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ABSTRACT 
 
Continuous measurements such as temperature, pressure, or flow are recorded and 
stored in the plant data history of industrial chemical plants. Frequently, data is 
accumulated and kept in storage without anyone drawing further conclusions from it 
about the state of the process. This paper shows how historical data can give insight 
into the operation of a chemical plant. The time and frequency analysis methods are 
explained via an industrial process at Eastman Chemical Company, Tennessee. A 
procedure for systematic data analysis is given. Combined with expert knowledge of 
the process, causes of disturbances affecting the process can be identified. 

 
OPSOMMING 

 
Kontinue meting van veranderlikes soos temperatuur, druk en vloei word aangeteken 
en bewaar as ’n omvangryke dataversameling by ’n industriële chemiese aanleg. 
Heel dikwels gebeur dit dat sodanige inligting nie verder gebruik word vir die 
bepaling van prosestoestand nie. Díe navorsing toon hoedat sodanige inligting nuttig 
aangewend kan word vir die bedryf van die proses. Tyd- en frekwensie-
analisemetodes word voorgehou vir ‘n nywerheidsproses by Eastman Chemical 
Company van Tennessee. Sistematiese data-analise word volgens prosedure 
uitgevoer. Deur laasgenoemde te kombineer met proseskennis kan die oorsake vir 
prosessteurings uitgewys word. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
1 The author was a Ph.D. student at the Department of Electronic & Electrical Engineering, University 
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1.  INTRODUCTION 
 
Data acquisition systems gather data from measurement and control instrumentation 
in the plant, such as distributed control systems (DCS) or programmable logic 
controllers (PLC). Often in this context the term SCADA (supervisory control and 
data acquisition) is used for data capturing systems in industrial plants. Most 
SCADA systems have facilities to record, present, and store data. However, the 
quality of the human machine interface decides the system is to be used for process 
monitoring tasks. In the chemical industry, one of the commonly used data historian 
systems is the PIsystem, a software product by OSIsoft [2]. A frequent problem of 
data storage systems is data graveyards – that is, the situation where data is kept in 
storage and not further examined and used for performance investigation – which has 
been discussed and addressed [3]. 
The historical data can be used to give valuable insight into disturbances that affect 
the process, and that should be removed. If a fault occurs in a part of a continuous 
process, it often results in a variation in the process measurements closest to the root 
cause [4]. If such measurements can be identified using historical data, the root cause 
can be pinpointed and the cause of the disturbance can be removed. In this paper, 
several data-driven analysis methods are reviewed and applied to an industrial 
process. A classification of recent analysis methods is given by Thornhill and Horch 
[5]. Some important characteristics and objectives of data-driven analysis methods 
are as follows [6]:  
 
• Turn data into concise targeted information: Analysing the process data 

often results in information overload. Analysis measures should extract the most 
important signatures in the process and discard irrelevant features.  

• Streamline and reduce troubleshooting time: After the plant personnel flag a 
persistent disturbance, the origin of the disturbance is sought. This is often done 
by retrieving data from all measurements of the process.  

• Yield information to enhance maintenance efforts during plant shut-down: 
Processes that run continuously are shut down at regular intervals to perform 
maintenance. During shut-down, equipment is tested and replaced. Any 
explanatory information about plant problems assists in focusing the 
maintenance efforts.  

• Discover problems not found with traditional “fight today’s fire” 
approaches: Plant problems may exist of which neither plant personnel nor 
process engineer are aware. Analysis methods can identify disturbances that 
have escaped the standard investigative tools.  

 
In this paper, a systematic approach for the use of data-driven methods is illustrated 
using an industrial process. The process is part of a larger production facility at 
Eastman Chemical Company in Kingsport, Tennessee, and has been described 
previously ([7], [8]). A number of disturbances affected the process. These 
disturbances will be investigated in detail in the following sections. First, available 
information about the process is reviewed and interpreted. In Section 3, the time 
trend given in the form of the historical process data is investigated, and two simple 
but effective methods are described that can assist in identifying the disturbance. In 
Section 4, the use of the frequency spectrum for process analysis is discussed. The 
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results obtained from these analysis methods are consolidated and discussed in 
Section 5.  

 
 

Figure 1:  Process schematic of a reaction process at  
Eastman Chemical Company 

 
2.  PROCESS INFORMATION 
 
Most industrial production processes are well known to the plant personnel, and in-
depth expert information is often available to make sense of the current operation of 
the plant. This existing information platform – comprising process schematics, 
mathematical models, or written plant descriptions – is relevant for analysis of 
disturbances and process performance. Not incorporating the process information in 
the analysis would be a waste of useful process insight.  

2.1  Process Schematic 
 
Information about the process exists in the form of process and instrumentation 
diagrams (P&IDs)2 which are often simplified in a process schematic. Process 
schematics show the most important parts of the process: all actuators such as control 
valves and pumps, and the controllers acting on the actuators. The main reactions and 
flows can be seen from the process schematic. The process schematic of the case 

                                                 
2 P&ID design handbook, http://www.engineeringtoolbox.com/p&id-piping-instrumentation-diagram-
44_446.html 
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study is given in Figure 1. The feed enters the reactor column as the first reaction 
component at the top. The reaction takes place inside the column, and the lighter 
reacted material exits the column at the top while the heavier material, which will 
become the product, exits the column at the bottom. The lighter material is recycled, 
and a portion of the recycle is fed back into the column via a condenser and reflux 
tank. Further reactants enter the column from external streams. The product that exits 
the column is available for further processing after it is heated in a sequential re-
boiler. Thus, the product flow is from the top of the column to the bottom and 
onward to the re-boiler. Root cause analysis is complicated by the recycle path via 
the reflux tank. Because of the recycle, disturbances can travel not only from top to 
bottom but also in the other direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Time trends of process variables and controller outputs 
for the measurements indicated in Figure 1 

2.2  Process measurements and controller setup 

Process schematics indicate where and which types of measurements are taken. The 
regulating control schemes in place are usually also indicated in the schematic. In the 
industrial example (see Figure 1), nine process variables are measured and recorded: 
four temperatures around the column (TC1, TC2, TI1, TI2), the level at the reflux 
tank (LC1), the flow rate of the recycle stream (FC1), as well as the pressure at the 
top of the column (PC1) and the inflow pressures PI1 and PI2. Five of the 
measurements are used to control flows via control valves. Since the temperature in 
the reactor is an important quantity, it is controlled by two temperature controllers 
(TC1 and TC2) via the input streams and a cascade loop with FC1. The level of the 
reflux tank is controlled to avoid overflowing, while the pressure in the column is 
controlled through the inflow of inert gas in the recycle path. 
It is important to note the sampling period. If the sampling interval is too long, then 
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fast dynamics might be lost when capturing the data. Normal industrial sampling 
intervals are 30 seconds or 1 minute for logged data. The data in the industrial 
example is in these terms logged relatively fast, with a sampling interval of 10 
seconds. A set of six samples covers one minute of operating time.  
 

Tag name σx % 
PC1.PV 0.6% 
LC1.PV 0.2% 
TC1.PV 0.3% 
FC1.PV 0.1% 
TI1.PV 1.1% 
TC2.PV 0.3% 
TI2.PV 0.1% 
PI1.PV 0.5% 
PI2.PV 0.8% 

 
Table 1:  Plant variability statistics as percentage of average 

 
3.  TIME TREND INFORMATION 
 
Process insight can be gained from simple visual inspection of the time trend. It is 
useful to combine a number of time trends in one graph, as shown for the industrial 
example in Figure 2. Plotting the time trend of several measurements in one graph 
shows similar features that are not easily seen when examining one time trend at a 
time. The time trends of the process variables and controller outputs in Figure 2 show 
the presence of a fast oscillation in all the temperature measurements around the 
reactor column as well as in the reactor pressure PC1. The setpoint is not shown in 
Figure 2, since no changes in setpoint occurred within the captured time frame. Level 
LC1 exhibits a high frequency noise and pressure PI1 long term fluctuations. 
Pressure PI2 and temperature TI2 appear to be highly quantized – that is, only 
discrete amplitude levels are adopted. Quantization occurs if the analogue-to-digital 
converter (ADC) has a large measurement quantity assigned to the least significant 
bit (LSB) relative to the total variation. If quantization appears in the time trend, 
data-driven analysis has to be taken into consideration, as the time trend is distorted. 
Quantization is often a problem in temperature measurements, due to low accuracy. 

3.1  Variability analysis 
Assessing the variability is useful to evaluate the extent and severity of a disturbance. 
However, if used as an absolute value, variability can be misleading, and it must 
therefore be compared to the average value of the variable. The variability is 
measured by the standard deviation, as follows:  
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where xn is the process variable at time sample n, N is the number of samples, and 
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xavg is the average value of the process variable. The standard deviation is interpreted 
in relative terms – that is, as a percentage of the average of the process variable (% 
coefficient of variation).  
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Table 1 lists the standard deviation for the industrial case study. The plant variability 
is less than 1% for most variables, and therefore not necessarily severe. The highest 
variability can be observed for temperature TI1 at the reactor column. For large 
differences in variability, the process variable that exhibits the highest standard 
deviation may most likely be the root cause. In the industrial example only small 
differences in variability can be observed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3:  Autocovariances and integrated absolute error of process variables 

3.2  Oscillation analysis 
Common disturbances in the time trend that give particular rise for concern are 
oscillations. Oscillations can be caused by inappropriate tuning or by hardware 
problems such as valve stiction [9]. A real-time oscillation detection method 
presented by Hägglund [10] investigates the time between zero-crossings, and thus 
determines whether a time trend exhibits oscillation. The main computation of the 
statistic is the calculation of the integrated absolute error (IAE) defined by the 
following expression: 
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where Yk is the autocovariance of the controller error signal at time shift k. 
Furthermore, ki and ki+1 are the times of successive zero crossings of Yk. The 
autocovariance is used instead of the time trend to remove high frequency noise 
effects. The autocovariance measures the similarity of a signal with a time-shifted 
version of the same signal, and can be derived from the process variable time trend x 
with N samples, as follows: 
 

∑
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An interval between two zero crossings is defined as iii kkk −=Δ +1 . Regularity is 
assessed by the use of a statistic q which is defined as follows: 
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where the ratio R between adjacent intervals Δk is as follows: 

 
Tag name q Tp 
PC1.PV 4.15 16.9 
LC1.PV 0.63 4.2 
TC1.PV 3.20 16.9 
FC1.PV 0.77 8.8 
TI1.PV 0.64 24.5 
TC2.PV 4.97 17.0 
TI2.PV 1.84 16.9 
PI1.PV 0 0 
PI2.PV 0.49 153.1 

Table 2: Oscillation index q and period of oscillation 
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and from which the average value Ravg as well as the standard deviation Rσ̂  are 
derived as in Equation (1). ξ in Equation (5) is the threshold for detection, and should 
be set to 2/π if sinusoidal oscillations with unit amplitude are present in the presence 
of noise and r.m.s value of 1 [11]. A regularity index q that is significantly larger 
than 1 indicates oscillation. The oscillation period of the signal can be calculated 
from the detected intervals between the zero-crossings, as follows: 
 

avgp kT Δ⋅= 2           (7) 
 
Figure 3 shows the autocovariances and the IAE for the process variables. A 
sinusoidal oscillation with a similar period can be seen in the temperature 
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measurements, as well as in the pressure in the column, PC1. The IAE shows the 
position of all zero crossings that occur at regular intervals for the variables with the 
sinusoidal oscillation. Table 2 shows the oscillation index q and the period of 
oscillation Tp. Four variables have an oscillation index significantly larger than 1, 
namely PC1, TC1, TC2 and TI2. The period of oscillation for these variables is 
approximately 16.9 samples, that is, around 169 seconds, or slightly less than 3 
minutes. A three-minute oscillation is considered fast in most chemical processes. 
TI1, however, clearly shows the same rapid oscillation in the autocovariance 
function. The three-minute oscillation is, however, superimposed on a slower 
oscillation with higher amplitude, and it is therefore not picked up by the oscillation 
index.  
 
4.  FREQUENCY SPECTRA 
 
The advantage of the oscillation index described in the previous section is that 
oscillations can easily be detected, and the index can be used as an online monitoring 
tool. In fact, the frequency spectrum analyses the frequencies contained in a time 
series. The frequency spectrum is derived via the discrete Fourier transform (DFT), 
as follows [12]: 
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where N is the number of samples of time trend xn and i indicates an imaginary 
number. The resulting sequence Xm, m = 1…N, is complex – that is, it has an 
imaginary and a real part. Only the absolute values of Xm, |Xm|, will be regarded in 
the following, and are often referred to as the power spectrum. The power spectrum 
reflects the intensity with which a sinusoidal function with frequency 2πm/N is 
contained in the time sequence xn. 
 
Figure 4 shows the power spectra of all process variables and controller outputs in 
the industrial example. The fast oscillation that was detected with the oscillation 
index can be seen as clear peaks in the temperature measurements TC1, TC2, TI1, 
and TI2, as well as in the column pressure PC1 and, to a lesser extent, in the reflux 
tank level LC1. The same frequency peak can be seen in the power spectra of the 
controller output signal of PC1, LC1, and TC2. The power spectra also reveal a rapid 
oscillation in the reflux tank level LC1 and the reactor pressure PC1. In the 
following, several approaches to analyzing the frequency spectrum in order to extract 
information about the process will be discussed. 
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Figure 4:  Power spectra of process variables and controller outputs for the 
measurements indicated in Figure 1 

 

4.1  Drill-down tool 

The frequency spectrum can be used to identify similar process variables, and thus be 
used as a drill-down tool to focus on a smaller number of process variables that show 
oscillations with the same oscillation period. The root cause of the oscillation is 
expected to be close to one of the oscillating process variables. In the industrial 
example, the analysis can be focused on the temperatures in the reactor column 
(TC1, TC2, TI1, TI2) as well as the pressure PC1, since the oscillation is most 
prominent in those measurements.  

4.2  Root cause analysis 
The height of a frequency peak in the frequency spectrum can be seen as the strength 
of the oscillation present in a signal. High amplitudes in the oscillation can be an 
indication that the variable is close to the root cause, since the oscillation is often 
attenuated as the disturbances travel through the process. This guideline, however, 
has to be viewed with caution, since in a first signal only one disturbance may be 
present, while in a second signal, several disturbances might be present. The 
frequency peak in the first will automatically be lower, no matter whether the 
variable is closer to or further away from the root cause. In the industrial example, 
for which the frequency spectrum is shown in Figure 4, the highest frequency peaks 
for the 16.9 sample oscillation can be observed for pressure PC1 and temperatures 
TC1 and TC2. Since these are all measurements at the top of the reactor column, it is 
likely that this part of the process is closest to the root cause. Further investigation 
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showed that the oscillation was caused further upstream and entered the process 
through the feed into the reactor. The 4 sample oscillation shown in Figure 4 can be 
seen both in LC1, the reflux tank level, and in PC1, the pressure at the top of the 
column. Since the oscillation is significantly stronger in the level measurement, this 
variable is more likely to be closest to the root cause. 

 

 

Figure 5:  Non-sinusoidal, oscillating signal and frequency spectrum 
 

4.3  Analysis of several oscillations in one signal 
 
One advantage of frequency analysis is that several oscillations present in the same 
time trend can be detected and investigated. For example, LC1 shows the 16.9-
sample oscillation, the 4 sample oscillation, and some low frequency components 
that can be clearly identified in the frequency spectrum. The analysis of multiple 
oscillations could not be achieved by the oscillation index. The frequency spectrum, 
however, is an off-line analysis tool, since all the data has to be gathered to conduct 
the analysis.  
 
4.4  Harmonics as indication of nonlinearity 
 
Oscillations that are not of a sinusoidal nature show frequency peaks not only at the 
oscillation frequency, but also at a multiple thereof. The frequency peaks at the 
multiples of the oscillation frequency are called harmonics. Process variables with 
harmonics are often nonlinear [6] and tend to be close to the root cause. The reason 
for this is that the higher frequency components are often removed as the disturbance 
travels through the process. This is because most processes act as low pass filters, 
which let low frequency components pass while high frequency components are 
suppressed. Since none of the disturbances in the industrial case study were 
significantly different from a sinusoid, and hence showed no harmonics in the 
frequency spectrum, a further process variable is used to show the harmonics. The 
top panel of Figure 5 shows the time trend of a process variable with a non-
sinusoidal oscillation of around 24 samples. The lower panel of Figure 5 shows the 
frequency spectrum, and the main oscillation can be seen at around 48 per sample. 
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However, further peaks – the harmonics – can be observed at 2x48=96 and 
3x48=146 per sample.  
 
5.  CONCLUSIONS 
 
In this paper, a systematic approach to analyzing historical operational data from a 
chemical process was presented. First, an inspection of the time trend for 
disturbances was conducted, and the extent of variability as a percentage of the mean 
was assessed. Process variables that show an excessive variability were flagged. In a 
next step, an oscillation index can be computed to establish the oscillatory behavior 
of a variable. The oscillation index estimates both regularity and period of the 
oscillation. In the case of more than one oscillation in the signal, a frequency analysis 
can be conducted. Frequency analysis further assists in the identification of the root 
cause, and can help to focus on a reduced number of process variables. The data is 
thereby retrieved from the data graveyard and turned into concise process 
information. 
 
An industrial case study was presented of a process at Eastman Chemical Company. 
The measurements in the process were affected by a number of oscillatory 
disturbances. The variability analysis showed that the disturbances, though 
persistent, did not have a large impact on the process variables. However, since the 
disturbance affected temperatures in the central reactor column (which are critical to 
the reaction), the effect cannot be ignored. The oscillation index identified four 
variables that were affected by an oscillation with the same period of 16.9 samples. 
Frequency analysis confirmed the result, and identified a further rapid oscillation in 
the reflux tank level. The analysis indicated that the disturbance originated from the 
top of the reactor column. Further investigation showed that the disturbance was 
caused further upstream in the plant by an incorrectly tuned split-range controller, 
and entered the process through the feed. The data-driven analysis methods could 
therefore successfully identify the disturbance origin. 
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