
South African Journal of Industrial Engineering Nov 2007 Vol 18(2): 93-108

A SOFTWARE RELIABILITY GROWTH MODEL FOR VITAL
QUALITY METRICS

R. Subburaj1, G. Gopal2 and P.K.Kapur3

1Electronics Test and Development Center (ETDC) and

Center For Reliability (CFR), India
Subburaj_spr@yahoo.com

2Department of Statistics
University of Madras, India

govgopal@yahoo.com

3Department of Operational Research
University of Delhi, India

pkkapur1@gmail.com

ABSTRACT

A Non-Homogenous Poisson Process (NHPP) model whose failure intensity function
has the same mathematical form as that of a generalized exponential function was
proposed for application as a Software Reliability Growth Model (SRGM). However,
in order to facilitate collecting quality metrics pertaining to the degree of imperfect
or efficient debugging phenomena and the number of faults left in the software, in
this paper the authors propose an extension to the above SRGM. This SRGM enables
adequate goodness of fit statistic and predictive validity, even when the software
projects witness learning phenomenon of the testing team, either imperfect or perfect
or efficient software debugging phenomenon, as well as wide fluctuations in time
between failures – either occurring alone or in combinations thereof.

OPSOMMING

'n Nie-homogene Poissonproses (NHPP) waarvan die mislukkingsdigtheidsfunksie
soortgelyk is aan 'n algemene eksponensiële funksie word voorgehou as 'n
programmatuur-betroubaarheidsgroeimodel (PBGM). Die model lewer toereikende
passingsgoedheid en voorspellingsgeldigheid onder uiteenlopende leereienskappe
van toetsers, swak of goeie ontfouting van programmatuur, en groot verskille tussen
waardes van tyd tussen mislukkings. Die outeurs stel ook voor dat die goedheid van
ontfoutingsaksies gemeet word met behulp van 'n uitbreiding van die PBGM-model.

http://sajie.journals.ac.za

94

1. INTRODUCTION

Software Reliability Growth Models (SRGMs) find wide use in the software industry
to measure reliability growth achieved during system testing, as well as to determine
when to stop testing based on the reliability growth achieved. Some of these models
also provide information on the quality of the testing and debugging processes, and
can be used to study the level of competence exhibited by the various teams in the
project. The models can be used to determine the quality of development process in
terms of the number of faults in the software at the beginning of a system test, as
well as to quantify the number of faults remaining in the software when it is released
for operational use, so as to plan for maintenance.

Most SRGMs assume, for the sake of simplicity, perfect debugging – that is, when a
failure is observed, the corresponding fault is identified and corrected with certainty,
and no new faults are introduced [1]. According to Ohba and Chou [2], it is not
realistic to assume that faults in a program are completely removed, since new errors
are sometimes introduced when an error that was originally in the software is
removed in response to to a failure. They propose an extension to the Goel-Okumoto
(G-O) SRGM to eliminate the assumption of perfect debugging. They propose an
additional parameter β such that 0 ≤ β < 1, as the probability of introducing new
errors when fixing a detected error.

Kapur and Garg [3] note that when a failure occurs, an attempt is made to correct the
cause of the failure. However, it is not always possible to find the cause and remove
it, owing to lack of sufficient knowledge about the software. They assume that on a
failure, the fault count is reduced by one with a probability p0, and fault contents are
unchanged with probability (1-p0). Owing to such imperfect debugging, one fault
may cause more than one failure. Thus, the number of failures at infinite testing time
will be more than the total number of faults in the software at the beginning of
testing.

When a failure occurs, sometimes the debugging team may also find and correct
other faults in addition to the one that caused the failure. We call this an efficient
debugging phenomenon since, subsequent to one failure, more than one fault is
detected and corrected. Kapur and Garg (1992) [4] proposed an SRGM for this type
of fault removal phenomenon with two mean value functions: one with an
exponential growth curve for the failure phenomenon, and another with an S-shaped
growth curve for the fault detection phenomenon. This leads to the situation that at
infinite testing time, the cumulative number of failures will be less than the total
number of detected faults, since some faults will be detected without their causing a
failure.

Imperfect debugging is in contrast with efficient debugging, and they address
mutually exclusive fault detection phenomena. However, inconsistency in the quality
of debugging means that the occurrence of both the phenomena at different times
during the execution of a project cannot be ruled out. In such cases, one has to look
at the nett result. It may be noted that in both cases, the perfect debugging
assumption made in many models [1] does not hold. Thus, the quality of debugging

http://sajie.journals.ac.za

95

can be classified into three categories: imperfect, perfect, and efficient debugging.
Only in the case of perfect debugging will the number of failures be equal to the
number of faults detected.

Furthermore, well-known Non-Homogenous Poisson Process models (NHPP) such
as Goel-Okumoto (G-O) [5], Musa’s Logarithmic Poisson Execution Time (LPET)
model and Basic Execution Time (BET) [6] model, and the Kapur-Garg model
(1992) [4] discussed above, as well as imperfect debugging models proposed by
Kapur and Garg (1990) [3] and Ohba and Chou [2] are based on the assumption that
failure intensity function decreases monotonically from the beginning of a system
test, and hence do not address initially increasing and then decreasing (I/D) patterns
of failure intensity function, observed in some projects owing to the learning
phenomenon of test teams. The failure intensity function of both Yamada’s delayed
S-shaped SRGM [7] and Ohba’s inflection S-shaped SRGM always assume an I/D
pattern [8]. Models such as Goel’s generalized NHPP model [5], and Log Power,
derived from the well-known Duane Model [9], which are proposed to address both
the above patterns of failure intensity variations, are at times sensitive to fluctuations
in the number of failures in the data sets, and sometimes even miss the I/D pattern
[10].

The generalized exponential Poisson model – the NHPP model with Generalized
Exponential (GE) function Rate of Occurrence of Failures (ROCOF) – proposed by
Subburaj and Gopal (S-G) [10] is found to fit failure data adequately from projects
which possess the following characteristics, either alone or in combinations:

• Learning phenomenon of test team leading to I/D pattern of failure intensity

function.
• Wide fluctuations in time between failures.
• Perfect debugging, or imperfect debugging, or efficient debugging.

This is owing to the advantages of Generalized Exponential distribution, such as
increased flexibility for analyzing skewed data sets facilitated by the scale and shape
parameters, increasing as well as decreasing hazard rate depending on the shape
parameter, and ability to fit better [11]. However, since the model is based on failures
and not faults, it does not give information about the degree of imperfect or efficient
debugging and the quality of the development process (total number of faults), as
well as the number of faults in the software at the time of product release. In this
paper, the authors propose a simple extension to the S-G model to derive all the
above quality metrics.

If an organization does not intend to collect the additional metrics discussed above, it
can continue to use the S-G model: it is simpler, with only three parameters – and
according to Ohba and Chou [2], the conventional SRGMs give fairly accurate
estimates, even in conditions when the perfect debugging assumption is not valid.
The reasons cited by them are given below:

• The new faults introduced while removing the initial faults might be negligibly

small.

http://sajie.journals.ac.za

96

• Estimation error might absorb the effect caused by the imperfect debugging.

This paper is organized as follows. In Section 2, we derive the proposed SRGM and
discuss the methodology for estimating its parameters for a given data set. In Section
3, we discuss the goodness of fit tests carried out on the proposed model and the
conclusions reached. A better predictive ability for the proposed model has been
established, and this is presented in Section 4. A comparison of the proposed
extended model with the original model proposed by Subburaj-Gopal is given in
Section 5, and a case study is offered in Section 6. The paper’s conclusions are given
in Section 7.

2. THE PROPOSED SRGM

2.1 NHPP models

The NHPP models have been quite successful tools in practical software reliability
engineering [12]. G–O proposed an NHPP model assuming perfect debugging of
faults, with no presence of learning phenomena in the testing. The mean value
function of this exponential growth model is given by [5]:

() ()[]btat −−= exp1μ a > 0, b > 0 and t > 0 (1)

where

a: number of inherent faults detectable at infinite testing time
b: rate of detection of new fault

In order to facilitate modeling the learning phenomenon, as well as strictly
decreasing the pattern of failure intensity function, and making the model robust to
handle fluctuations in time between failures, Subburaj-Gopal (S-G) extended the G-
O model. The mean value function of the S-G model is given by [10]:

()
β

θ
μ ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−=

tNt exp1 N > 0, β > 0, θ > 0 and t > 0 (2)

where

N: cumulative number of failures that will be observed over an infinite testing time
θ: scale parameter
β: shape parameter

The above models are based on the assumption that the debugging process is perfect.
However, in some projects it is possible that fault detection and correction are
sometimes erroneous and result in additional failures. In order to model imperfect
debugging, Kapur and Garg (1990) [3] and Ohba and Chou [2] separately proposed
similar imperfect debugging models. The mean value function for failures of the
models is of the following form:

http://sajie.journals.ac.za

97

() ()[]bpt
p
at −−= exp1μ 0 < p ≤ 1, a > 0, b > 0 and t > 0 (3)

where

p: probability of perfect debugging

If perfect debugging is witnessed in the project, then p will be equal to unity; if not, p
will be less than 1, but greater than 0. This model cannot capture the I/D pattern of
failure intensity function, arising out of the learning phenomenon.

Pham et al [12] show that faults are not always fully repaired and that new ones can
be introduced as part of the fault repair process. They further assume that the
learning of the testing team and imperfect debugging occur together at the same time,
and accordingly they have integrated learning and imperfect debugging in the PNZ
model they propose. In practice, it is found that the learning phenomenon of the
testing team and the imperfect debugging phenomenon are independent of each
other, and only in some cases do they occur together.

Zhang et al [13] note that when a failure occurs, a debugging effort is initiated
immediately with probability p. For each debugging effort, whether the fault is
successfully removed or not, some new faults may be introduced into the software
system with a probability β < p. They also assume that the fault detection rate b(t) is
a non-decreasing function with inflection S-shaped curve to capture the learning
process. Thus this model is also restrictive, since it is assumed that learning occurs
always with imperfect debugging. Their two case studies bring out a fault
introduction probability of 0.012 and 0.00054 respectively. These are quite small,
and will not have any effect on the model results reported by Ohba and Chou [2] and
Goel [5].

Zeephongsekul et al [14] show that when a primary failure occurs a, debugging
effort occurs immediately. That effort removes the fault with probability p0. For an
imperfect debugging of a primary failure, a secondary fault is introduced. When it is
detected, it is removed with probability q0.

A careful analysis of all the above previous work brings out the following:

• An increase in fault count owing to imperfect debugging is negligible
• A model should be capable of addressing imperfect debugging and the learning

phenomenon separately as well as in combination, and there is a need to evolve
such a model.

According to Xie [1], in most of the existing imperfect debugging SRGMs, there is a
parameter p as mentioned above, which is defined as the probability of perfect
debugging. It is to be noted that these models consider imperfect debugging in
isolation. They have not addressed efficient debugging, wherein after a failure the
debugging team finds and corrects more than one fault, which occurs in practice.
Kapur and Garg [4] proposed another model to address efficient debugging.
However, it will be convenient for software professionals if both efficient debugging

http://sajie.journals.ac.za

98

and imperfect debugging can be addressed by only one model.

In the Kapur-Garg model [3], parameter a is the total number of faults that will be
detected at infinite time, and parameter p is the probability of perfect debugging. N,
the total number of failures expected to occur at infinite time, can also be written as
given below:

p
aNt

t
==

∞→
)(

lim
μ (4)

Since the model proposed by them considered imperfect debugging only, they
assumed that 0< a ≤N and therefore p≤ 1. We propose to include efficient debugging
in the model as well, and therefore we propose to allow N the flexibility to assume
values higher than or lower than or equal to a so that p is greater than zero, but not
necessarily less than unity. When the projects witness efficient debugging, p is
greater than 1.

The authors accordingly propose that the imperfect debugging model can be
extended to address efficient debugging by redefining p as a real number >0. We will
denote it as debugging index (c) to distinguish it from p, the probability. Since it is
not a probability, it can even be greater than 1. In such a case, the differential
equation given by Kapur and Garg [3] can be written as given below:

() ()()tmabcdttdm 22 −= (5)

where

c: debugging index

Assuming c greater than zero, but not necessarily less than or equal to 1, has the
following significance:

When c<1, the rate of change of mean value function for faults m2(t) will be slower
than when there is perfect debugging; and when c>1, it will be faster, which is
logically and mathematically correct. Thus this modification additionally enables the
modeling of efficient debugging. Therefore, the equation for mean value function for
faults corrected [3] as given below is valid even when c>1.

() ()[]bctat −−= exp12μ (6)

Similarly, the mean value function for failures given by Kapur and Garg [3] is also
valid when the debugging index is redefined as a real number >0. It is given by:

() ()[]bct
c
at −−⎟
⎠
⎞

⎜
⎝
⎛= exp1μ (7)

Furthermore, according to Farr [15], the mean value function of Poisson type models
is given by:

http://sajie.journals.ac.za

99

() ()tFt αμ = (8)

where

α: number of faults (failures) that will be detected in the software at infinite time
F(t): cumulative distribution function (cdf) of the time at failure of an individual fault

It may be noted that F(t) in the equations for μ2(t) and μ(t) of the Kapur and Garg
model (1990) [3] follows exponential distribution. Hence they cannot model the
learning phenomenon – but in practice many projects witness the learning
phenomenon along with imperfect, perfect, or efficient debugging. Therefore it is
desirable to combine the learning phenomenon with various patterns of debugging.
In order to address the learning phenomenon, as well as fit failure data from software
projects irrespective of wide fluctuations in time between failures, the authors
propose to use generalized exponential distribution for F(t) as in the case of S-G
SRGM [10]. The mean value function of the proposed SRGM for faults and failures
respectively, with modified generalized exponential function ROCOF, is given
below:

() ()[]dbctat −−= exp12μ (9)

() ()[]dbct
c
at −−⎟
⎠
⎞

⎜
⎝
⎛= exp1μ (10)

where

c: debugging index greater than zero

Note that c is greater than zero, but not necessarily less than 1. This definition leads
to modeling efficient, perfect, and imperfect debugging. Imperfect debugging is
indicated by 0<c<1, perfect debugging by c=1, and efficient debugging by c>1.
When c=1, it reduces the model to S-G SRGM.

If d<1, then the failure intensity function decreases monotonically, and if d>1, the
failure intensity function follows the I/D pattern, indicating the presence of the
learning phenomenon. The property of the generalized exponential ROCOF enables
data to be fitted accurately and consistently in spite of wide fluctuations in time
between failures. Thus we derived an SRGM that provides vital quality metrics, with
minor extension to the S-G model proposed earlier.

2.2 NHPP model with Modified Generalized Exponential ROCOF

The mean value function for failures of the proposed model, which is an extension of
the S-G model, is parameterized and defined as given below:

()
β

θ
μ ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−=

ct
c
at exp1 a>0, c>0, β>0, θ>0 (11)

where a is the eventual number of faults that will be detected over an infinite amount

http://sajie.journals.ac.za

100

of testing time, θ is the scale parameter >0, β is the shape parameter >0, and c is
debugging index > 0.

It is to be noted that the cumulative number of failures, μ(0) =0 and μ (∞) = (a/c). If
imperfect debugging is witnessed in the project, then c will be less than 1. Therefore
the number of failures at infinite testing time will be greater than a. On the other
hand, if the fault detection follows an S-shaped growth curve owing to efficient
debugging, then c>1. This will lead to the condition that the number of failures at
infinite testing time will be less than a. Thus, depending on the value of c, the
proposed model will be able to model both the phenomena. When c=1, it is a case of
perfect debugging, and the number of both faults and failures detected at infinite time
will be equal to a.

The failure intensity function λ(t) is the rate of change of mean value function over
time, or the number of failures per unit time, and so it is the derivative of mean value
function with respect to time [15], and is an instantaneous value. It is given by:

()
1

exp1exp
−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

β

θθθ
βλ ctctat (12)

The hazard rate of the above increases monotonically if β > 1, it is constant if β = 1,
and it decreases monotonically if β <1. In fact, it is this phenomenon that enables us
to propose a suitable NHPP model that brings out all patterns of variations of failure
intensity function correctly. Thus, the model will address the learning phenomenon
with β > 1.

2.3 Determination of parameters of the model

The four parameters of the model for a given failure data set can be estimated using
non-linear regression software tools. When a sufficient number of failures is
observed, the parameters may be estimated with data consisting of the cumulative
test time (x) and the corresponding cumulative number of failures (y), resulting in
best fit of the data to the equation (11) for µ(t) of the model. The method of
Maximum Likelihood Estimation (MLE) is preferred for parameter estimation
because of its many desirable properties, such as asymptotic normality, asymptotic
efficiency, and invariance [15]; and so the same methodology may be adopted in the
tool for estimating parameters. The software tool will estimate the exact value of a,
β, θ and c, but the ranges have to be specified by the user. The parameters thus
obtained have to be substituted in the above equation to get the y values – namely,
μ(t) corresponding to the cumulative test time at which the failures 1, 2,.. actually
occurred.

2.4 Some salient features of the proposed NHPP model

• The total number of faults expected to be detected and failures expected to be
observed in a software product at infinite time are finite, and are denoted by a
and N respectively.

http://sajie.journals.ac.za

101

• Depending on the β value, the failure intensity may initially increase and then
decrease, or start decreasing monotonically. The model addresses both patterns
of variations of failure intensity function equally well. The learning
phenomenon in the testing phase is indicated by β >1.

• Imperfect debugging is brought out with c less than 1, and perfect debugging
with c equal to 1. If the project witnesses an S-shaped growth of the fault
detection phenomenon owing to efficient debugging, c will be greater than 1.

• The learning phenomenon can occur along with imperfect debugging, or
perfect debugging, or S-shaped growth of fault detection.

• The model assumes that only one of the phenomena, namely imperfect
debugging, or perfect debugging, or efficient debugging, is present in a project.

• The model can be used with time t expressed in terms of execution time, or test
time, or calendar time.

3. PERFORMANCE EVALUATION OF THE PROPOSED MODEL

The performance of an SRGM can be assessed by its ability satisfactorily to fit the
past failure data (goodness of fit, GoF) and to predict the time of occurrence of
failures in the future (predictive validity) [16]. In order to check the GoF of the
model, we have chosen Musa’s [17] failure interval data from ten software projects –
Musa P1, P2, P5, P6, P14C, P17, P27, SS2, SS3, and SS4. We will discuss goodness
of fit measures in this section, and predictive validity in the next section.

A number of metrics have been evolved over the years for finding Goodness of Fit
(GoF) of a model for given data. Only when GoF is achieved can the model be used
for prediction or other purposes. Some of the GoF measures are given below:

• Coefficient of determination (R2)
• Mean of Square Fitting Faults (MSF), which is also called Mean Square Fitting

Error (MSE).
• Bias, Variation, and Root Mean Square Prediction error (RMSPE)

3.1 Coefficient of determination (R2)

Coefficient of determination is a well known and widely used measure of the
correlation between the dependent and independent variables in a regression analysis,
carried out to determine the parameters of the model for a given data set. This
measure is also known as the multiple correlation coefficient, and is denoted as R2. It
represents the proportion of data that is closest to the line of best fit. The value of R2
may vary from 0 to 1. If the model fits the data perfectly, then R2=1. If the model
does not fit the data at all, then R2=0. The closer R2 is to 1, the better the fit. Most
regression analysis tools provide R2 metric readily on completion of the estimation of
parameters for a given data set.

3.2 Mean of Square Fitting Faults

Mean of Square Fitting Faults (MSF) [16] is given by:

http://sajie.journals.ac.za

102

()
2

1

1 ∑
=

−⎟
⎠
⎞

⎜
⎝
⎛=

n

i
ii Ex

n
MSF (13)

where

n: number of data points
xi: actual number of failures observed at test time i
Ei: number of failures estimated to occur by the model at the same instant of test time
i

Table 1 below contains a number of important statistics pertaining to the chosen data
sets, as well as GoF of the proposed model, as detailed below:

• R2 and MSF, which indicate the closeness of fit of the proposed model for the

given data set
• c, the debugging index of the project as estimated by the model
• β, if >1, indicates the existence of a learning phenomenon in the testing project
• Remarks give a summary of the nature of the project as inferred from the data

analysis

Table 1: Goodness of Fit and other metrics

Table 1 confirms the consistently good performance of the proposed model, as R2

was found to be very close to 1 for all the data sets, which in turn confirms the
flexibility of the model to fit adequately in all cases. A smaller MSF indicates a
smaller fitting error and better performance [16] of the model for the given data set.
Learning of the test team in the project is indicated by β >1. The data sets P14C,
P17, SS2, SS3, and SS4 depicted an I/D pattern of failure intensity variations. Note
also that β varies from project to project, and that it is high in project P14C. The
debugging index c takes different values ranging from 0.33 to 1.44. Project P5

Data set R2 MSF β c Remarks
P1 0.995 3.8 0.5 1.08 No learning, mildly efficient

debugging
P2 0.995 1.7 0.5 0.84 No learning, imperfect debugging

P14C 0.991 1.2 3.45 1.15 Learning, efficient debugging

P17 0.988 1.0 2.14 1.44 Learning, highly efficient debugging

P6 0.968 12.5 0.92 1.03 No learning, mildly efficient
debugging

P27 0.97 3.6 0.7 0.95 No learning, imperfect debugging

SS2 0.993 25.1 1.57 0.424 Learning, imperfect debugging

SS3 0.994 38.5 1.42 1.14 Learning, efficient debugging

SS4 0.995 9.9 1.14 0.477 Learning, imperfect debugging

P5 0.991 433 0.867 0.33 No learning, highly imperfect
debugging

http://sajie.journals.ac.za

103

witnessed highly imperfect debugging, and project P17 highly efficient debugging.
Thus the model is able to reveal valuable information about how the testing and
debugging went in the projects.

3.3 Additional metrics for Goodness of Fit

Additional measures are available in the literature [18] to check the goodness of fit of
SRGMs. They are defined below:

i) Prediction Error (PE): The difference between the observed number of

failures and the predicted number of failures at any instant of time i is known
as PEi.

ii) Bias: The average of the PEs is called bias.
iii) Variation: The standard deviation of the PEs is known as variation.

()

1
var 1

2

−

−
=

∑
=

n

BiasPE
iation

n

i
i

 (14)

where n is the number of observations.

iv) Root Mean Square Prediction Error (RMSPE): A measure of the closeness
with which a model predicts the observation. It is given by:

()22 var+= BiasRMSPE (15)
The additional metrics calculated to check the goodness of fit of the model are given
in Table 2 below for the chosen data sets.

Dataset Bias Variation RMSPE
P1 0 2.04 2.04

P2 - 0.01 1.39 1.39

P14C 0.02 1.17 1.17

P17 - 0.05 1.07 1.07

P6 0.08 3.73 3.73

P27 -0.06 1.99 1.99

SS2 0.45 5.26 5.28

SS3 0.3 6.54 6.54

SS4 0.24 3.31 3.32

P5 3.96 21.53 21.89

Table 2: Additional metrics for Goodness of Fit

http://sajie.journals.ac.za

104

The lower the value of Bias, Variation and RMSPE, the better is the goodness of fit.
Table 2 confirms the ability of the model to fit data sets with widely varying
characteristics.

4. PREDICTIVE VALIDITY

The predictive validity metrics are used to evaluate the forecasting quality of the
SRGMs. According to Kapur and Garg [4], “predictive ability is defined as the
ability of the model to determine future failure behaviour from present and past
failure behaviour”. The Relative Prediction Error (RPE) is defined as below [16]:

()()
⎥
⎦

⎤
⎢
⎣

⎡ −
=

k

kk

m
mtmRPE (16)

where m(tk) is the number of failures estimated and mk is the actually observed
number of failures at the same instant of time tk. In this connection, Chan et al [19]
have defined normalized time Ψ as given below:

x

x

T
t

=ψ (17)

where Tx is the total observation interval for a failure data set X – or in other words,
the cumulative test time at which the last failure is observed – and tx is the time at
which the model parameters are estimated for the same data set. To study predictive
validity, we estimate the model parameters for the data set at different points in time
(ti) – that is. various values of Ψ less than 1.

The long-term predictive validity gives the relative error between estimated and
observed values at the end of the observation time window. The model parameters
are estimated at various values of Ψ to calculate long-term RPE. The long-term
predictive validity for the proposed model for Musa’s data set SS4 is given in Table
3.

Table 3: Long term predictive validity

The above table confirms the excellent predictive validity of the proposed model.

5. COMPARISON WITH S-G GE NHPP MODEL

While the performance (goodness of fit and predictive validity) of the proposed
model (modified GE NHPP) is just as good as that of the GE NHPP model, the

Ψ RPE
0.2 -0.02
0.4 -0.02
0.6 0.02
0.8 -0.015

http://sajie.journals.ac.za

105

proposed model provides additional quality metrics, namely the quality of debugging
and the number of faults in the software product at the beginning of system testing.
Table 4 below gives the additional information provided by the proposed model, and
a comparison of N, the estimated number of failures at infinite time, yielded by both
models. The S-G model brings out N, and the same can also be deduced from the
proposed model, as given in Table 4.

Modified GE NHPP GE NHPP Data Set

a c N = a/c N
P1 200 1.08 186 185
P2 70 0.84 83.7 83.85
P5 980 0.33 2970 2950
P6 121 1.03 118 117

P14C 41.9 1.15 36.5 36.5
P17 47 1.44 32.9 34
P27 45 0.95 47.4 47.4
SS2 207.2 0.424 488 487.8
SS3 375.3 1.14 328 327.7
SS4 210 0.477 440 440.46

a: Predicted total number of faults

 N: Predicted total number of failures
 c: debugging index

Table 4: Comparison of N values predicted by
the original model and the extended model

The N values predicted by both models match. Note that in Musa’s project P5, owing
to highly imperfect debugging, 2,950 failures have to be observed to correct 980
faults. This is one data set which most existing SRGMs fail to fit adequately.
Efficient debugging was witnessed in five out of ten projects as chosen above. Thus
the model provides the vital few metrics needed by any software development
organization. Table 4 also validates the revised assumption for the debugging index,
since the model estimates correctly the cumulative number of failures at infinite time
when the project witnesses imperfect as well as efficient debugging.

Figure 1 below gives the comparison of mean value function – the cumulative
number of failures estimated by both the models and the number of failures actually
observed in Musa’s project P2. Both the models estimate a nearly equal number of
failures at various times of testing, thus confirming that the introduction of additional
parameter c for capturing a debugging index has not affected the characteristics of
the original GE NHPP model.

http://sajie.journals.ac.za

106

Observed vs Estimated number of failures - Musa P2

0

10

20

30

40

50

60

8420 16840 25260 33680 42100 50520 58940 67360 75780 84200

Time in seconds

N
o.

 o
f

fa
il

u
re

s

Observed

GE NHPP

Proposed Model

Figure 1

6. CASE STUDY: ONE APPLICATION OF THE MODEL

This case study confirms the predictive validity of the modified GE NHPP Model,
and provides an example of determining when to stop testing. Musa’s Project P1 was
selected to establish the ability of the proposed model to replicate the past and
predict the future. The parameters were estimated from the first twenty failures. The
20th failure occurred at 1,986 seconds. The corresponding failure intensity was found
to be 0.006 failures per second. The target failure intensity was fixed at 0.0025
failures per second. Then the total testing time needed, as well as the number of
failures to be observed, for achieving the target was found, using a spreadsheet, as
given below:

Testing time needed: 10,680 seconds; number of failures to be observed: 56

Actually, as per the Musa data set P1, the 54th failure occurred at 10,625 seconds and
the 55th failure occurred at 11,175 seconds. Thus the target failure intensity has been
achieved at the 55th failure, and testing can be stopped after observing the 55th
failure, when the failure intensity has gone below 0.0025 failures per second. The
above example establishes that the proposed model is able both to replicate past
failures and to predict failures in the future accurately.

http://sajie.journals.ac.za

107

It is interesting to note that, in this project, it was predicted that a total of 200 faults
would be detected, and that 186 failures would be observed at infinite time. Since we
would stop testing on the occurrence of the 55th failure, only (55 x 1.08=) 60 faults
would have been detected. This means that the product would be shipped with (200-
60) 140 faults.

7. CONCLUSION

Although a host of SRGMs have been evolved in the last three decades, it is widely
believed that no single model is suitable in all situations. Subburaj and Gopal
proposed an NHPP model with the generalized exponential function ROCOF, which
adequately fits software failure data from widely varying situations such as the
learning phenomenon of the testing team; the imperfect, perfect, efficient software
debugging phenomenon; and wide fluctuations in time between failures, either
occurring alone or in combinations. It is found that the model possesses better
predictive validity, and can be used in all projects. However, a software organization
may need to collect a few vital quality metrics, such as degree of imperfect or
efficient debugging, and the number of faults in the software product at the
beginning as well as at the end of system testing. In order to facilitate the collection
of such additional quality metrics, the authors propose a minor extension to the
above model in this paper. The proposed extended model retains the excellent
goodness of fit and predictive validity characteristics of the original model. This
model also enables the prediction of reliability growth with testing, determining the
testing time needed to achieve the required failure intensity objective, the number of
failures to be observed before the target failure intensity will be achieved, and the
number of faults remaining in the software product at the time of its release for use.
Thus, it is a flexible model that addresses various patterns of debugging and testing;
but at the same time it is not vulnerable to reasonable fluctuations in data, and above
all it brings out a number of quality metrics in quantitative terms. The model
parameters can be estimated through non-linear regression software tools. This
model may be used no matter how the testing time is computed: execution time,
testing time, or calendar time.

8. REFERENCES

[1] Xie M., A study of the effect of imperfect debugging on software development

cost, IEEE Transactions on Software Engineering, Vol.29, No.5, pp. 471-473,
May 2003.

[2] Ohba M. and Chou X.M., Does imperfect debugging affect software
reliability growth?, Proc. 11th Int’l Conf. Software Eng., pp. 237-244, 1989.

[3] Kapur P.K. and Garg R.B., Optimal software release policies for software
reliability growth models under imperfect debugging, Operations Research,
Vol. 24, n 3, pp. 295-305, 1990.

[4] Kapur P.K. and Garg R.B., A software reliability growth model for an error-
removal phenomenon, Software Engineering Journal, Vol. 7(4), pp. 291-294,
1992.

[5] Goel A.L., Software reliability models: Assumptions, limitations and
applicability, IEEE Transactions on Software Engineering, SE-11 (12), pp.

http://sajie.journals.ac.za

108

1411-1423, 1985.
[6] Musa J.D. and Ackerman A.F., Quantifying software validation: When to

stop testing?, IEEE Software, pp.19-27, May 1989.
[7] Yamada S., Ohba M. and Osaki S., S-shaped reliability growth modeling for

software error detection, IEEE Transactions on Reliability, R-32(5), pp. 475-
478, Dec. 1983.

[8] Yamada S. and Osaki S., Software reliability growth modeling: Models and
applications, IEEE Transactions on Software Engineering, Vol. SE-11(12), pp.
1431-1437, Dec. 1985.

[9] Zhao M.and Xie M., On the Log-Power NHPP Software Reliability model,
Proceedings of Third International Symposium on Software Reliability
Engineering, pp. 14-22, Oct.1992.

[10] Subburaj R. and Gopa G. l, Generalized Exponential Poisson Model for
software reliability growth, International Journal of Performability
Engineering, Vol.2, No.3, pp. 291-301, July, 2006.

[11] Gupta R.D. and Kundu D., Generalized exponential distributions, Austra. &
New Zealand J.Statist., pp. 173-188, 41(2), 1999.

[12] Pham H., Nordmann L. and Zhang X., A general imperfect-software-
debugging model with S-shaped fault-detection rate, IEEE Transactions on
Reliability, Vol.48, No.2, pp. 169-175, 1999.

[13] Zhang X., Teng X. and Pham H., Considering fault removal efficiency in
software reliability assessment, IEEE Transactions on Systems, Man and
Cybernetics – part A: Systems and Humans, vol. 33 (1), pp.114-120, January
2003.

[14] Zeephongsekul P., Xia G. and Kumar S., Software-reliability growth model:
Primary-failures generate secondary-faults under imperfect debugging, IEEE
Transactions on Reliability, Vol. 43(3), pp. 408-413, 1994.

[15] Farr W., Chapter 3, Software Reliability Modeling Survey, Handbook of
Software Reliability Engineering, M.R. Lyu, editor, IEEE Computer Society
Press and McGraw-Hill, 1996.

[16] Kapur P.K., Garg R.B.and Kumar S., Contributions to hardware and
software reliability, World Scientific Ltd., Singapore, 1999.

[17] Musa, DACS software reliability dataset, Data & Analysis Center for
Software, 1 J.D. 980. www.dacs.dtic.mil/databases/sled/swrel.shtml,
downloaded on Sept. 19, 2005.

[18] Huang C.Y. and Kuo S.Y., Analysis of incorporating logistic testing – effort
function into software reliability modeling, IEEE Transactions on Reliability,
Vol. 51, No.3, pp. 261-270, September 2002.

[19] Chan F.C.L., Dasiewicz P.P., and Seviora R.E., Metrics for evaluation of
software reliability growth models, International Symposium on Software
Reliability Engineering, pp. 163-167, May, 1991.

http://sajie.journals.ac.za

