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ABSTRACT 

This paper proposes a process capability index-based control chart 
for variables using the Downton estimator with a specified Cp value. 
The proposed chart is able to address the issue of control and 
capability simultaneously. We also provide a control chart constant 
to construct the process capability index-based control chart. A 
numerical example is presented to demonstrate the application of 
the proposed chart, and the effect of non-normality is discussed. 
The result shows that the proposed control chart performs better in 
monitoring and assessing processes, and eliminates the usual two-
stage procedure reflected in the literature. 

OPSOMMING 

‘n Prosesvermoë indeksgebaseerde beheerkaart word voorgestel vir 
veranderlikes met gebruik van die ‘Downton’ beramer met ‘n 
gespesifiseerde Cp waarde. Die voorgestelde beheerkaart kan die 
kwessie rondom die beheer en vermoë gelyktydig aanspreek. ‘n 
Beheerkaartkonstante word ook verskaf om die prosesvermoë 
indeksgebaseerde beheerkaart te skep. ‘n Numeriese voorbeeld 
word voorgehou om die toepassing van die voorgestelde 
beheerkaart te illustreer.  Die effek van nie-normaliteit word ook 
bespreek. Die resultaat toon dat die voorgestelde beheerkaart beter 
vertoon in die monitering en assessering van prosesse en dit 
elimineer die gewone twee stap prosedure wat in die literatuur 
gevind word. 

 

1 INTRODUCTION 

An organisation’s desire to increase its profit margin often leads to greater competition, with the 
focus on reducing variability in the process, and on manufacturing products that meet the 
organisation’s specifications and the expectation of the customers. To achieve this, the process 
must first be made stable; following this, a sampling inspection is sometimes instituted to ascertain 
the quality of the product. However, it is observed that the stability of a process does not necessarily 
translate into a product meeting the specifications of the organisation or the end-users. 
 
In order to establish the stability of the process, control charts are employed to detect assignable 
causes of variation and, where they exist, these are identified and corrective action is taken. When 
the control chart establishes the stability of the process, especially retrospectively, they are then 
deployed for future monitoring of the process. It is worth stating that control charts can also be 
used to examine whether the process is capable of producing acceptable products that meet the 
specifications, so that the return of products is minimised. This is achieved when the control chart 
is used together with the process capability indices. Different process capability indices have been 
proposed by different researchers. A detailed review of process capability indices can be seen in 
Kotz & Johnson [1], and a bibliography of process capability papers is found in Spiring, Leung, Cheng 
& Yeung [2] and Yum and Kim [3]. 
 
The usual underlying distribution assumptions about process capability indices are that they are 
based on the normal distribution of process output. However, in practice, most quality 
characteristics violate the normality distribution assumptions, and the accuracy of capability indices 
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such as Cp and Cpk (which are widely used) become doubtful and often lead to an erroneous 
interpretation of the process capability. Montgomery [4] stated: “If the underlying distribution is 
non-normal, then statements about expected process fallout attributed to a Cp value may be in error 
and one approach is to transform the data so that transformed data have a normal distribution”. 
However, it is difficult to interpret the capability of the process in terms  of the original data when 
using the transformed data. Many researchers have considered methods to determine the process 
capability of a non-normal process output. (See Chan, Cheng & Spiring [5]; Clements [6]; Rodrigues 
[7]; English & Taylor [8]; Castagliola [9]; and Chang, Choi & Bai [10].) 
 
Although the process capability indices (PCIs) can be used to predict the performance of the process, 
they do not give information about its stability (i.e., whether it is in-control or out-of-control). They 
are only applicable after the process has been brought into a state of statistical control using control 
charts. This is usually a two-stage procedure during which the performance of the process is assessed 
for stability and capability. 
 
In this paper, we develop a single control chart that can determine the stability of the process and 
assess its capability for variables, based on the specified process capability index Cp, using the 
Downton statistic as the estimate of the process standard deviation 𝜎. The performance of the 

proposed chart is compared with the usual two-stage procedure of using control charts (𝑋̅ and R) 
and the Cp index. 
 
The process capability index Cp  and the Downton statistic, as an unbiased estimator of 𝜎,  are given 
in Sections 2 and 3. The derivation of the control limits and necessary control chart constants for 
𝑛 ≤ 10  are given in Section 4. Numerical examples of real-life data and simulated non-normal 
process data to demonstrate the proposed chart superiority are given in Sections 5 and 6. Section 7 
gives the conclusion of the study. 

2 THE CP INDEX 

The capability index Cp is presented in the literature as forming a complementary measure of process 
performance; but it does not address the issue of statistical control. It is defined for a quality 
characteristic with upper specification limits (USL) and lower specification limits (LSL) as  
 

 𝐶𝑝 =
𝑈𝑆𝐿−𝐿𝑆𝐿

6𝜎
 (1) 

 
where  6𝜎 is the basic definition of process variability. In an industrial application, the process 
standard deviation 𝜎  is almost always unknown and is estimated from process data. To estimate the 

process variability 𝜎, either 
𝑅̅

𝑑2
 or  

𝑠̅

𝑐4
  is computed when variable control charts are to be used in the 

capability study. A 𝐶𝑝 ≥ 1  is often desirable [11], which means that relatively few non-conforming 

items will be produced by the process. 

3 DOWNTON ESTIMATOR  

The Downton estimator was first introduced by Downton [12] as an estimator for the standard 
deviation of a normal population. Barnett, Mullen & Saw [13] showed that Downton’s statistic is an 
unbiased estimator of 𝜎 . Let 𝑋1, 𝑋2, … … 𝑋𝑛 represent a random sample of size n from a normal 

distribution with mean 𝜇 and standard deviation 𝜎; that is, let 𝑋~𝑁(𝜇, 𝜎2) and the corresponding 

order statistic be denoted by 𝑋(1), 𝑋(2), … … 𝑋(𝑛) where 𝑋(1) ≤ 𝑋(2) … … . . ≤ 𝑋(𝑛).  The Downton’s 

estimator is defined ([12], [14], [15], [16]) as 
 

 𝐷 = √𝜋 ∑
(2𝑖−𝑛−1)𝑋(𝑖)

𝑛(𝑛−1)
𝑛
𝑖=1  

 𝐷 =
2√𝜋

𝑛(𝑛−1)
∑ [𝑖 −

1

2
(𝑛 + 1)] 𝑋(𝑖)

𝑛
𝑖=1  (2) 
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Abbasi and Miller ([15], [16]) developed a control chart for process variability 𝜎, based on the 

Downton statistic, where the unbiased estimator for 𝜎 is given as 𝜎̂ = 𝐷̅, which is used in this study. 

𝐷̅ = 
1

m

j

j

D

m




 for m is a preliminary number of the subgroup, and D is defined as in (2).  

4 DESIGN OF PROPOSED CONTROL CHART WITH SPECIFIED CP 

In this section we describe the control chart limits for the process mean and variability, based on 
the Downton estimator (following the idea of Abbasi and Miller ([15], [16]), and Adeoti, Olaomi & 
Adekeye [17]). The knowledge of the control chart limits is used to derive the process capability 
index-based control chart. The control chart limits for variability, based on the Downton statistic — 
known as the D chart and derived by Abbasi and Miller ([15], [16]) are given as: 
 

 𝐿𝐶𝐿 = 𝑚𝑎𝑥(0, 𝐷̅ − 3𝑧3𝐷̅) =  𝑍3𝐷̅ 
 𝐶𝐿 = 𝐷̅ (3) 

𝑈𝐶𝐿 = 𝐷̅ + 3𝑧3𝐷̅ = 𝑍4𝐷̅ 
 
The corresponding control chart limits for the mean derived by Adeoti, Olaomi & Adekeye  [17] are 
given as 
 

  𝐿𝐶𝐿 = 𝑋̅𝐷 − 𝐴𝐷̅  
  𝐶𝐿 = 𝑋̅𝐷 (4) 

 𝑈𝐶𝐿 = 𝑋̅ + 𝐴𝐷̅  

where  𝑍3 = 1 − 3𝑧3  , 𝑍4 = 1 + 3𝑧3, 𝑧3 =
1

√𝑛(𝑛−1)
√𝑛 (

1

3
𝜋 + 2√3 − 4) + (6 − 4√3 +

1

3
𝜋)  and 𝐴 =

3

√𝑛
 

 

Recall that we defined Cp in (1) as   𝐶𝑝 =
𝑈𝑆𝐿−𝐿𝑆𝐿

6𝜎
 .  So an unbiased estimator of  𝜎 , defined by Abassi 

and Miller [15], is used in (1). Thus, Cp  becomes    
 

 𝐶𝑝 =
𝑈𝑆𝐿−𝐿𝑆𝐿

6𝐷̅
=

𝑇

6𝐷̅
 (5) 

 

From  (5) we obtain 𝐷̅ =
𝑇

6𝐶𝑝
= 𝐶∗ 𝑇

𝐶𝑝
 , giving 𝐶∗ =

1

6
 (6) 

 
Subtituting (6) into  (3) and (4), we obtain control limits for the variability chart as 
 

 𝑈𝐶𝐿 =   
𝑍4𝑇

6𝐶𝑝
    =  𝑍4

∗ 𝑇

𝐶𝑝
    

 𝐶𝐿 =  𝐶∗ 𝑇

𝐶𝑝
  (7) 

 𝐿𝐶𝐿 =  
𝑍3𝑇

6𝐶𝑝
    =  𝑍3

∗ 𝑇

𝐶𝑝
    

The control limits of the corresponding mean chart are given as 
 

 𝑈𝐶𝐿 = 𝑋̅𝐷 +  
𝐴𝑇

6𝐶𝑝
     = 𝑋̅𝐷 + 𝐴∗ 𝑇

𝐶𝑝
 

 𝐶𝐿 = 𝑋̅𝐷 (8) 

 𝐿𝐶𝐿 = 𝑋̅𝐷 − 
𝐴𝑇

6𝐶𝑝
     = 𝑋̅𝐷 − 𝐴∗ 𝑇

𝐶𝑝
 

where 𝑍4
∗ =

𝑍4

6
 ,  𝑍3

∗ =
𝑍3

6
  and  𝐴∗ = 

𝐴

6
 

 
The value of  𝑍3 , 𝑍4 , 𝑍3

∗, 𝑍4
∗, and 𝐴∗ for sample size n (2 ≤ 𝑛 ≤ 10) are presented in Table 1. The 

proposed control charts can be used to evaluate the stability of the process and to measure the 
capability of the process for a specified Cp value. 
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Table 1:   Constant factors for variable control chart with specified Cp value  

Sample 
size, n 

A 𝐴∗ 𝑍3 𝑍4 𝑍3
∗ 𝑍4

∗ 

2 2.121 0.3535 0 3.268 0 0.5447 

3 1.732 0.2887 0 3.022 0 0.5037 

4 1.500 0.2505 0 2.872 0 0.4787 

5 1.342 0.2241 0 2.794 0 0.4657 

6 1.225 0.2046 0 2.743 0 0.4572 

7 1.134 0.1894 0 2.710 0 0.4517 

8 1.061 0.1768 0 2.686 0 0.4477 

9 1.000 0.1667 0.809 1.191 0.1348 0.1985 

10 0.949 0.1582 0.813 1.187 0.1355 0.1978 

5 ILLUSTRATION 

A real-life data set is taken from a hard-bake process, used with photolithography in a semiconductor 
manufacturing process described by Montgomery [4]. This data is applied to demonstrate the 
application of the proposed chart based on the Downton’s estimator. Twenty-five samples, each of 
size 5, are taken to monitor the process. The summary statistics for the 25 subgroups are given in 
Table 2. 

Table 2:  𝑿̅, R, and Downton values for data set in Montgomery [4] 

Sample 
number 

𝑿̅ R D 

1 1.5119 0.3679 0.1768 

2 1.4951 0.2517 0.1204 

3 1.4817 0.1390 0.0600 

4 1.4712 0.3521 0.1543 

5 1.4882 0.3706 0.1533 

6 1.4492 0.2674 0.1280 

7 1.5805 0.4189 0.1699 

8 1.5343 0.2447 0.1180 

9 1.5076 0.3589 0.1533 

10 1.5134 0.2658 0.1047 

11 1.5242 0.3509 0.1553 

12 1.5284 0.4204 0.1829 

13 1.3947 0.4470 0.1866 

14 1.5261 0.2422 0.1025 

15 1.4083 0.3499 0.1702 

16 1.5344 0.6823 0.2520 

17 1.4874 0.3589 0.1459 

18 1.4573 0.3153 0.1420 

19 1.5777 0.3062 0.1338 

20 1.5060 0.5240 0.2439 

21 1.4691 0.2185 0.0894 

22 1.5390 0.1863 0.0873 

23 1.5592 0.2533 0.1008 

24 1.5688 0.1156 0.0441 

25 1.5264 0.3224 0.1587 

Mean 1.5056 0.3252 0.1414 

 
Now, to assess the capability of the process — assuming that the USL and the LSL are given as 
USL=2.00 and LSL=1.00 — the usual two-stage procedure is to use the control chart to assess the 
stability of the process. The capability index Cp is then used to assess the process capability once 

the process is stable. We obtained the following control limits for 𝑋̅ and R charts and the Downton 

statistic-based charts 𝑋̅𝐷 and D as follows: 
 

𝑿̅ chart 

 𝑈𝐶𝐿 = 𝑋̅ + 𝐴2𝑅̅  =1.5056 + (0.577)(0.3252)= 1.6932 

 𝐶𝐿 = 𝑋̅ = 1.5056 

 𝐿𝐶𝐿 = 𝑋̅ − 𝐴2𝑅̅  =1.5056 - (0.577)(0.3252)= 1.3180 
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R chart 

 𝑈𝐶𝐿 = 𝐷4𝑅̅= (2.115)(0.3252) = 0.6878 

 𝐶𝐿 = 𝑅̅ = 0.32          

 𝐿𝐶𝐿 = 𝐷3𝑅̅= (0)(0.3252) = 0 
 

   

 Figure 1: R control chart for real-life data Figure 2:  𝑿̅ control chart for real-life data 
(see online for colour images) 

𝑿̅𝑫 chart 

 𝑈𝐶𝐿 = 𝑋̅𝐷 + 𝐴𝐷̅  = 1.5056 + (1.342)(0.1414) =1.6954 

 𝐶𝐿 = 𝑋̅𝐷   =  1.5056         

 𝐿𝐶𝐿 = 𝑋̅𝐷 − 𝐴𝐷̅ = 1.5056 – (1.342)(0.1414) =1.3158 
 

D  chart 

 𝑈𝐶𝐿 = 𝑍4𝐷̅ = 2.794(0.1414)= 0.3951 

 𝐶𝐿 = 𝐷̅   =  0.1414                                                       

 𝐿𝐶𝐿 =  𝑍3𝐷̅ = 0(0.1414)=0       
 

    

 Figure 3: 𝑿̅𝑫 control chart for real-life data Figure 4: D control chart for real-life data 
(see online for colour images) 

Figures 1 and 2 show that the process is in-control (stable) for 𝑋̅ and R charts, and Figures 3 and 4 

also show that the process is in-control (stable) for the 𝑋̅𝐷 and D control charts, as none of the 
sample points plot beyond the control limits; a capability study can thus be undertaken on the 
process. 
 

The 𝐶𝑝 index for 𝑋̅ and R charts is obtained as 

 

 𝐶̂𝑝 =
𝑈𝑆𝐿−𝐿𝑆𝐿

6𝜎
=  

2.00−1.00

6(0.1398)
 =  1.192  ≅ 1.2 

where 𝜎̂ =
𝑅̅

𝑑2
=

0.3252

2.326
= 0.1398 

while the corresponding 𝐶𝑝 index for 𝑋̅𝐷 and D control charts is obtained as 

 

 𝐶𝑝 =
𝑈𝑆𝐿−𝐿𝑆𝐿

6𝜎
=

2.00−1.00

6(0.1414)
= 1.179  ≅ 1.2 
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where  𝜎̂ = 𝐷̅ = 0.1414 
 
The process is capable of producing acceptable products that meet the specifications for both 

charts, since 𝐶𝑝 ≥ 1 [11]. 

 
We now apply our proposed single process capability index-based control chart in (7) and (8) with a 
specified Cp value of 1.2, which would have been obtained, assuming the usual two-stage procedure, 
to demonstrate the application of the proposed method. The control chart limits are given as:   
 

Mean (𝑿̅𝑫) Chart 

 UCL= 1.5056 + 0.2241 (
1.00

1.2
) = 1.6923 

 CL = 1.5056 

 LCL = 1.5056 - 0.2241 (
1.00

1.2
) = 1.3188 

 
Variability(D) Chart 

 𝑈𝐶𝐿 =  𝑍4
∗ 𝑇

𝐶𝑝
   =  0.4657  (

1.00

1.2
) =0.3881 

 𝐶𝐿 =  𝐶∗ 𝑇

𝐶𝑝
 = 0.1667(

1.00

1.2
) = 0.1389                  

 𝐿𝐶𝐿 = 𝑍3
∗ 𝑇

𝐶𝑝
  = 0 (

1.00

1.2
)  = 0       

 

   

Figure 5: PCI-based control chart for mean Figure 6: PCI-based control chart for variability 
(see online for colour images) 

Figures 5 and 6 are control charts to monitor the mean and variability of the process using the 
proposed control charts. It is important to note that if any sample(s) of the process is(are) beyond 
the control limits, this implies that the process data is unstable and incapable of producing products 
to meet the organisation’s specifications. In this example, none of the sample numbers exceeded 
the control limits, so the process is stable (in-control) and can meet the organisation’s 
specifications.  

6 EFFECT OF NON-NORMALITY 

In the literature, the assumption for using the capability index is that it is normal; so we now 
evaluate the performance of our proposed chart when there is a deviation from the normality 
assumption. To achieve this, a non-normal process environment — a gamma distribution — is 
simulated using MATLAB 7.10, presented in Table 3. 
 

Now, assuming that USL=6.5 and LSL=1.5, we wish to have a Cp value of 1 (since 𝐶𝑝  ≥ 1 is desirable). 

The control chart limits using the 𝑋̅ and R control charts are given as follows:            
 

𝑿̅ chart 

 UCL=  X̅ + A2R̅  = 1.0907 + (0.577)(1.8058)= 2.1326 

 CL=  X̅ = 1.0907 

 LCL=  X̅ − A2R̅  =1.0907 + (0.577)(1.8058)= 0.0488 
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R chart 

 UCL=  D4R̅= (2.115)(1.8058) = 3.8193 

 CL= R̅ = 1.8058 

 LCL=  D3R̅= (0)(1.8058) = 0 

Table 3: Simulated data from Gamma(0.5, 2) distribution 

Sample X1 X2 X3 X4 X5 𝑋̅ D R 

1 2.6661 0.8141 1.3687 0.6665 1.4557 1.3942 0.8223 1.9996 

2 1.5229 1.3077 0.6857 0.4067 0.0527 0.7951 0.6807 1.4702 

3 0.2422 1.7740 0.2846 1.2061 1.0677 0.9149 0.7062 1.5318 

4 1.0746 0.8843 0.9029 0.8551 1.1602 0.9754 0.1418 0.3051 

5 4.7285 0.3014 3.7633 1.6936 0.9276 2.2220 2.0840 4.4271 

6 0.7933 2.2658 0.9602 0.6548 1.5228 1.2394 0.7002 1.6110 

7 0.7079 1.0968 0.1047 0.6754 1.1629 0.7495 0.4497 1.0582 

8 2.2122 1.7827 0.1288 0.6622 0.6353 1.0842 0.9417 2.0834 

9 2.1237 0.8545 0.3815 0.3476 1.7001 1.0815 0.8631 1.7761 

10 0.2717 1.7648 0.5289 0.5342 1.9407 1.0081 0.8105 1.6690 

11 2.3907 0.8900 0.5028 1.6236 0.7903 1.2395 0.8167 1.8879 

12 1.6955 0.4401 1.4075 0.8205 0.7006 1.0128 0.5702 1.2554 

13 0.6524 3.4576 0.7142 0.4170 0.8483 1.2179 1.1123 3.0406 

14 0.4214 1.4155 0.4004 0.7503 1.4884 0.8952 0.5617 1.0880 

15 0.2905 1.5486 0.3152 2.0454 1.1725 1.0744 0.8405 1.7549 

16 0.4124 0.2163 0.9160 0.5080 1.3055 0.6716 0.4753 1.0892 

17 2.1493 1.1899 0.2715 0.3971 0.3297 0.8675 0.8179 1.8778 

18 0.4348 0.7131 1.4876 3.7585 1.0477 1.4883 1.3152 3.3237 

19 0.6870 1.0361 0.3199 1.0480 1.2121 0.8606 0.3802 0.8922 

20 1.0520 2.3357 0.6695 0.3902 0.3614 0.9618 0.8169 1.9743 

 

     

Figure 7: 𝑿̅ control chart for simulated data Figure 8: R control chart for simulated data 
(see online for colour images) 

It is clearly seen from Figures 7 and 8 that the process is not stable (out-of-control). Process 
capability studies can therefore not be undertaken, as they are affected by a deviation from 
normality. However, applying our proposed single control chart, the mean control chart limits are 
given as   

Mean (𝑿̅𝑫) chart 

 UCL= 1.0907 + 0.2241 (
5.0

1.0
) = 2.2112 

 CL = 1.0907 

 LCL = 1.0930 - 0.2241 (
5.0

1.0
) = 0 

 
The corresponding variability control chart limits are given as 
 

Variability (D) chart 

 𝑈𝐶𝐿 =  𝑍4
∗ 𝑇

𝐶𝑝
   =  0.4657  (

5.0

1.0
) =  2.3285 

 𝐶𝐿 =  𝐶∗ 𝑇

𝐶𝑝
 = 0.1667(

5.0

1.0
) =  0.8335                                                                                       

 𝐿𝐶𝐿 = 𝑍3
∗ 𝑇

𝐶𝑝
  = 0 (

5.0

1.0
)  = 0 
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It is evident that the proposed method is not affected by a departure from normality in Figures 9 
and 10. It is able to assess the capability of the process as long as the specification limits can be 
adjusted and the minimum Cp value of 1 for capability is assured. It can thus be used effectively to 
monitor and assess the capability of a process without the two-stage procedure of separately 
monitoring and then assessing the capability of a non-normal process situation. Moreover, it allows 
management to adjust either the given specification limits or the Cp value so that the process can 
be seen to be stable; and it has the potential to manufacture products meeting the specifications. 
Considerable time needed by operators (practitioners) is thus saved. A method where capability 
determines stability, as opposed to stability determining capability (which is available in the 
literature), is thus derived. 
 

   

Figure 9: Capability index control chart for Figure 10: Capability index control for 
 mean variability (see online for colour images) 

7 CONCLUSION     

In this paper we have proposed a single control chart to monitor and assess the capability of the 
process. The method involved the use of the process capability index, based on estimating the 
process standard deviation using Downton’s statistic. The proposed chart is effective for monitoring 
and assessing the capability of a process, as it eliminates the two-stage procedure of stability and 
capability. It also allows management to vary the specification limits to achieve stability and 
capability, as long as the minimum capability index value is achieved. Finally, it is effective for 
normal and non-normal process situations. We hope that operators will be encouraged to adopt the 
single process capability-based control chart using Downton’s statistic for online monitoring of 
normal and non-normal processes and capabilities of processes. 
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