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ABSTRACT

A system with extended availability and switchover delays with a single repair
facility is considered, with a random extended available period having a switching
delay from online failure to the repair of the facility. Identifying suitable regeneration
points, several operating characteristics, such as the moment generating function of
the total uptime, mean, and mean square number of various events, are obtained,
apart from reliability and availability functions.

OPSOMMING

'n Stelsel met verlengde beskikbaarheid, oorskakelvertraging met 'n enkele
herstelfasiliteit en 'n toevalverlengde beskikbaarheidsperiode met oorskakeling vanaf
intydse mislukking tot herstel, word behandel. Deur geskikte regenerasiepunte te
identifiseer, kan verskeie bedryfseienskappe (benewens betroubaarheid en
beskikbaarheid) soos 'n momentgenerende funksie vir totale beskikbare tyd,
gemiddelde en gemiddelde kwadraatwaardes vir verskeie gebeurtenisse, bepaal
word.
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1. INTRODUCTION

Repair maintenance and standby redundancy are well known methods for improving
the operating characteristics of a system. In the analysis of redundant repairable
systems, it is generally assumed that the system becomes unavailable immediately
after breakdown. Von Ellenrider & Levine (1966) considered a one-unit system in
which the system performance is maintained for a fixed length of time even after
failure. Ross & Schechtman (1979) have generalized the above concept and studied
an n-unit parallel system in which each unit has the above-mentioned property. In
other words, the system after breakdown is still available for a fixed length of time.
They obtained the Mean Time to System Failure (MTSF) when the life and
replacement times of the individual units are exponential for the general case, and for
a special case of a one-unit system, the expression for the moment generating
function (MGF) for the time to system failure is given when the life and replacement
times constitute two independent families of IID random variables. Bhat &
Gururajan (1993), El-Said & El-Sherbeny (2005) studied two unit standby redundant
systems with imperfect repair (that is, assumed different failure time distributions, or
more precisely, distributions with decreasing expected life times, after each repair)
and excessive available period, and derived the availability and reliability functions
explicitly.

Examples of systems with extended available period can be found in missile
technology, where the missile loses it course and becomes ineffective only if the time
of jamming exceeds a prescribed short period. Also, in refrigeration and air-
conditioning systems, the required temperature is maintained for a random length of
time, even after the failure of the unit. Hence, it is better to consider models in which
the amount of time the unit continues to maintain system performance after failure is
random than those where it is constant. This aspect has been incorporated into the
various models analyzed in this paper. More specifically, the system continues to be
available for a random unit of time even after system failure. Such systems are
referred to as systems with extended or excessive available period. These systems
suffer actual breakdown only if the non-functioning period exceeds this extended
available period.

All the papers mentioned above deal only with cold standby systems with an
extended available period and with perfect and instantaneous switching. In this paper
we deal with a warm standby system in which the switching from standby to online
is instantaneous and the switching from online to repair facility is non-instantaneous,
along with the extended available period.

Sections 2 and 3 give some assumptions and notation, while Section 4 studies a one-
unit system in detail. Apart from reliability and availability functions, several
operating characteristics, such as the moment generating function (MGF) of the total
uptime, mean, and mean square number of various events, are also obtained. Section
5 is devoted to the study of a multi-component series system with exponential life
times and arbitrary repair times, and the final section analyzes a two-unit warm
standby redundant system.
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2. ASSUMPTIONS
The system considered in this paper has the following assumptions.

Each system is supported by a single repair facility (RF).

Any repaired item is like a new one.

Each system has a random extended available period B, with pdf b (.).

Once the system begins to operate, the effect of the extended available period is lost.
From RF to online, all the switching times are instantaneous and the switch is
perfect.

There is a switching delay from online failure to the RF with pdf1 (.).

3. NOTATION
f() :pdf of the life time of the online unit.
g(.) :pdf of the repair time of the online unit.

f.() :pdf of the life time of the standby unit.

9.() :pdf of the repair time of the standby unit.
b(.) :pdf of the extended available period.
1(.) :pdf of the switchover time from online failure to RF.
e-event :The event denotes that the operation of a unit begins.
e, -event :The event that both the units are good.

e, -event :The event of the commencement of repair of a unit while the other
unit

begins to operate.
A, (t) = Pr {that the system is available at t/ e, att=0.},(i=0,1 )

R, (t) = Pr {that the system is available in (0,t ) /e, att=0.} , (1=0,1)

® :Convolution symbol
f*(s) :Laplace transform of any arbitrary function f (t).
h(.) :The renewal function.

4. ONE-UNIT SYSTEM
(a) Reliability and availability analysis

The system consists of a single unit whose life times and repair times are assumed to
be two independent families of random variables with pdf f(.) and g(.) respectively.
Let the e-event denote the commencement of the operation of a unit. Assuming that
the unit has started functioning at t=0, the various functions describing the system
performance are obtained. The integral equation governing the reliability function
R(t) 1s obtained using the following mutually exclusive and exhaustive
classifications:

(1) The unit has not failed up to t .

(i)  The unit has failed before t, but the switching over is completed and the
repair is not completed at t, and t lies within the extended available period.
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(111))  The unit has failed before t, but the switching over is completed and the
repair is not over at t, and t lies within the extended available period.

(iv)  The unit has failed before t, and the switching over and the repair is
completed within the extended available period

(At that instant the regenerative e-event occurs [Finkelstein, 1999] ).
Hence we obtain

R(t) = F(t)+ f () ® L(t)B(t)
+ f () ®I(t)B(t) ®G (t)B(t)
+ f(O)®I(H)B (1) ® g(t)B(t) ® R(t)

Let P,(t) = L(t)B(t);
P,(t) =1(1)B(); (1)

P(t)=G(1B(t);
P,(t)=g(t)B(t).

Then

Rt)=F(t)+ f(t)®P(t)
+f()® P, (t) ® P;(t) (2)
+ f()®P,(H) ® P, (t) ® R(t)

Taking Laplace transform on both sides of (2) we get

F(9)+ f ()P () +P, ()P (9)]
1= ()P, ()P, (5)

R*(s) = 3)

If T denotes the time to system failure (whose survival function is given by R(t)), the
mean time to system failure is given by:

E(X)+R"(0)+P,"(0)P,"(0)
1-P,"(0)P,"(0)

MTSF = E(T) = R*(0) = (4)

where E(X) =TX f(x)dx.

On substituting 1(t) = 6(t) and b(t) = o(t—a) , we obtain

E(e®") =1+ sR*(s)
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2—-f"(s) [ 1 +T e ' g(t) dt —ie“ G(t)dt]

1-f7(s) .? e g(t) dt
and 0
j X g(x) dx
_ EX) 9
D= %a T G@

which is in agreement with the result obtained by Ross & Schechtman (1979), when
the extended available period is a constant a.

Let a cycle denote the time interval between two successive e-events. To obtain the
availability function A(t), we use the classification that t is a point either in the first
cycle or in a subsequent cycle. The former case is further divided according to
whether or not the online unit has failed before t. Making use of the above mutually
exclusive and exhaustive events, we obtain

At)=F )+ f(t)® L(t)B(t)
+ f()®I)B(t)®G (t)B(t) (5)
+ . () ®At)

where f,(t) is the pdf of the time interval between two successive e-events, and it is
given by:

f (O =fOINO®g()

( since e-events occur at the instant of repair completion)

Taking Laplace transformations on both sides of (5):

F'(s)+ f (®)[R (5)+P, (5P (5)
1- fe* (S)
The steady state availability A is given by:

A'(s) =

E(X)+R"(0)+P,"(OP,(0)

= (6)
(X)+E(Y)+E(2Z)

A, = lim s A'(s) =
where E(Y) = [yg(y) dy
0

and E(Z2) = sz(z) dz
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For illustrative purposes we consider the case in which the life time, the switchover
time, and the extended available period are Erlangian of order two, and the repair
time has a double exponential distribution, given by:

f(t) = a’te™ (a>0)
b(t) = a’te™ (a>0)
() = p'te™” (B>0)

g(t) = wu, (€7 —e™ )/ (= 1), (.1, >0 and g, # 11,)

The numerical values of MTSF and A, for various values of ‘a’ (for fixed

a, u, and g, ) are given in table 1.

a=0.011,=05 1, =0.6 f=0.03

a MTSF A,

0.1 3148.92 0.999
0.2 1146.15 0.997
0.3 704.05 0.996
0.4 526.05 0.995
0.5 433.42 0.994
0.6 377.82 0.993
0.7 341.24 0.992
0.8 315.60 0.991
09 296.80 0.990
1.0 282.52 0.989

Table 1

(b) Cumulative uptime
One of the principal quantities of interest is the total time the system is ‘up’ (or

available) in any given interval. If Z(t) represents the total uptime in (0,t), then the
moment generating function (MGF), M(p,t) of Z(t), is defined by:

M(P,t)=E[e " 2" ]

Starting with an e-event initially, M (P,t) can be obtained using the classifications
that an e-event has either occurred in (0,t) or not.

The latter case can be further divided into the following exclusive and exhaustive

events:
(1) The online unit has not failed up to t.
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(11) The online unit has failed before t, the switching over to RF is not completed,
but lies within the extended available period.

(iii)  The online unit has failed before t, but the switching over is completed and
the repair is in progress at t, and t lies within the extended available period.

When the e-event occurs, the process regenerates.

Hence we obtain:
M(p,t)=e PF(t)

+e " [f(t)®L(t)B(1)]
+e " [f(t)®I(t)B(t) ®G(t)B(t)]

+e " [ fO)®IDBM)®g(t)B(t) ] M(p.t)

+i f(u)du jl(v—u)dv[}b(w—u)dwe‘pW ]jg(z —-V)M(p,t-2)dz

+j f(u)du Il(v—u)dv §(v—u)jg(z —V)dz [jb(w—u)e"’w] M(p,t—2z)dz
(7)
Defining M *(p,s) = Ie"St M (p,t)dt, we obtain:

M*(p,s)=F"(p+s)+ f'(p+s)R’(p+s)
+ 7 (p+9) P (p+s)P (p+5)
+ 1 (p+9) P (p+s)P, (p+s)M™(p,s)
+ £ (p+s)K(p,s)M*(p,s)

+f°(p+s)P, (p+5)I(p,s)M*(p,s)
(8)

where

K(p,s)= Te‘“l(t)dt je"’“b(u)du je“”g(v)dv
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© t
and J(p,s) = [eg(t)dt [ *b(u)du

0 0
and P,P,,P, and P, are as defined in (1).
From (8) we have:

F'(p+s)+ f (p+s) [R(p+s)+P, (p+s)P, (p+9)]
1-f*(p+s) [P, (p+s)P, (p+5)+K(p,s)+P, (p+5)J(p,s)]

M*(p,s)=
)

The various moments of the total uptime distribution can be obtained from the
derivatives of the above functions.

(c) Mean and mean square number of various events

Apart from the e-event already defined, we introduce two more events as follows.
Let a-event denote the instant at which the unit fails, and b-event the instant at which
the system breaks down (that is, the instant at which the extended available period is
over while the unit is undergoing repair). Also let N_(X,t); N,(x,t); and N, (x,t)

denote the number of a, b and e events respectively in (x, x+t). In this section, we
obtain the expressions for the first and second order product densities of the three
events respectively.

Starting with an e-event initially, define:

hr(t):lAirréPr[Nr(t,A):l]/A ,r=a,b,eand

h,(t,.t,) =All’iA£1loPr[ N, (t,A)=1N(t,,A,)=1]/A,,A,,r,s=a,b,eand t #t,.

In other words, h, (t)dt denotes the probability that an r-event has occurred in (t,
t+0t), and h(t,,t,)dt,dt, denotes the probability of the occurrence of an r-event in

(t,,t, +ot,) and an s-event in (t,,t, +0't,), irrespective of the events elsewhere.
Hence we have (Srinivasan, 1974):

E[Nr(o,u]:jhr(u)du

E[{Nr(O,t)}z]:j thrr(u,v) du dv+j'hr(u)du

and Oto . 0 .

= 2jdujh,r (u,v) du dv+jhr(u)du
0 0 0
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We obtain the equations satisfied by the various product densities h, (t) ,(r=a, b, ¢)

by using the classifications that the r-event which occurred in (t, t+dt) (starting with
an e-event initially) is the first one or the subsequent one. This yields:

h(t) = f,(1)+h, () ® f,(1) (10)
h,) = f,()+h,®® f, 1 (11)
hy (t) = f,(t) + h, (1) ® f, (1) (12)
Where

f(O=TO®IO®g()
f.®O=fO®ID)

fo ()= F () @ ((1)B(1) ® (b(t)G (1)) + f(t) ® (L(t)b(t))

Taking Laplace transform on both sides of equation (10):

_®

.
O = T

(13)
from which first order product density is obtained as:
%im h,(t) = lirr% sh."(s)
—m S
=[ECO)+EM)+E@)] (14)
Taking Laplace transform on both sides of equation (11):

h,(s)=f. (9)[1+h (9)]

__ oG

= o {using (13)}

The stationary first order product density of a-event is obtained as:

limh, (t) =lims h,”(s)

s £,(9) 4
=—2-——=[E(X)+E E(Z
i " [ECO+EM+E@)) (15)
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Let P, (t)=b(t)G(t)
and P, (t)=L(tb(t).

then f,"(s)= f"(s)P,"(s)P,"(s)+ P, (s)

Similarly, taking Laplace transform on both sides of (12), we have:

; f, ()
h'(s)=—2 )
" (S) 1- fe*(s)

_FOR OP PO

1-f,7(s)
Therefore the stationary first order product density of b-event is obtained as:
limh, (t) = lim s h," (5)

I EANC I LYOLAORAD
s—0 1- fe (S)

_[P,"(0)P;"(0) + P"(0)]
E(X)+E(Y)+E(Z)

(16)

Now, we shall proceed to write expressions for the various second order product
densities. There are nine such functions associated with the three events e, a and b.
Since the e-events are regenerative in nature, we have ( starting with an e-event

initially):

he. (L.t +7) =h, (O N, (7)

h,.(tLt+7)=h, (D) h,(z)
andh,, (t,t +7) = h,(t) h(7)
In the stationary case we have:

lim h (t,t+7)=[E(X)+EY)+EZ)]" h,(z)

t—ow

lim h, (t,t+7)=[E(X)+EY)+E(2)]" h,(2)

toow

lim h,, (t,t+7)=[E(X)+EY)+E(2)] " h,(7)

tow

80
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Similarly, since the a-events are regenerative in nature, it can be easily been seen
that:

h,, (L,t+7) =h, () h,(2)
he(t,t+7) =h, (D[ g(z) + () ®h,(7)
hay (LE+2) =N, (O f, (2) + T, () ® D, (7)

From the above equations, as t—o , we obtain:

limh,, (t,t+7) =[E(X)+ E(Y)+ E2)]" h,(7) (20)
limh, (t,t+7) =[E(X) + E(Y) + E(Z)]" [ g(r) + g(2) ® h, (7)] 2D
limh,, (t.t+7) =[E(X)+ E(Y)+ E@)] " [ f, (1) + f, () ® h, (7)] (22)

The second order product density h,,(t,t+7) for the b-event (which is non-

regenerative in nature) can be written using the classification that the b-event in
(t,t+ot) is either the first one or a subsequent one, and also the fact that an e-event
always precedes a b-event. (Note that a breakdown occurs at the instant of
completion of extended available period during a repair.) This gives:

h,, (Lt +7) :J. f(u)b(t—u)du Tl(v—u)dv Tg(w—v)dw h, (t+7 —w)

t t
+_[he(z)dz j f(u—2)b(t—u)du II (Vv—u)dv
0 z t
t+r
_[g(w—v)dwhb(t+r—w)
The above equation can be rewritten as:
t T T
hyy (4t +7) = [ £ ()bt —udu [I(t+v-u)dv [ g(t+w-v)dwh, (z - w)
0 0 v

+jhe(z)dzj f(u—2z)b(t- u)dujl (t+v—u)dv

j-g(t+W—V)dth(T—W)
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h,,(t,t+7)= j f(t—u)b(u)du _Tfl(u +v)dvj.g(w+v)dwhb(r—w)

+_t[he(z)o|Z tj ft—u-2) b(u)dujl (Uu+Vv)dv

0

jg(w+v)dw h, (7 —w)
Let j(t,7)= b(t)jl(t +v)dng(t +w) h, (7 —w)dw

then h,, (t,t+7)= f(t)® j(t,7) +h, (1) ® f(t)® j(t,7) = k(t,7)
Now as t—o0, we get:

hyy (Lt +7) = limk(t, )

=limsk"(s,7)

s—0

=lims[*(5) J*(5,0)+h,"(5) () |*(5,7)]

oy (t,8-+7) = lims |(F°()]* (5, 0) 1+, (9)3]

sl @i s )
S (1=, (9)
=[ECX)+E()+E@) ] [§(0,7)]

=[E(X)+E(Y)+E@2)]" [Tb(u)dujl(u +v)dv

j g(v+wh, (zr —w)dw] (23)

Similarly, the equation for h, (t,t+7) and h,(t,t+7) can be written using the

classification that the b-event at (t, t+0t) is either the first one or a subsequent one.
This results in using the classification that the breakdown at (t, t+5t) is due to the first

or subsequent failure; so we can write the expression for h, (t,t +7) and h (t,t +7)

as:

t+r t+r

hbe(t,t+r):J- f(u)b(t—u)du I I(v—u)dv Ig(w—v)dwhe(t+r—w)

t+7 t+r

+jhe(z)dz't[ f(u—2z)b(t—u)du II (V—u)dv jg(w—v)dwhe(t+r—w)

and
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h,,(t,t+7) :j f(u)b(t—u)du ]TI(v—u)dv fg(w—v)dw h,(t+7—-w)

t+r

+jhe(z)dzj f(z—-u)b(t-u)du [1 (v—u)dv

t+r

J'g(w—v)dwha(t+r—w)

Arguments similar to those employed in deriving the results (23) yield the following
results for the stationary cases:

lim h,, (t,t+7) =[ E(X)+E(Y)+E2)]” [Tb(u)du j.l(u +V)dv

j g(v+w)h,(z-v)dv (24)

and
}1_2} h,,(tLt+7)=[E(X)+E(Y)+E(2) I [Tb(u)du jl(u +V)dv

j g(v+w)h,(z—-v)dv (25)

v

5. MODULAR SYSTEM

In this system we consider the case where the unit itself consists of n dissimilar
components connected in series, in which the failure rate of the i component (1< i
<n) is constant equal to ¢; (> 0 ) and the corresponding pdf of the repair time is an

arbitrary function g¢;(.), (1<1 <n). Moreover, it is assumed that, during the repair of

any individual component, the remaining operable component do not fail. Though
the system can be treated as a one-unit system with life time being the minimum of
the individual component life times, its repair time can be any one of the n-type of
repair times, depending on the component which causes the failure. Hence the
separate treatment.

In writing the equations for the various functions, we assume that e-event
(commencement of operation of the unit) has occurred at t=0. To obtain the equation
for R(t), we use the following mutually exclusive and exhaustive classification.

(1) None of the components that commenced operation at t = 0 has failed until t.
(11) One of the components of the unit that commenced operation at t = 0 has

failed before t, the switching of the unit to RF is not over, and t lies within the
random extended available period.
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(i11))  One of the components has failed before t, and the repair for the failed
component is not over, and t lies within the extended available period.

(iv)  One of the components has failed before t, the switching to RF is completed,
and the repair for the failed component is over before the extended available
period ends (at which instant an e-event occurs).

This yields the reliability function:

Rit)y=e7"" + iai je” L(t—u)B(t—u)du

i=1 0

+Zn:ai Ie‘”dujl(v—u)@i(t—v)§(t—u)dv

+Zn:ai je‘”du_[l(v—u) g, (W—Vv) B(w—u)dwR(t —w)
u (26)
where 7/:Zn:(xi.

Let P(t) = f(t) B(t)
P =1t)G(t)B(t)
and  Q;()=1(t) g, () B(®)

then (26) becomes:
R(t)=e™" +Zn:ai [e”" ®P(t)]
S WACRELION

+>a[e7' ®Q (1) ]®R() 27)
i=1
Taking Laplace transform on both sides of the above equation:

da

R'(S)=——+ 0[P ()+P'(5)+ Q" ()R (5)]

y+S y+S
K
e LAC O
y+S  y+5

Hence R*(s)=

Zn:“i
1-=——(Q;"(9))
7+5
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1+ a5 P(5)+ P (s)]
= —1= - (28)
(r+59) _zai Qi*(s)
i=1
The mean time to system failure, starting initially with an e-event, is given by:
1+ e[ P (0)+ P (0)]
MTSF = R*(0) = " (29)
v~ z a; Qi* 0)
i-1

Similarly, the equation for the availability function A(t) can be written using the
classification that the next regenerative event has either occurred in (0,t) or not. In
the latter case we have:

(1) none of the online units has failed until t .

(11) one of the components has failed before t and the switching to RF is in
progress and the extended available period goes beyond t.

(ii1))  one of the components has failed before t, the switching to RF is over, the
repair of the failed unit is in progress, and the extended available period goes
beyond t.

Hence we have:

Ait)=e""' + zn:ai je-” L(t—u)B(t—u)du

i=1 0

+iai je‘yudujl(v—u)é(t—v)§(t—u)dv

+Zn:ai e 7' ®I()® g, () ® A®) (30)

i=1

At)=e™" +Zn:05i[(e_7t ®P(t)+ (7" ®P(1)) 31)
+(E&7TOM,(H)®A®1))]
where M, (1) =1(t)® g, (t)

Taking Laplace transform on both sides of (31), we have:
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>a
LT [preere)]

y+s +5

A'(s) = n (32)

Za.

- ('VI '(s))

v+
The steady state availability A, is given by:

1+ a[P*(0)+P"(0)]
A, =limsA"(s) = —"= ) (33)

s—0
(1+> a;m)
i=l1

where m; is the mean repair time of the i"™ component.

The equation for MGF for the total up time M(p,t) in any interval (0,t) can be
obtained.

Using arguments similar to that of the equation (7) yields:
M (p.t)=e """

n

+e Pt Z a,

i=1

e’ duL(t—u) B(t—u) du

o!—,.——»

+
D
-
[N
S S

e 7" dujl(v—u) G,(t—V) B(t—v) dv

=
—_

+Y je’”‘ dujl(v—u)dvj g (W-v) B(w-v) dv M(p,t—w)dw

i=l 0

v

+ i a, Ie‘” du_[l(v—u)dvﬁb(z)dz e‘“‘v)s}j‘ g,(W=v) dv M(p,t—w)dw

0

n t t t
+> a J.efy“ du_[l(v—u)dvl?(w—v) e*‘V*“)S.[ g (W-v) dw
i=1 0 u v

ﬁvb(z)dz e‘(z‘““} M(p,t —w) dw
(34)

After some calculations by taking Laplace transformations of (34), we obtain:
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14> aP (s+p)+ > P (s+ p)
M *(p, S) — i=1 i=1

y+s+p=2 Qs+ p)- 2 aKi(p.5) - Y a;Li(p.s)

where

M*(p,s)=[M(p,t) e™'dt ,
0

K,(p,s) = Te‘“ I(t) b(t) dtjgi(u)b(u) e P du
And

L.(p,s) = Te“ I(t) B(t) dtj'gi(u)b(u) e P du

The knowledge of M~*(p,s)will enable us to obtain various moments of the
cumulative uptime distributions.

6. TWO-UNIT STANDBY REDUNDANT SYSTEM

In this section we consider a two-unit redundant system with a single RF with
switchover delay from online to RF. In addition, the system will be available for a
random number of time B from the instant of failure of a unit, while the other unit is
undergoing repair. Since the system has the extended available period property, the
system is good at any time instant t if at least one of the two identical units is good at
t, or the extended available period commencing from the latest failure instant is not
over until t. The system is supported by a single RF; when a unit operating online
fails, it is replaced by the standby unit if it is good, or as and when it is available after
repair. Let e, (at t) denote the event that both events are good and e, (at t) denote
the event of the commencement of repair of a unit while the other unit begins to
operate. Also let f(t) and f,(t) denote the pdf of the online and standby life times
respectively. In this section we assume that the standby unit has a constant failure
rate B — that is, f (t) = fe”",(B>0). Let g(t) and g (t) denote the pdf of the

online and standby repair times respectively.
Availability and reliability analysis

The equation governing the reliability function R,(t) starting with an e, -event
initially can be written using the probability argument that the next €, -event has
either occurred or not. The case where e, -event has not occurred can be further
divided into the following cases:

1. The unit has not failed up to t.

87



http://sajie.journals.ac.za

. The unit has failed before t, the switching of the failed unit to RF is not over,
and the random extended available period is not over until t.
1ii. The unit has failed before t, the switching is over before t, but the extended

available period is not over until t, and also the repair commenced at t = 0 is
not over until t.

iv. The repair that has commenced after t = 0 (for a warm standby failure) is in
progress, but the online failed unit has arrived the RF, and the extended
available period is not over until t.

V. When the online unit has failed before t, the switching is over, but the
extended available period is not over; at that time the standby is good.

Using these classifications we get:
RO =F®O+fH®IOB)

+fO®OB®)®(GHB()
+j' g(u)duj' hs(v—u)duj'fs(w—v) G, (t—w) dwj‘fa(z) dz

+H (FOIMB()) (9@ F, (1) +g(1) ®h (1) ® g, (1) @ F,(1))

+g(t) d,(t) + g(u)duj hy(v—u) D,(t-v) dv]®R,(t)

o t—

(35)
where
f.®=f(t) ®I(t) B(Y)
d,(t)= f(t) ® L(t)B(t)
CEDNINCE 0.0
Now the equation (35) becomes:
R (M) =F() + f(t) ® P(t) + m(t) + q,(t) ® R (1) (36)

where

P(t)=L(t) B(t)

m, () = (fOS IO B®)®G (1) B(1)
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+'t[ g(u)duj. hs(v—u)duj'fs(w—v) G, (t—w) dwjfa(z) dz

and

6,®=[(FOAOBM) (IO FH+g®)®h,O)®g, (1) ®F (1)

t t

+g(®) d,(®) + [ gy du | hy(v-u) D,(t-v) dv]

1] u

Taking Laplace transform on both sides of (36), we get:

e Rl*(s){ms) ANOLAOR: m{‘(s)} a7
[1 -q, (S)]
Hence the MTSF starting with an €, -event at t = 0 is given by:
Rl*(o)z{E(X) + Pl*(*O) + ml*(O)} G8)
[1 - (O)]

Similarly, we can obtain the equation governing the reliability function R,(t),
starting with an e -event initially by using the fact that the next e, -event has either
occurred in (0,t) or not. Hence we have:

R,(tH)=F(t)+ f(t)® (L(H)B(1))

+GMO[ fFO®I)B()]

+j g(u)duj h,(v—u) dv j f.(w=v) G,(t—w) D, (t —w)dw
+[( FO®IOB®) (O®F (1) + g ®h () ® g, () ® F, (1))

+ g(t)dl(t)+j g(u)duj. h,(v—u)dv

j fi(w=v) g, (t-w) D, (t—w) dw]® R, (t)

V (39)
Let m, =G()[ f(t)®I(t)B(t)]

+'t[ g(u)duj. h,(v—u) dv Jt' f.(w-v) G,(t—w) D, (t—w)dw

and
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d =[ FORIOB®) (OOF 1) + g @h () ® g, ®F,(1))

+ g(t)dl(t)+j g(u)duj h,(v—u)dv

[ .(W-v)g.(t—w) D, (t~w)dw ]

The equation (39) becomes:
Ry(®) = F(1) + FO®R(1) + my(t) + d,()H®R, (1)

Taking Laplace transform on both sides of the above equation, and using (37), we
have:

RS = F'9) + F©BR®) + m'(5) + gi(9) " f*(s)Fz*(sumf(S)}

l_ql*(s)

Hence the MTSF starting with an e -event at t = 0 is given by:

Ec) + B @] [1-9©) + 9, ©@ |+ m @ ]1-9,"©) + g, ©m, (0]

R, (0) = i
© (-0, (0)
(40)

The equation for the availability function A (1), starting with an e, -event initially, is

written using the mutually exclusive and exhaustive classification that (i) the unit has
not failed before t; (ii) it has failed before t and the switching and the extended
available period are not over; (iii) it has failed before t, the switching is over, the
failed unit queues up for repair, and the extended available period is not over; (iv) it
has failed before t during the repair of the other unit and the extended available
period as well as the repair of the other unit is not over until t, and the switching to
RF is over before t.

A =F® + fO®P®) + m(t) + f, HOA() (41)
where

m, (t) = (f (1) @ (I(t) B(1))) ® (G (t) B(1))

+j g(u)duj hs(v—u)dujfs(w—v) G, (t—w) dwjfa(z) dz

and
fu, (t)=[(f(t)®|(t)) (GO ®F, (1) + g ®h () ® g, (1) ® F (1))

+g(t) [d,(u)du
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+ jg(u)dujhs(v—u)dvj f,(w—v)g,(t—w)dwD,(t—w)]

Similarly we can write:
A D) = F(t) + TO®R®) + R + f, A (42)
where

P, =(fO®IDB()
+ jhs(u)dujfs(v—u)dvj G, (t—w) dw D, (t —w)

and
f,, () = (FO®ID) [F(O)+h ) ®g, () ®F (1]

+[h,(uydu [ f,(v—u) g,(t-v) dvD,(t-v)

Taking Laplace transform on both sides of (41) and (42), we have:

F*(s) + f(s) R'(s) + m(s)

A'(s)= o) (43)
and A,'(s) = F'(s) + ' (9)R(5) + R(5) + f,, () A"(9)
Using (43) in the above equation we get:s
[F'(s) + TR 10— 1, 9+, ()]+P (-1, (5]
: + f,, (5)m,"(s)
A O (1-1,7(s) 0
' W

The steady state availability Ay is obtained from (43) and (44) as:

A, =lims A"(s) = lim s A'(s)

s—0 s—0

. Fr(s) + f*(s) P"(s)+m,(s)
=1lim s -
50 1- le (S)
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_|E)+R () +m,(0)

m

where m is the mean time between successive €, -events, given by:

m =jt f, (t) dt.
0

Also, we can obtain the cumulative uptime for this system similar to that of the
arguments and derivations in the one-unit system (Section 4 [b]).

In conclusion, the various operating characteristics considered in this paper can also
be obtained for a two modular redundant system with extended available period for
the system on failure, by combining the arguments given in the last two sections.
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