
South African Journal of Industrial Engineering May 2019 Vol 30(1), pp 248-256 

248 

 

CLASSIFICATION AND PREDICTION OF WAFER PROBE YIELD IN DRAM MANUFACTURING USING 
MAHALANOBIS-TAGUCHI SYSTEM AND NEURAL NETWORK 

C.C. Wang1* & B.D. Wu1 

 

ARTICLE INFO 

Article details 
Submitted by authors 1 Sep 2016 
Accepted for publication 10 Apr 2019 
Available online 29 May 2019 
 

 
Contact details 
* Corresponding author 
 ieccwang@mail.mcut.edu.tw 
 

 
Author affiliations 
1 Department of Industrial 

Engineering and Management, 
Ming Chi University of Technology, 
Taiwan 

 

 
DOI 
http://dx.doi.org/10.7166/30-1-1627 
 

ABSTRACT 

Wafer yield is a key indicator to pursuing excellence in 
semiconductor manufacturing. With the increased wafer size, the 
enhanced complexity and precision of wafer fabrication is possible. 
Using monitoring to improve the process by predicting the yield has 
become an important quality issue. Most research uses the number 
of wafer defects, the area of the wafer, and fixed statistical 
distribution to predict the yield. Such methods fail to establish a 
high yield model due to the random and system-wide distribution of 
wafer defects. This study proposes the Mahalanobis-Taguchi system 
(MTS) to determine the key variables from the wafer acceptance 
test (WAT), and establish a classification model of yield grade. The 
general regression neural network (GRNN) was used to build a 
predicted model of the wafer probe yield from selected common 
variables. A real case from a Taiwan manufacturer of dynamic 
random-access memory (DRAM) is used as an example. It can get 
the 82 key and significant sequence variables of the WAT, with 
classification precision of over 90% and the R2 of the GRNN 
prediction model at 0.73. Through demonstration, the result can 
effectively increase the yield and reduce the quality cost in DRAM 
manufacturing. 

OPSOMMING 

Flinteropbrengs is ŉ sleutel indikator vir halfgeleiervervaardiging. 
Die toename in flintergrootte maak dit moontlik om die 
kompleksiteit en presisie van flintervervaardiging te verbeter. 
Wanneer monitering gebruik word om die opbrengsskatting te 
verbeter word dit ŉ gehalte kwessie. Die meeste navorsing gebruik 
die aantal defekte, die flinteroppervlakte, en vasgestelde 
statistiese verdelings om die opbrengs te skat. Sulke metodes faal 
egter om ŉ hoë-opbrengs model te bewerkstellig as gevolg van die 
lukrake en stelselwye verspreiding van defekte. Hierdie studie 
gebruik die Mahalanobis-Taguchi stelsel om die sleutel 
veranderlikes van die flinter aanvaardingstoets te bepaal en skep 
dan ŉ klassifikasie model van die opbrengsgehalte. ŉ 
Veralgemeende regressie neurale netwerk is gebruik om ŉ skatting 
van die opbrengs te maak van gekose gemeenskaplike 
veranderlikes. ŉ Gevallestudie van ŉ Taiwannese vervaardiger van 
dinamies ewetoeganklike geheue word as voorbeeld gebruik. Die 
benadering kan twee-en-tagtig van die sleutel en noemenswaardige 
veranderlikes van die aanvaringstoets identifiseer met ŉ 
klassifikasiepresisie van meer as negentig persent. Die R2-
koëffisiënt van die neurale netwerk is 0.73. Die resultaat kan die 
opbrengs verhoog en die gehaltekoste van dinamies ewetoeganklike 
geheue vervaardiging verminder. 
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1 INTRODUCTION 

With fierce competition in the original equipment manufacturer (OEM) market, and the fabrication 
of semiconductors, the yield of wafer fabrication is an essential factor that influences the cost and 
competitiveness of products. Yield is a major comprehensive indicator that measures the financial 
aspects, the ability to fabricate, and the stable supply of products. A high yield can reduce costs 
and increase the marginal benefits of companies. Fabrication with a steady yield can facilitate 
production arrangements and attract orders, which can enhance the competitiveness of an 
enterprise. In general, yield rate measurement is arranged in the three stages of wafer fabrication: 
the wafer processing yield, the wafer probe test yield, and the wafer package yield. 
 
Previous research on yield models for wafer concentrated on defect clustering [1], productivity 
optimisation [2], and interconnect yield analysis [3]. Some emphasised yield prediction. Lee and Ha 
[4] pointed out that the key factors of yield in semiconductor fabrication are particles or 
contaminants on the wafer, substances in the manufacturing instruments, manufacturing process 
parameters, process engineers’ attitudes, and the design of semiconductors. Their study focused on 
the wafer probe test yield. Macro-yield modelling and micro-yield modelling are frequently used to 
predict the wafer probe test yield. Macro-yield modelling predicts the yield rate according to the 
size and defect density of the wafer, and other relevant factors. Most previous researchers adopted 
macro-yield modelling to deduce a yield prediction model [5], such as Poisson’s yield model, 
Murphy’s yield model, Seed’s yield model, the Bose-Einstein yield model, and the negative binomial 
yield model [6]. Micro-yield modelling predicts a yield according to the area and parameter 
sensitivity of circuit devices, and other factors of circuit design. Usually, it is used to evaluate the 
influence of different defects, fabrication deviation, and circuit distribution on the yield. 
 
The wafer acceptance test (WAT) is the fabrication variable test after wafer manufacturing and 
before the wafer probe test [7]. With an electrical property measurement, it aims to check whether 
the circuit parameters of the wafer are in the acceptable range. Ke and Rao [8] proposed the back 
propagation artificial neural network (ANN) model, which is designed to infer electrical test 
parameters from the given list of parameters with the intention of reducing test time, enhancing 
throughput, and improving cycle time. It is rather time-consuming and destructive to undertake the 
chip probe with an integrated circuit (IC) [9]. Thus the electrical property parameters of the testing 
wafer are used to check whether there is any problem in wafer production. The most important 
function of the WAT is to ensure the normality of the chip and to avoid a low yield rate. The WAT 
can also reflect problems in the production line and judge the quality of the metal according to the 
measurement results. The present study obtained the WAT information of a cooperative 
manufacturer, and found that there were 250 variables, 164 of which were measurement variables. 
The manufacturer did not monitor all variables in the process analysis — only 31 controlled variables, 
which might significantly influence the yield rate according to the experience of the engineers. The 
results of monitoring show that there was a low yield rate and even a ‘0’ yield rate. The reason for 
this abnormality was that the monitored WAT could not provide full information about fabrication. 
The industry demands an efficient WAT monitoring mechanism to solve the problem of a low yield 
rate in manufacturing. 
 
The frequently used variable reduction methods must know the requirements of a probability 
distribution or statistical hypothesis. The analysis of the primary constituents can lead to collinearity 
of information; however, it is difficult to define new variables. The ANN takes time, and it is hard 
to interpret the results. Worse still, the determined key variables are not based on the correlation 
between the variables. Taguchi proposed the Mahalanobis-Taguchi system (MTS), with a combination 
of statistical and stable engineering principles [10]. Orthogonal arrays and signal-noise ratio are used 
in MTS to select important variables and reduce system dimensions. Featuring simple calculations, 
it does not require any statistical hypotheses of variables. MTS can be used for disease diagnosis, 
fire alarm monitoring, earthquake prediction, weather broadcasting, pass rate prediction, voice 
identification, and credit assessment [11,12]. ANN is a calculation system that uses a large number 
of simply connected neurons to stimulate biological neural networks, and frequently uses the 
method to improve the quality and predict the yield of wafers [13,14]. Featuring high learning 
accuracy, fast recall, and high non-linear mapping, the back-propagation ability of ANN is a 
prediction model of monitoring-based learning. Stapper [15] pointed out that defect clusters 
influence the yield rate of a wafer, and the defect clusters of different areas can create different 
influences on the yield rate of wafers. Hsu and Chien [16] suggested integrating statistics with ANN 
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to analyse the wafer cluster in wafer bin map (WBM) to locate defective wafers and apply them to 
the yield rate tests of wafer factories. 
 
This research is a case study of an industry-university cooperative research project. At present, the 
primary reason for the underestimated prediction results of the cooperation of manufacturers is 
direct yield prediction; however, manufacturers are most concerned about the level of the yield 
[17]. In the past, scholars used the number and area of wafer defects and defect distribution as the 
input variables of the yield rate prediction mode. However, such information is not obtained from 
the wafer probe test, and wafer manufacturers want to get the information about yield distribution 
as early as possible. This study therefore concentrated on establishing the classification of the yield 
grade of dynamic random-access memory (DRAM) wafers and predicting the yield through common 
variables.  
This study adopted the WAT variables to establish a yield grade classification model, which can 
identify yields of different grades and the relationship among the WAT measurement variables. 
Moreover, it can select the common variables of the yield of different classes by the MTS 
classification mode to establish the generalised regression neural network (GRNN) yield prediction 
model. With the yield grade classification model and yield rate prediction model, it is possible to 
monitor quality in WAT fabrication, and to find the crucial new WAT variables related to yield. 
Achieving these two parts can eliminate the current bottleneck and significantly improve 
fabrication, which will help enhance the production of manufacturers and reduce quality costs. 

2 METHODOLOGY 

In this study, MTS and the GRNN were used to select key variables and to establish the classification 
and prediction models respectively. There were four stages in the analysis process. In Stage 1, the 
WAT data obtained from the engineering database was appropriately pre-processed. In Stage 2, the 
reasons for the different yield grades were considered, and the information was grouped. 
Meanwhile, the yield was divided into five groups, according to the suggestions of the engineers: 
‘100%~85’, ‘85%~80%’, ‘80%~40%’, ‘40%~2%’, and ‘2%~0%’. In Stage 3, MTS was adopted to find the 
key variables from the 164 variables. In the calculation, the group with a yield of ‘100%~85%’ was 
taken as the benchmark group and used to determine the critical variable combinations and 
classification models in the different groups. In Stage 4, the results of MTS were adopted as the 
input variables, and the GRNN was used to establish the predictive model. 
 
MTS uses Mahalanobis distance (MD) to make a comprehensive assessment of multiple variables, and 
then adopts orthogonal arrays and signal-noise ratio to select variables. MD is a measure based on 
correlations between variables and the different patterns that can be identified and analysed with 
respect to a reference point. MD is a discriminant analysis tool that can be used to check whether 
the multivariable information is ‘homogeneous’ or ‘heterogeneous’. A higher level of information 
homogeneity leads to a shorter MD and vice versa. Hence, MD can serve as the basis for quality 
classification. If there are k variables and n samples in the multivariable sample set, then the MDj 
of the j-th sample, given by Hsiao and Su [18], is 
 

 

MDj =
1

k
Zij
TC-1Zij,Zij =

xij - xi

si
, i =1,2,… ,k; j =1,2,… ,n

 (1) 

where,𝑍𝑖𝑗 = (𝑍1𝑗 , 𝑍2𝑗 , … , 𝑍𝑘𝑗)  is the vector of the standardised value; 𝑥𝑖𝑗 is the i-th variable value of 

the j-th sample; 𝑥𝑖 is the mean of the i-th variable; 𝑆𝑖 is the standard deviation of the i-th variable; 

𝐶−1 is the inverse of the correlation matrix C; k is the total number of variables; i is the number of 
variables; and j is the number of samples.  
 
The benchmark group (100%~85%) was used to calculate and standardise the mean of the variables 
and the standard deviation. In the second step, the standardised results were used to calculate the 
inverse matrix of the relevant correlation coefficients to obtain all the Mahalanobis distances (MD) 
from the benchmark group. For the third step, information about the other groups was selected one 
by one, and then standardised with the mean and standard deviation of the variables in the 
benchmark group. Fourth, the inverse matrix of the relevant coefficients of the benchmark group 
was used to calculate the MD value of the other groups. When the number of variables was increased, 
MD was similar to a chi-square distribution. In terms of the classification threshold, this study 
adopted the maximised total precision of the training sample. 



 

251 

The configuration of orthogonal arrays (OA) and signal-noise (SN) ratios featuring ‘the larger, the 
better’ were then used to select key variables. The rank of effect gain selected the best number of 
variables. The computational formula for the larger-is-better SN ratio corresponding to the ith run 
of OA is given by 
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 (2) 
where b is the number of repetitions under each experimental combination.  
 
After calculating all the SN ratios in the orthogonal arrays, the effect gain of the variables would be 
calculated. Those variables with a higher effect gain would be taken as the key variables of the 
classification mode. The formula is given by 
 

 
Gain j = SN j

+ -SN j

-

                                (3) 

where, 𝑆𝑁𝑗
+̅̅ ̅̅ ̅̅  denotes the mean of all the signal-noise ratios with the variable Xj; 𝑆𝑁𝑗

−̅̅ ̅̅ ̅̅  indicates the 

mean of all the signal-noise ratios without the variable Xj. 
 
The selection of variables is a two-level issue. When the standard orthogonal arrays are at level-2, 
up to 63 variables can be processed. However, there were no appropriate orthogonal arrays in the 
164 variables in the WAT data of this study. The paper thus proposed a modification that could be 
divided into the following steps: 
 
1. All the variables are randomly grouped. Matlab® is used to equip each variable with a value 

ranging from ‘0’ to ‘1’, and the variables will be ranked in an ascending order. In this way, all 
the variables can be divided into three groups (55, 55, and 54).  

2. MTS is undertaken in each group to calculate the effect gain of all the variables. 
3. Repeat Step 1 and Step 2 many times until the mean of the effect gain of the variables becomes 

stable. In this way, the calculation of the effect gain of the 164 variables is completed.  
 
After the MTS calculation of the other four groups ((100%~85% vs 85%~80%) (100%~85% vs 40%~20%), 
(100%~85% vs 20%~2%), and (100%~85% vs 2%~0%)), the common variables are selected to establish 
the prediction model by the GRNN. 
 
The GRNN is a monitoring-based learning network derived from the probability neural network. Its 
dynamic learning mode can be used for prediction and control, and it shows high prediction ability, 
regardless of whether the regression model is linear or non-linear. Meanwhile, it can predict the 
pass rate according to previous information, and without hypothetical distribution. The framework 
of the GRNN, where the input units are merely distribution units, provides all of the (scaled) 
measurement variables. It distributes all x measurement values among all the pattern units in the 
second layer, where each pattern unit represents a training example. If a new x vector enters the 
network, the squared value of the gap between the vector and the vector of the training sample will 
be aggregated and added into the non-linear function. The value obtained from this function will be 
the output value of the pattern unit. The output value will then be sent to the summation unit, 
which will aggregate the weight vectors and the result of all the observation values of y, multiplied 
by the value of the weight vectors. For the last step, the evaluated value of y can be obtained by 
the division between the two output values of the summation unit. The only thing in GRNN that must 
be determined is a smooth parameter. In general, the holdout method proposed by Specht [19] was 
adopted to define a smooth parameter. The steps of the methods are as follows:  
 
1. Select specific σ value. 
2. Remove a training sample each time and use the remaining samples to establish a network 

that will be adopted to evaluate the value of the removed sample.  
3. Repeat Step 2 for n (the number of training samples) times and record the mean square error 

(MSE) between each evaluation value and the sample value. Then aggregate all the MSEs.  
4. Select other values of σ and repeat Step 2 and Step 3. 
5. The minimum value of σ of MSE is the best one. 
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3 CASE STUDY AND DATA ANALYSIS 

The engineers selected 25,000 copies of information from the engineering information system to 
demonstrate the proposed method. The WAT parameters include all electrical measurements of 
devices or transistors. To avoid superfluous data and reduce analysis time, it is essential to select 
relevant and useful WAT parameters. In this study, each of the 164 WAT variables refers to an 
electrical or physical feature value such as Isat (saturation current), Ioff (lower leakage), Vt 
(threshold voltage), Rc (contract resistance), and BV (breakdown). During the first three weeks, the 
data was taken as the training sample; in the fourth week, it was taken as the testing sample. Given 
that the key variables that influence the yield are not necessarily the same, the WAT data was 
divided into five groups according to the yield grade, after discussion with the engineers: 
‘100%~85%’, ‘85%~80%’, ‘80%~40%’, ‘40%~2%’, and ‘2%~0%’. Taking the group with the yield of 
‘100%~85%’ as the benchmark group, the researcher undertook MTS analysis of the remaining four 
groups. 
 
First, the study conducted analysis where the group with the yield of ‘100%~85%’ was taken as the 
benchmark group, and the group with the yield of ‘85%~80%’ was regarded as an abnormal group. 
There were no appropriate orthogonal arrays in the WAT data. Thus the variables were randomly 
divided into three groups (55, 55, and 54). The effect gain was then calculated according to the 
calculation procedure of MTS. Taking the first group as an example; the first step was to establish 
the Mahalanobis space of the benchmark group. The MD of the abnormal group was then calculated. 
After that, the orthogonal arrays were configured, and the signal-noise ratio was calculated, the 
results of which are shown in Table 1. For the last step, the signal-noise ratio was used to calculate 
the effect gain of the computable variables. The second and third groups were calculated by the 
same procedure. In this way, the first stimulation of the effect gain of all the variables was 
completed. 

Table 1: Design of orthogonal arrays and signal-noise ratio 

Run X 76 X 75 X 3 X 137 X 56 … X 138 X 55 X 142 MD1 … MD1125 SN ratio 

1 1 1 1 1 1 … 1 1 1 6.2778 … 0.4473 -29.8352 
2 1 1 1 1 1 … 2 2 2 10.1295 … 0.4242 -5.4724 
3 1 1 1 1 1 … 2 2 2 8.148 … 0.5438 -3.2835 
4 1 1 1 1 1 … 1 1 1 6.8302 … 0.4421 -31.4559 
5 1 1 1 1 1 … 2 2 2 1.7009 … 0.4646 -6.6395 …

 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

62 2 2 1 2 1 … 1 1 2 11.131 … 0.502 -32.1574 
63 2 2 1 2 1 … 1 1 2 7.8756 … 0.5187 -31.937 
64 2 2 1 2 1 … 1 2 1 7.731 … 0.3552 -2.5049 

 
Second, the same procedure was adopted to calculate the mean variable effect gains on the basis 
of every ten times of stimulation, and the results were sorted, as in Table 2. It was found that the 
first 14 variables remained unchanged in the 220th and 230th times of stimulation, with the remaining 
results changing slightly. For that reason, the results of the 230th time of stimulation were taken as 
the basis for choosing important variable combinations. Likewise, the best numbers of stimulation 
for the remaining three groups — (100%~85% vs 40%~20%), (100%~85% vs 20%~2%), and (100%~85% vs 
2%~0%) — were 260, 210, and 230 respectively. 
 
Third, the effect gain was calculated according to the best number of stimulation. Table 3 shows 
that the significant variables obtained from MTS of the four groups were different from each other. 
For instance, when the pass rate declined to 2%~0%, the first five key WAT variables were X122, X93, 
X118, X36, and X98. Some variables were important in groups with different pass rates. For example, 
X122 ranked second and first in the groups with a pass rate of ‘40%~2%’ and ‘2%~0%’ respectively. 
According to the ranking of the effect gain of variables, the corresponding improvement can be 
made in WAT variables with a high ranking to increase the yield. 
 
Fourth, use MTS to classify the yield grade. Taking (100%~85% vs 85%~80%) as an example, the trial 
and error method was adopted to evaluate the threshold. Meanwhile the number of WAT variables 
gradually declined to 134, 130, 122, 109, 74, 43, 27, 16, and 5, according to the different effect 
gains (>0, >0.05, >0.1, >0.15, >0.2, >0.25, >0.3, >0.35, >0.4). These results are shown in Table 4. 
The highest precision (=0.7882) was chosen to determine the variable combination, and the original 
164 WAT variables were reduced to 134 variables. Likewise, the thresholds of (100%~85% vs 
40%~20%), (100%~85% vs 20%~2%), and (100%~85% vs 2%~0%) were 1.2, 1.2, and 1.7 respectively. The 
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numbers of their WAT variables were 130, 128, and 114 respectively. Their precision was 82.29 per 
cent, 82.98 per cent, and 89.98 per cent respectively, as shown in Table 5. All the results were then 
evaluated on the basis of the test samples. The precision of the four groups (100%~85% vs 85%~80%), 
(100%~85% vs 40%~20%), (100%~85% vs 20%~2%), and (100%~85% vs 2%~0%) was 95.92 per cent, 95.24 
per cent, 94.18 per cent, and 95.31 per cent respectively. 

Table 2: Simulation number and the rank of effect gains of variable for (100%~85% vs 
85%~80%) 

Ranking of variable 
Simulation number 
10  20  … 180  190  200  210  220  230  

1 X105 X72 … X78 X78 X78 X78 X78 X78 
2 X85 X105 … X17 X17 X23 X23 X23 X23 
3 X98 X15 … X88 X88 X17 X17 X17 X17 
4 X7 X100 … X38 X23 X88 X88 X88 X88 
5 X88 X85 … X116 X90 X101 X101 X90 X90 
6 X129 X91 … X51 X116 X27 X90 X101 X101 
7 X5 X96 … X23 X38 X90 X116 X116 X116 
8 X116 X7 … X90 X51 X116 X27 X96 X96 
9 X141 X98 … X141 X6 X38 X38 X100 X100 
10 X155 X5 … X6 X141 X51 X100 X27 X27 
11 X31 X37 … X72 X27 X144 X51 X51 X51 
12 X12 X156 … X27 X72 X141 X141 X141 X141 
13 X124 X129 … X144 X140 X6 X95 X95 X95 …

 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

160 X104 X104 … X81 X81 X81 X81 X81 X81 
161 X113 X113 … X113 X113 X113 X113 X113 X113 
162 X74 X74 … X74 X74 X74 X74 X74 X74 
163 X43 X43 … X123 X123 X123 X123 X123 X123 
164 X123 X123 … X43 X43 X43 X43 X43 X43 

Table 3: The ranking of the effect gains of variables and for different yield groups 

Ranking of variable 
(100%~85% vs 85%~80%)  (100%~85% vs 40%~20%)  (100%~85% vs 20%~2%) (100%~85% vs 2%~0%) 

variable effect gains variable effect gains variable effect gains variable effect gains 

1 X78 0.5924 X116 0.6236 X121 0.2278 X122 0.2729 
2 X23 0.4641 X78 0.5351 X122 0.2047 X93 0.2694 
3 X17 0.4551 X51 0.5105 X21 0.1994 X118 0.2688 
4 X88 0.4343 X70 0.4573 X70 0.1994 X36 0.2674 
5 X90 0.4039 X145 0.4504 X142 0.1971 X98 0.253 
6 X101 0.3967 X54 0.4375 X62 0.1908 X52 0.2529 
7 X116 0.3921 X110 0.4219 X28 0.189 X96 0.2519 
8 X96 0.3901 X57 0.4208 X125 0.1867 X110 0.2445 
9 X100 0.3738 X39 0.3961 X1 0.1865 X162 0.2423 
10 X27 0.3713 X162 0.3939 X86 0.1808 X43 0.2397 
11 X51 0.3599 X129 0.3894 X163 0.179 X100 0.2366 
12 X141 0.3589 X38 0.3806 X98 0.1789 X123 0.2324 
13 X95 0.3564 X36 0.3801 X96 0.1778 X137 0.2316 …

 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

160 X81 -2.0701 X126 -7.3133 X109 -2.5953 X158 -4.6049 
161 X113 -10.2477 X97 -10.6336 X113 -2.8346 X15 -7.3073 
162 X74 -13.6918 X113 -11.6341 X126 -8.2348 X65 -9.2578 
163 X123 -36.489 X43 -30.0052 X35 -13.142 X125 -12.5813 
164 X43 -37.6084 X123 -37.827 X127 -13.2393 X113 -20.2627 

Table 4: （100%~85%）vs（85%~80%）of the correct classification rate 

Effect gains 
Number of 
variables 

Threshold Total correct rate 
Correct rate of 
benchmark group 

Correct rate of 
abnormal group 

>0 134 1.125 0.7822 0.7697 0.7858 
>0.05 130 1.15 0.7663 0.7697 0.7653 
>0.1 122 1.125 0.7635 0.7634 0.7636 
>0.15 109 1.05 0.7316 0.7129 0.7369 
>0.2 74 1 0.6976 0.7003 0.6969 
>0.25 43 0.95 0.6637 0.6656 0.6631 
>0.3 27 0.825 0.5922 0.5931 0.592 
>0.35 16 0.75 0.5624 0.5615 0.5627 
>0.4 5 0.7 0.5312 0.5426 0.528 
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Table 5: The optimal for the correct rate for the different benchmark groups and the 
abnormal groups in the study 

Effect 
gains 

Benchmark 
group 

Abnormal 
group 

Number of 
variables 

Threshold 
Total 
correct 
rate 

Correct rate of 
benchmark group 

Correct rate of 
abnormal group 

>0 100%~85% 85%~80% 134 1.125 0.7822 0.7697 0.7858 
>0 100%~85% 80%~40% 130 1.2 0.8229 0.8107 0.825 
>0 100%~85% 40%~2% 128 1.2 0.8298 0.8297 0.8333 
>0 100%~85% 2%~0% 114 1.7 0.8997 0.9054 0.75 

 
The 31 WAT variables currently used by the manufacturer were used to calculate the MTS procedure, 
as proposed by the researcher. According to Table 6, the precision of the four groups, (100%~85% vs 
85%~80%), (100%~85% vs 40%~20%), (100%~85% vs 20%~2%), and (100%~85% vs 2%~0%), was 55.62 per 
cent, 59.39 per cent, 61.87 per cent, and 66.96 per cent respectively. These precisions were far 
lower than the results of this study. Therefore, the established MTS procedure is effective in seeking 
and monitoring the WAT variables of different yield grades, and shows a high level of classification 
rate. 

Table 6: The result of the correct rate using the current variables of the manufacturer 

Benchmark 
group 

Abnormal 
group 

Number of 
variables 

Threshold 
Total 
correct rate 

Correct rate of 
benchmark group 

Correct rate of 
abnormal group 

100%~85% 85%~80% 31 0.85 0.5562 0.5552 0.5564 
100%~85% 80%~40% 31 0.88 0.5939 0.5931 0.5941 
100%~85% 40%~2% 31 0.95 0.6187 0.6188 0.6167 
100%~85% 2%~0% 31 1.05 0.6696 0.6697 0.6692 

 
Fifth, the selected WAT variables currently used by the manufacturer were compared. According to 
the different levels of pass rates, 82 common WAT variables were selected from the four groups, 
(100%~85% vs 85%~80%), (100%~85% vs 40%~20%), (100%~85% vs 20%~2%), and (100%~85% vs2%~0%). 
The manufacturer currently monitors 20 variables (those in italics), shown in Table 7, in the common 
WAT variables from MTS. The results show that the selected WAT variables have practical 
representativeness. In the current situation, the variables monitored by engineers, according to 
their experience, are inconsistent with the actual situation, which explains the poor monitoring 
effect. 
 
Finally, the 82 selected common WAT variables and the GRNN were used to establish the pass rate 
prediction model. The researcher wrote a Matlab® program with an initial smooth parameter of 0.5. 
The program could automatically modify the smooth parameter to reduce the error to a minimum 
level. In this way, a smooth parameter value with the minimum error could be obtained, as shown 
in Table 8. Through comparison, the prediction model (R2=73.12%), as established with common 
variables, is better than the current prediction model (R2=33.84%). 

Table 7: The common variables from MTS analysis 

X1 X21 X39 X60 X83 X100 X137 X148 X163 

X2 X23 X40 X61 X85 X101 X138 X149 X164 

X4 X24 X41 X62 X86 X110 X139 X150  

X6 X25 X45 X63 X89 X115 X141 X151  

X8 X27 X46 X64 X90 X116 X142 X152  

X12 X28 X49 X70 X91 X117 X143 X153  

X13 X30 X51 X75 X93 X118 X144 X154  

X16 X32 X52 X79 X95 X122 X145 X159  

X18 X33 X55 X80 X98 X132 X146 X161  

X20 X37 X59 X82 X99 X133 X147 X162  
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Table 8: The result of the GRNN between the variables by MTS and current variables  

 Smooth parameter α 

Training sample Testing sample 

R2 MSE R2 MSE  

Variables by MTS  0.3943529 0.7509 0.002  0.7312 0.002  
Current variables 0.1847059 0.4212 0.008  0.3384 0.008  

4 CONCLUSION 

The production of semiconductors involves thousands of complicated steps that are closely related 
to each other. Any error in a process step will result in a lower wafer yield rate. With the WAT data 
offered by a DRAM manufacturer in Taiwan as the research subject, the MTS and the GRNN are 
proposed to establish a classification and prediction yield model of a wafer probe test in this paper.  
 
First, the variables were grouped according to the yield rate grades, and MTS was adopted to seek 
the WAT variables that monitored different yield rates. According to the experience of the 
engineers, previous practitioners selected a fixed 31 of the 164 variables for quality monitoring. 
However, the results showed a slightly lower wafer yield, and even a ‘0’ yield rate. This is because 
the monitored WAT could not provide sufficient information about fabrication. There should be 
different WAT variables to control the yield of different grades. The results of this study obtained 
four kinds of WAT variables, corresponding to different yield grades. The number of variables were 
134, 130, 128, and 114 respectively. Meanwhile, a yield grade classification model was established, 
with a precise classification rate of over 90 per cent for the testing sample. A summary of the 
classification models with yield rates of different grades led to 82 common WAT variables and the 
establishment of the GRNN yield rate prediction model. The R2 of the model is over 0.7, which is 
the result expected by the industry. The research results are better than those of Chang, Chen and 
Wang [20] used for the backpropagation neural network (BPNN) and the group method of data 
handling (GMDH) for WAT yield prediction. 
 
This study gives specific suggestions for practitioners to improve their WAT monitoring mechanism. 
Through a demonstration, the result can increase the wafer yield rate and reduce quality cost in 
DRAM manufacturing. Improving yield would significantly reduce the manufacturing cycle time. An 
accurate yield prediction model would help to prevent the production of non-conforming wafers 
before a malfunction is detected in the process. Practically, it is rather time-consuming and 
destructive to undertake a chip probe (C/P) with an IC. Thus effective monitoring of the WAT 
variables can check whether there is any problem in wafer fabrication, and reduce or gradually 
replace the C/P test. This would ensure the normal functions of the chip and avoid a low pass rate. 
For future research and application, it is suggested that a multivariable control chart be adopted to 
monitor the WAT variables. Developing big data analysis for quality problems in the production line 
or machine parameters can provide more efficient quality monitoring in fabrication. 
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