. Due to the strong correlations

shown by the GEM |l evers (the Oomas@dgdmemedbs aatd ©Obe
Figure 5 a), it was again decided to include ©O6o0ve
t han t he 6technical capabilityd and 6energy ma n

participants, as these drivers are alread y included (among others) in the calculation of the overall
GEM score.

4.4  Water regression model

The parameters of the MVLR model developed for the water usage index are given in Table 4, and
the visual representation of the actual vs predicted usages is shown in Figure 2 (above). Only nine
variables were considered in the development of the MVLR model, as the recycling of water was
eliminated by adding back the ratio of water recycled to the usage ratios of the sites that reported

to be recycling water.

A good fit (R? and adjusted R? both > 0.84) was achieved by considering the drivers identified; and
the F-statistic indicates that the results were not obtained by chance (as the F -distribution
probability <0.05).

Table 4: MVLR for th e water usage index

Driver description MVLR coefficient
Hygiene score ml -0.00658
Capacity utilisation m2 -0.04466
Water treatment type equivalent m3 0.56868
3 mhl/Production volume m4 0.03758
Frequency of change-overs m5 0.00174
Package type equivalent m6 0.07206
Pasteurisation type equivalent m7 0.00680
Total evaporation m8 0.63535
F14 GEM Score m9 -0.11039
c 1.86799
Statistical results
Coefficient of determination R 0.86
Adjusted coefficient of determination R adj 0.84
Degrees of freedom df 48
F-statistic F 32.83
F-distribution probability p 8.84E-17

In Figure 2 the dark markers indicate the MVLR predicted water usage index, while the square

markers indicate actual site consumption. The visual representation confirms the statistical
conclusion from Table 4, i n t hat enbugheto useotideemodelso pr e d
investigate the effect of drivers on the water usage of SABMiller sites. Figure 2 also shows that the

distribution of water usage within SABMiller plants follows a similar trend to the rest of the industry

(4]

I't is interesting to note that the ©6éworst perf
amount of water per hl of beer produced than t
range given for the rest of the industry [4].

orm
he

4.5 Electricity regression model

The parameters of the MVLR model developed for the electrical us age index are given in Table 5.

Only eight variables were considered in the development of the MVLR model, as the F14 GEM score
replaced the drivers O6energy management systems?©d,
identified by the Delphi par ticipants (see Figure 4).
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A good fit (R? and adjusted R? both > 0.85) was achieved by considering the drivers identified; and
the F-statistic indicates that the results were not obtained by chance (as the F -distribution
probability <0.05).

Table 5: MVLR for the electricity usage index

Driver description MVLR coefficient
Capacity utilisation ml -0.08372
3 mhl/Production volume m2 0.04276
Pack type equivalent m3 -0.28383
Gravity of brew m4 -0.59660
Average ambient temperature m5 -0.02392
Incoming water temperature m6 0.05777
Cost of energy m7 0.70787
F14 GEM score m8 -0.36060
c 2.29230
Statistical results
Coefficient of determination 23 0.87
Adjusted coefficient of determination R? adj 0.85
Degrees of freedom df 49
F-statistic F 38.70
F-distribution probability p 1.30E-21

There is more variability in the electricity usage than there is in the water usage. The predicted
values for some of the high -volume sites tend to be lower than the actual usages. This is assumed

to be due to 6hot el | oads 0, selaifgar sitbs, aad ceuld mai bedacked ev al ent
out (SABMiller policy). A visual representation of the MVLR predicted electrical usage index vs the
actual site consumpti on confirms the statistical co

predictions are accurate enough to use the model to investigate the effect of drivers on the
electricity usage of SABMiller sites. Also, the distribution of electricity usage within SABMiller plants
follows a similar trend to the energy consumption trends seen in the rest of the  industry [4].

It is interesting to note t hat iletUseabduwvilvee simestheer f or mi ng
amount of electricity per hi of beer produced than t|
the range reported for the rest of the industry  [4].

4.6  Thermal energy regression model

The parameters of the MVLR model developed for the thermal energy usage index are given in

Table 6. Only nine variables w ere considered in the development of the MVLR model, since the F14

GEM score replaced the drivers Oenergy management sSYys
by the Delphi participants (see Figure 5).

A good fit (R? and adjusted R? both > 0.9) was achieved by considering the drivers identified; and
the F-statistic indicates that the results were not obtained by chance (as the F -distribution
probability <0.05).

There is more variability in the thermal usage than there is in the water or electricity u sage. A visual

representation of the MVLR predicted thermal energy usage index vs the actual site consumption

confirms the statistical conclusion from Tabl e 6: t he
to use the model to investigate the effect of d rivers on the thermal usage of SABMiller sites. Also,

the distribution of thermal usage within SABMiller plants follows a similar trend to the energy

consumption trends seen in the rest of the industry [4].
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Table 6: MVLR for the thermal energy usage index

Driver description MVLR coefficient

Capacity utilisation ml 0.20788

3 mhl/Production volume m2 0.05237

Package type equivalent m3 -0.04600

Pasteurisation equivalent m4 0.20874

Total evaporation m5 6.87975

Gravity of brew m6 -0.52331

Boiler efficiency m7 -5.89090

Average ambient temperature m8 0.00144

F14 GEM score m9 -0.53867

Constant [ 7.64866

Statistical results

Coefficient of determination R 0.92

Adjusted coefficient of determination Radj 0.91

Degrees of freedom df 48

F-statistic F 55.93

F-distribution probability p 3.56E-25
I't is interesting to note that the dworst perfor mi
of thermal energy per hl of beer produced than the

range reported for the rest of the industry  [4].
4.7  Testing the models

The MVLR models for water, electricity, and thermal energy usages were tested by comparing the

actual usage index values of six SABMiller sites (one from each global hub) with the predicted usage

index values of the respective MVLR models when p
summarises the results. The complete results are provided elsewhere [2]. The MVLR model for water

usage correctly predicted the water usage index of two of the sites, with a maximum error of six

per cent (overestimated). The MVLR model for electricity usage predicted the usages with a
maximum error of seven per cent (overestimated), and the MVLR model for thermal energy usage

predicted usages with a maximum error of six per cent (underestimated).

Table 7. Summary of t heestvbguisR model sd6 t

Site  Water Electricity Thermal

MVLR Actual Error MVLR Actual Error MVLR Actual Error
S14 1.42 1.33 -6% 2.31 2.14 -7% 3.09 3.13 1%
S63 1.21 1.27 5% 1.77 1.83 4% 1.93 1.87 -3%
S55  1.18 1.18 0% 1.41 1.37 -2% 1.85 1.96 6%
S9 1.33 1.31 -2% 1.93 1.92 -1% 2.52 2.42 -4%
S22 1.08 1.11 3% 1.33 1.37 3% 1.44 1.45 1%
S51  1.10 1.10 0% 1.39 1.38 -1% 1.50 1.46 -2%

From the results summarised in Table 7, it is concluded that the MVLR models are accurate enough
(less than 10 per centerror)tobe used to investigate the i mpact of
on usage performance. The normalisation model was thus derived from the MVLR models.

4.8 Nor mali sation of the model sd& outputs

Of the drivers used to develop the MVLR models for the water, elect ricity, and thermal energy usage
indices, not all are strictly beyond the control of the site personnel. The MVLR models were then
used to derive a normalisation model by eliminating (all or most of) the variances on the drivers that
are under dnthok(suchiadtle GEM scores).

Of the drivers used in the development of the MVLR model for water usage, the hygiene score, total

evaporation, pasteurisation type, and GEM score can, with focused initiatives and projects, be
influenced by site personne |. For the purpose of normalisation, these drivers were eliminated by

25



assigning each site an equal score in the MVLR model: 100per cent for hygiene, 100 per cent for
pasteurisation type, 4 per cent for evaporation, and 4 per cent for the GEM score.

The five drivers that remain dcapacity utilisation, water treatment requirements, volume, package
types and frequency of changes overs d are not in the direct control of site personnel, but may be
influenced by other parts of the supply chain. For the purpose of normalisation, these variables were
kept unchanged. The result of the normalised MVLR model for water usage index is shown in Figure
6, revealing that, apart from a couple of sites (just under two million hl in capacity), the predicted
usages follow mainly a hyperbolic path (driven by volume). The sites that break the trend are sites
that require an extraordinary amount of water treatment due to incoming water quality constraints.

Water use index (best plant =1)

3.00
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a
0 =
)
o

e

<]

0 O o g Actual

* e + + Normalised Predicted

8 10 12 14

Volume (millions of hl)

Figure 6: Water use index dactual vs normalised predicted

It is also apparent from comparing Figure 6 with Figure 2 that most of the variability in the water
(other than volume) is caused by
control. The normalised predicted us ages could be likened to a proposed benchmark for each site,
considering the drivers beyond the control of the site that influence usage potential. The difference
between the actual and the normalised water use indices in Figure 6 indicate the opportunity ~ each
site has for improvement.

usage

bet ween

sites

Figure 7 shows the plots of the opportunity ranking (gap between actual and normalised predicted
val ues)
lowest current usage (for the current rank given in bars), and to the plant with the lowest potential
for improvement (for opportunity given with markers). It is interesting to note that, although the
general trend is similar dthat is, the sites with the biggest opportunities are als o the sites with the
highest current usages 0 there are exceptions. It is noted that the plant S50, currently the best
performing site in SABMiller, is ranked number 15 when considering its potential for improvement.
It is also noted that the site S8, alth ough ranked 51 out of 64 sites in terms of current performance,
actually has the least opportunity for improvement.

and the

Further, it is interesting to note that, after normalisation, even though ratios have improved, there
bet ween the 6bestdd and o6worstad

still is a variance of around 2.5tim e s

t he
i mprovement 8,
such as capacity utilisation, water treatment requirements, volume, package types, and frequency
of changes-overs, all of which are beyond the control of the sites.
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performance cannot be ascri
o f [6]e ut irdstean ean berattributed to knowin driveast u r e

Of the drivers used in the development of the MVLR model for electricity usage, only the gravity of
the brew and the GEM score can, with focused initiatives and projects, be influenced by site

personnel. For normalisation, these drivers were eliminated by assigning each site an equal score in
the MVLR model: 44 per cent for dilution ratio, and 4 per cent for the GEM score.

The six drivers that remain & capacity utilisation, volume, package types, ambient and water
temperature, and cost of energy & are not in the direct control of site personnel, but may be
influenced by other parts of the supply chain. For normalisation, these variables were kept
unchanged. As with water usage, when comparing the actual and the normalised predicted usages,
much variability between sites is observed. For electricit y usage, most of the variability is thus due
to drivers that are beyond the control of site personnel.
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Figure 7: Water usage 0 Current ranking vs normalised opportunity

The normalised predicted usages could be likened to a propos ed benchmark for each site,
considering the drivers beyond the control of the site that influence usage potential. The difference
between the actual and the normalised electricity usage indices indicates the opportunity each site
has for improvement.

Good performing sites (S30 ranked number 2 currently) tend to rank high on the opportunity list (S30

is ranked number 1 on opportunity, indicating the smallest opportunity to improve), but again there

are exceptions. It is noted that the best performing sitei n SABMiller (S27) is ranked number 16 when
considering its potential for improvement. It is also noted that the site S42, ranked 39 out of 64 sites

in terms of current performance, is ranked as having the fifth lowest opportunity for improvement.

It is interesting to note that, after normalisation, even though the ratios have improved, there is

still a variance of around three times between the
to water usage, this suggests that the full variance inper f or mance cannot be ascri
performance6 or O6opportunity for improvementd, bu

such as capacity utilisation, volume, package types, ambient and water temperature, and cost of
energy, all of which ar e beyond the control of the sites.

Of the drivers used in the development of the MVLR model for thermal energy usage, the
pasteurisation type, total evaporation, gravity of the brew, boiler efficiency, and GEM score can,
with focused initiatives and proj ects, be influenced by site personnel. For normalisation, these
drivers were eliminated by assigning each site an equal score in the MVLR model: 100 per cent for
pasteurisation equivalent, four per cent for total evaporation, 44 per cent for dilution ratio ,and 4
per cent for the GEM score. The boiler efficiency was constrained to a minimum of 85 per cent &
that is, sites with efficiencies lower than 85 per cent were normalised to 85 per cent, and sites with
efficiencies greater than 85 per cent were allowe d to maintain higher performances.

The four drivers that remain dcapacity utilisation, volume, package types, and ambient temperature
dare not in the direct control of site personnel. For the purpose of normalisation, these variables
were kept unchanged. As with water and energy usages, the normalised predicted thermal usage
index follows a hyperbolic path (volume driven), and almost all of the variability has disappeared
from the data. It can thus be concluded that most of the variability in thermal ene  rgy performance
between sites is due to drivers that are within the control of the site personnel.

The trend of rankings follows much closer for thermal energy than it does for electricity or water
usage. There are still some exceptions. It is noted, for example, that plant S19, currently ranked
number 11, should be ranked number 26 when considering its potential for improvement. We also
see that site S8, currently ranked 30 ™, should be ranked 12" when considering its potential for
improvement.
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