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ABSTRACT 

 
Probabilistic risk assessment has advantages over qualitative risk ranking for cases 
where choices need to be made that require consideration of variable inputs, where 
model sensitivities to variable inputs and their effects are to be studied, and where 
more detailed output is required to form the basis of sound and informed decision 
making.  Monte Carlo Simulation and probability of failure prediction using First 
Order Reliability Methods (FORM) both provide this functionality and are used to 
both demonstrate the effects of variability on risk assessments for heat induced tyre 
failure, and to highlight the advantages of such a probabilistic approach. 
 

OPSOMMING 
 
Die probabilistiese assessering van risiko beskik oor bepaalde voordele vir gevalle 
waar keuses uitgeoefen moet word met onderliggende veranderlike insette, waar 
modelsensitiwiteit bepaal moet word vir inseteienskappe en die model gesonde en 
ingeligde besluitvorming moet ondersteun.  Monte Carlo simulasie en eerste orde 
betroubaarheidsmetodes is daartoe instaat om die resultate te demonstreer oor hoe 
veranderlikheid risikoassessering beïnvloed by hittegeïnduseerde mislukkings van 
voertuigbande. 
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1.  INTRODUCTION 
 
Over the past decade, the Australian minerals industry has pursued qualitative and 
semi-quantitative risk assessments with considerable success as evidenced by the 
gradual decrease in many safety related key performance indictors. The industry is 
now familiar with the use of techniques such as WRAC (Workplace Risk 
Assessment & Control, [1]), HAZOP (hazard and operability study) and FMECA 
(failure mode, effect and criticality analysis). However, these qualitative techniques 
rely heavily on expert knowledge and are primarily only applied to plant 
subcomponents or equipment and are not very effective in assessing system hazards. 
None of these can effectively model stochastic input or the impact of uncertainty 
arising from the risk assessment methodology on the outcomes.  Some quantitative 
methods, as used by other high risk industry sectors, can overcome these shortfalls 
and are ideal for applications where numeric data is available and where the inherent 
variability of the data should be considered before decisions on system safety and 
criticality are to be made.  
 
2.  SOURCES OF VARIABILITY AND UNCERTAINTY 
 
All risk analysis methodologies must consider both the underlying variability of the 
inputs as well as uncertainties arising from the risk model itself.  Both factors are 
widely acknowledged to have significant bearing on the decisions taken based on the 
risk assessment.  Therefore, risk assessment methods that are able to handle variable 
input and reduce the uncertainties of the modelling process will be more realistic and 
better suited to make quality, defendable decisions.  
 
2.1  Variability 
 
Since the system being analysed in a risk assessment is a random process, variability 
will be introduced into a risk assessment.  As a consequence, the results of a risk 
analysis will also exhibit variation that must be considered before an informed 
decision can be made.  Some of the factors that affect the risk analysis are described 
below and shown in Figure 1.  Often, considerable variability arises in the data as a 
result of local operating practices, environmental factors and maintenance routines.  
Where the risk assessment is based on locally gathered data, variability is likely to be 
introduced by the sampling methodology (less than adequate taxonomy or 
consideration on what type of data is collected), the technical means in which it is 
gathered (e.g. poor instrumentation) or the data analysis method itself (the statistics 
used to analyse the underlying distribution).  
 
If a risk assessment is to be based on data from a database, additional caution needs 
to be applied.  The availability of such data is generally sparse and extreme care in 
its application or adoption in other sectors is warranted in its use.   For instance, 
while other high risk industries such as the nuclear, aerospace and petrochemical 
sectors have both developed outstanding database and related risk assessment data 
and methodologies (e.g. OREDA – Offshore Reliability database [2]) and use these 
with considerable success, the minerals industry globally still lacks such 
management tools.  
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Figure 1:  Variability in the inputs will create variable outputs 
 
Additionally, published data may not be compatible with the characteristics that need 
to be reflected in the risk assessment scenario. It should also be pointed out that most 
databases assume a certain underlying distribution type, usually the exponential 
distribution, which may or may not be applicable to the specific situation that is 
being modelled.  Extensive work by the author on failure data statistics of both fixed 
plant and mobile equipment has shown that the failure behavior of an item is often 
more accurately and more reliably characterized by distribution characteristics other 
than the exponential distribution. 
 
2.2  Uncertainty 
 
Benchmark studies such as by Amendola [3]  and Holicky [4] have shown that 
considerable uncertainty, in contrast to variability, can be introduced into the risk 
assessment process through the choice of risk analysis model. While this choice may 
introduce some bias (e.g., lack of experience with a more suitable method), the risk 
analysis methodology will generate uncertainty and compromise the decision making 
process [5]. 
 
Empirical models can be very reliable in forecasting a specific (often only linear) 
behaviour, but larger and more comprehensive models (multidimensional and non-
linear) may become less reliable in their predictive capability. Many models also 
assume statistical independence between variables, which may not be the case. 
 
A further complication is that many risk assessments deal with comparatively rare 
events for which little data is available and therefore often require application of 
specialised mathematical tools. Uncertainty is also introduced as the analyst tries to 
translate and combine physical parameters, dependencies and models into a 
combined mathematical relationship in an attempt to describe a system.  Often 
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generic scaling factors are used to ‘calibrate’ one model application to another, 
which inadvertently introduces uncertainty over the outcome. 
 
This approach to risk analysis also assumes that the risk engineer is experienced at 
designing risk relationships based on quantitative models but given the variety of 
applications, it is clear that lack of familiarity with the application can introduce 
considerable scatter in the outcome.  
 
One advantage of empirical models over any other approach to risk assessment is the 
ability to incorporate data that is based in statistical distributions and thereby 
accounting for data variability. Empirical models, by virtue of being explicit, also 
help in coming to a better understanding of model uncertainties. 
 
Another factor that complicates the accuracy of any risk model is the effect that 
human interference (both in a positive and negative sense) can have on the behaviour 
of the system. The determination of human reliability is particularly challenging and 
to date no methodology has been proven to provide consistent and reliable human 
error forecasts. 
 
3.  DIFFERENCES BETWEEN ASSESSMENTS 
 
In a qualitative or semi-quantitative assessment, risks are assessed relying solely on 
the experience of the team members, this implies that the make up and professional 
experience of the team will be reflected in the quality, reliability and 
recommendations of the assessment.  Furthermore, if the given conditions, 
information and assumptions are not based on a familiar design, setting or scenario 
then additional variability is introduced into the assessment. Variability of any of the 
input parameters is implicit to the assessment and is rarely ‘quantified’. 
 
The main difficulty with either approach is the need to make an informed judgement 
about a rare event while accounting for the variability of all inputs and processes that 
affect the event being studied. Clearly, an assessment team’s capability would be 
stretched if it were to provide an accurate and repeatable assessment about a known 
risk or had to make a judgement about two different designs, particularly if the team 
had limited experience with the new design. Furthermore, a team would have 
difficulty shedding any light on the sensitivity of the model to the input parameters 
or how the risk assessment outcome would change for different scenarios. 
 
Quantitative models can be used to advantage where the data and its variability has 
been quantified as a statistical distribution and where the effects of the variability 
need to be studied in a more rigorous way.  Such quantified assessments, often 
referred to as probabilistic, are routinely done in the nuclear and other hi-tech 
industries (for a current example, see [6]).  There is no valid reason why the same 
methods cannot be applied in the minerals industry.  
 
The following example of tyre failure demonstrates two methods of quantitative risk 
assessment and their application in probabilistic risk assessments. 
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3.1  Approach one - Application of Monte Carlo simulation (MCS) to study the  
       risk of heat induced tyre failures 

 
MC simulation has been applied to a variety of areas where the variability of inputs 
and the effects on the system warrants study. Areas of application typically include 
engineering, health, environmental and financial analysis [7, 8].  MC is also a tried 
and tested tool in safety engineering as it provides the risk engineer not with just the 
risk magnitude (typically given as the expected or mean value in a deterministic 
analysis), but with the range of possible outcomes and therefore the likely 
distribution of the ‘risk’ under investigation. A further advantage of MCS is that it 
also allows the analyst to carry out detailed sensitivity studies searching for those 
input variables that have the greatest impact on the system behavior. 
 
The example chosen is that of a large fleet of mining rear dump trucks which is 
utilised on a variety of haul routes.  The study is based on a large database of tyre 
performance, including data on tread utilisation, payload, cycle time, failure mode 
description (reasons for removal) and tyre life. A preliminary analysis of 428 tyre 
failures is given in Figure 2, which shows that almost 71% of all tyres are scrapped 
with more that 50% of tread remaining. With earthmover costs as high as A$40,000 
per tyre and an increasing global tyre shortage, tyre life improvements achieving a 
higher tread utilization has the potential to add to the bottom line of mines. 
 
Examination of the underlying failure modes is given in Figure 3 which shows that a 
large proportion (~ 94%) were caused by external factors such as inadequate road 
and pit floor maintenance with 27% of tyre failures associated with heat induced. 
While physical tyre damage can efficiently be reduced through improved road 
design, road maintenance activities and operator education, damage through heat 
requires a little more analysis.  
 
Tyres have a limited resistance to build-up of heat and any excessive heat in the 
structure of a tyre can cause irreversible and destructive damage.  Proactive tyre 
selection and ongoing evaluation of haulage conditions is therefore ideally done 
using a TKPH (tons kilometre per hour) approach which uses information of haulage 
length, vehicle velocity, ambient temperatures, vehicle tare weight and payload to 
predict heat of the tyre under operational conditions [9].  The effects that these 
variables have on the TKPH performance can be modelled by the following 
empirical relationship and equation.  
 

*TKPH MeanTyre Load Work Day Average Speed=     (1) 
where  
 
Mean Tyre Load in Ton = ( Empty Mass in kg + Loaded Mass in kg  ) / ( 2 * 1000 )  
Work Day Average Speed = ( Overall round trip length * Number Loads per Shift ) / Shift Hours 
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Figure 2:  Histogram of percent tread utilisation. 
 

Figure 3 - Main Failure Modes - Tread Util. <50%
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Figure 3:  Main failure modes (tread utilisation < 50%). 
 
The statistical distribution characteristics and parameters (mean, standard deviation, 
possibly others to adequately describe distribution type) for truck speed, payload 
information, trip length, shift duration etc are firstly determined from the mines 
production recording system. The resultant TKPH distribution based on these inputs 
(Equation 1, see also Figure 4) is then established using the statistical distribution 
parameters and  obtained through a crude Monte Carlo simulation utilizing a 
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proprietary  spreadsheet software add-ons such as @Risk, or Crystalball.  The power 
of a Monte Carlo simulation is based on the repeated evaluation of, in this instance, 
Equation 1 with different inputs for speed, payload, distance and shift duration 
sampled from their individual data distributions during each recalculation. This has 
the effect that the inherent variability of the sets of input data is reflected in the 
evaluation, and by then plotting the resultant range of simulation outcomes, a 
realistic ‘picture’ of TKPH can be generated.    
 

 Figure 4 - Histogram of Tyre TKPH
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Figure 4:  Histogram of Tyre TKPH. 
 
The histogram in Figure 4 provides the results of 100,000 Monte Carlo simulations 
of TKPH responses of a mining haul truck tyre for a particular haul. In this case, the 
output of the simulation yields a normally distributed range of TKPH between 450 
and 825 with an average actual TKPH of 654, which falls below the design TKPH of 
755 (shown as the vertical bar in the figure1) giving the illusion, as would a classic 
deterministic analysis, that the tyre application was safe i.e. the limiting TKPH was 
not being exceeded during operation.  However, examining the histogram of 
simulated TKPH in Figure 4, it can be seen that the limiting design TKPH is in fact 
exceeded on a number of occasions as indicated by the area under the curve to the 
right of the vertical bar (in this case 755). In the example, permissible TKPH is 
exceeded in 4.57% of all simulations, which translates to a heat induced loss of 4.6% 
on this particular haulage route2 or almost 17% of the overall tyre loss due to heat.  
While this basic analysis provides rapid understanding of which haulage applications 
contribute most to the overall loss, further sensitivity analysis can be carried out to 
provide insight into which variables have the greatest impact on TKPH exceedance 
and therefore require additional management. For instance, rather than opting for a 
more costly higher TKPH tyre to manage TKPH exceedance, mines usually choose 
                                                 
1 Design TKPH values are provided by tyre manufacturers through technical documentation and 
handbooks. 
2 From Fig 4 – 95.43 and 4.57 % of the area under the graph lies below and above respectively the 
design TKPH design threshold of 755. 
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to restrict haulage speed or payload, or a combination of both. As shown by this 
analysis, further investigation is warranted to cover the remaining mine haulage 
routes to further control heat induced tyre loss. 
 
3.2  Approach Two – First Order Reliability Methods 
 
First Order Reliability Methods (FORM) have their origins in structural engineering 
where they have found widespread application in determining risk levels to buildings 
and other civil engineering projects.  Given FORMs versatility this method has been 
applied to pipeline, fire, marine design, corrosion and materials (fatigue) engineering 
[10-16].  Risk engineering in these fields often suffers from a lack of historical 
failure data which can be used to estimate the risk to a particular scenario. 
 
FORM, like MC, overcomes this hurdle by allowing the engineer to model a 
particular failure mode through the creation of a safety margin equation that 
describes the interaction between the design strength or system capacity, R, and the 
load or demand, S, placed on the design. This relationship is expressed as  
 
M R S= −            (2) 
 
where M is the safety margin (analogous to a Factor of Safety) while R and S are 
representative of the system capacity and demand.  Should the demand S on the 
system be greater than its strength R, failure will occur.  
 
The likelihood of system failure Pf can then symbolically be expressed as   
 

( 0) {( ) 0}fP P M P R S= ≤ = − ≤                    (3) 
 
where  ( 0)P M ≤  is the likelihood or probability that the safety margin M becomes 
or falls below zero. This concept is illustrated in Figure 5.  
 
Both the capacity of the system and demand on the system are typically represented 
by random variables. Put simply, as long as the ‘load demand’ remains below the 
systems capacity the system can be deemed ‘safe’, It is possible that either ‘demand’ 
exceeds the systems capacity or that the ‘capacity’ itself drops below the demand 
generated by the system, in which case system failure occurs; these occurrences are 
shown as the shaded area under the capacity curve.   
 
While Figure 5 uses bell-shaped curves to illustrate the natural variability of both 
capacity and demand of a system, it should be noted that the curves representing the 
variables could assume any shape other than ‘Normal’, depending on the underlying 
statistical behavior of the modeled systems.  R and S can also assume deterministic 
values (as shown in Figure 4), rather than a variable; in the example an upper 
deterministic design TKPH limit is given that must not be exceeded for the system to 
remain safe. 
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Figure 5:  Capacity and Demand Representation of a Simple System 

 
While MC simulation relies on a repeated calculation to yield a summary histogram 
of outcomes based on variable input, FORM uses a direct mathematical algorithm to 
evaluate the systems likelihood of failure. The particular advantage of FORM is that 
for capacity or demand equations that are functions of more than one variable (i.e. 
more than two dimensional and not necessarily Normal), FORM provides a 
completely general algorithm allowing solutions for all variables. 
 
Application of FORM in conjunction with the same TKPH assessment as previously 
used provides an almost identical likelihood of failure, namely 4.7% for this 
particular haulage run.  
 
However, a distinct advantage of FORM over MC simulation is the automatic 
calculation of the so called ‘design points’, which are those values (for each variable 
contained in the model) that cause the likelihood of failure for the system to exceed 
the set target thresholds for the system (in our example exceed the threshold target 
TKPH).  For our example, the design points are given in Table 1. 
 
Variable Name Design Point Mean Estimate of Variable 
Loaded Mass (tonnes) 100 470 96 020 
Empty Mass (tonnes) 65 133 65 010 
Round trip length (km) 8,13 7,5 
Number of loads per shift 27 26 
Shift Hours 7,97 8 
 

Table 1: Sample ‘Design Point’ Output 
 

One obvious use for these results could be their application as individual threshold 
values or early warning indicators that are not to be exceeded if system safety is to 
be assured.  
 

Mean of both 
Demand S and 

Capacity R 
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For instance, as shown by the example, such design points could be utilised to 
nominate the maximum permissible payloads for a particular haulage run.  For 
example, FORM predicts a likely TKPH exceedance once payloads of 100 tonnes are 
exceeded compared to a target load of 96 tonnes, provided all other inputs remain 
and other vehicle limits eg set by the manufacturer are not exceeded. Similarly, trip 
distance, which has considerable impact on heat generation in a tyre, must be 
maintained under 8 km etc.  
 
No other technique allows the engineer to make judgements and reliable decisions in 
this way, which in this case could assist considerably with tyre safety, and reduce 
unnecessary tyre loss. 
 
3.  CONCLUSION 
 
A quality risk assessment requires consideration of both the variability of the inputs 
as well as the uncertainties created by the modelling process itself.   Qualitative 
methods are unable to account for stochastic input.  Some quantitative methods and 
tools, such as Monte Carlo simulation and FORM, can account for stochastic input 
data. The consideration of even basic probabilistic analysis can highlight 
vulnerabilities of deterministic design (and decision making) and assist in risk 
mitigation protocols and safety management systems aimed at controlling risks to a 
set threshold. 
 
As shown by the case study, the evaluation of tyre TKPH exceedance using MCS or 
FORM provides a better understanding of the tyres’ behaviour and potential risk of 
failure compared to traditional deterministic evaluations. As mining equipment 
becomes larger and more productive resulting in tyres often working closer to their 
design limits, probabilistic approaches should be pursued to better forecast tyre 
failure risks, and the same techniques and tools should be used as decision making 
aids for the better management of other technical risks within the minerals industry.  
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