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ABSTRACT 

Response time is currently considered to be an important performance indicator in 
Emergency Medical Services (EMS) systems. A number of factors may affect response times, 
including the location of emergency vehicles and the type of response system design used. 
This study aimed to assess the effects of emergency vehicle location and response system 
design on response time performance in a model of a large South African urban EMS system, 
using discrete-event simulation. Results indicated that both the emergency vehicle location 
and response system design factors had a significant effect on response time performance, 
with more decentralised vehicle location having a greater effect. 

OPSOMMING 

Reaksietyd word tans beskou as ’n belangrike prestasie-indikator in mediese nooddienste 
sisteme. Verskeie faktore mag die reaksietyd beïnvloed. Die doel van die studie is om die 
effek van die ligging van noodvoertuie en die tipe reaksie-sisteemontwerp op die reaksietyd 
te ondersoek binne die konteks van ’n Suid Afrikaanse stedelike gebied deur gebruik te 
maak van diskrete-gebeurtenis simulasie. Resultate dui daarop dat beide die ligging van 
noodvoertuie en die reaksie-sisteemontwerp die reaksietyd beïnvloed. Hoe meer 
gedesentraliseer die voertuie se plasing was, hoe beter was die effek op die reaksietyd. 
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1 INTRODUCTION AND STUDY BACKGROUND 

Emergency Medical Services (EMS) systems coordinate the organisation of personnel, 
facilities, and equipment for the provision of pre-hospital emergency care within a defined 
geographic area [1]. Because pre-hospital emergency care involves the assessment and 
treatment of patients at the scene of an incident rather than at a fixed location such as a 
hospital, one of the key resources in any EMS system is the set of emergency vehicles 
available for incident response. A number of factors may influence the average time taken 
for an emergency vehicle to reach its allocated incident location from the point where it is 
dispatched – an interval known as the response time.  
 
With the exception of cardiac arrest cases, there is a lack of data linking improved patient 
outcomes to shorter response times in general [2–5]. Nevertheless, response time is still 
currently regarded as an important performance indicator in many EMS systems and by EMS 
regulating bodies [6,7]. Decision-makers in such systems therefore typically devote 
significant attention to factors affecting response time performance in order to comply 
with response time benchmarks determined by local or national regulating bodies or 
authorities. 
 
South Africa, classified as having an upper-middle-income advanced emerging market 
economy [8], has nine Provinces, each with a Department of Health that is responsible for 
the provision of EMS within its respective geographic area. With a population of 51.8 million 
[9], a rapid rate of urbanisation, a significant burden of disease [10], and particularly with 
a high number of cases of injury caused by inter-personal violence [11], EMS systems in 
urban centres of South Africa tend to be used frequently [12]. 
 
Formal emergency care qualifications for non-physicians were first introduced in South 
Africa in the 1970s. This was initially in the form of a ‘Basic Life Support’ (BLS) level of 
care, and by the mid-1980s both ‘Intermediate Life Support’ (ILS) and ‘Advanced Life 
Support’ (ALS) qualifications had been added. Pre-hospital emergency care was first 
organised and provided by fire departments in each Provincial local authority or district; 
however, this was changed in eight of the nine Provinces, with the Provincial Departments 
of Health becoming directly responsible for the provision of EMS at an operational level 
[13]. 
 
Both the qualification structure and the operational responsibility for EMS provision 
described above have led to a number of historical system characteristics that are still very 
evident in urban South African EMS systems today. First, because there has always been a 
relative paucity of ALS-qualified paramedics in South Africa, urban EMS systems have 
typically used an approach where ALS paramedics provide a primary response to high-acuity 
incidents in non-transport primary response vehicles (PRVs). The rationale behind this 
approach is that it allows ALS paramedics to respond quickly to incidents where they are 
most likely to be needed, and that they do not have to be available to transport every case 
to hospital. Consequently, a two-tier response design for high-acuity cases has taken root, 
with the first tier being that of the ALS non-transport response, followed by an ILS or BLS 
response for support and transportation to hospital. If required the ALS paramedic will 
accompany the transport vehicle to hospital.  
 
Second, in the earlier phases of EMS development when fire departments played a major 
role in the provision of EMS, emergency vehicle location tended to be centralised at fire 
stations and was static relative to changing incident demand patterns. Although EMS 
provision is currently not fire department-based in eight of the nine Provinces, emergency 
vehicle location policies have largely retained these characteristics of centralisation and 
static deployment. 
 
As is the case in many EMS systems in the world, South Africa has national benchmarks for 
EMS response times in both urban and rural settings, identifying response time as an 
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important performance indicator of EMS quality (currently it is the only nationally-defined 
performance indicator in South Africa). Even though the benchmark values for high- and 
lower-acuity cases are relatively benign by international standards, no Provincial EMS with 
operations in a large urban centre has managed to comply with them [14-16]. It is therefore 
relevant to consider whether changes to EMS system design factors might improve response 
time performance. 
 
Of the many system factors that could possibly affect response time performance, this 
study aimed to assess the effects of emergency vehicle location and response system design 
(its tiers) on response time performance, by using a discrete-event simulation model of a 
large urban EMS system in Cape Town, South Africa.  
 
The city of Cape Town is located in the Western Cape Province of South Africa. The city 
covers an area of 2,461 km2 with a population of 3.74 million [17], and has an economy 
based mainly upon small-, medium-, and micro-enterprises, manufacturing, and tourism 
[18]. Cape Town produces 11 per cent of South Africa’s gross domestic product. The city 
comprises a diverse range of socio-economic groupings, from high-income in affluent areas 
to extreme poverty in informal settlements [18]. 
 
Cape Town’s EMS system is divided geographically into six sectors, each associated with a 
Provincial tertiary or district hospital as the main receiving facility for emergencies. Not all 
of the six sectors can be classified as urban areas. For this reason, and also for the purposes 
of limiting model scope and complexity, only four of the six sectors were included in the 
simulation model. These four sectors represented a mix of population densities, socio-
economic strata, and incident acuities. 
 
Emergency vehicles in Cape Town’s EMS system are a combination of ambulances and PRVs, 
with ambulances staffed mainly by non-ALS paramedics and PRVs staffed only by ALS 
paramedics. All emergency vehicles are located at holding points while idle and awaiting 
dispatch to an incident. In the four modelled sectors, there was a total of 28 holding points, 
49 ambulances, and four PRVs. Of the 49 ambulances, 11 (22 per cent) had ALS capability. 
Not all incident responses have to contain ALS, because BLS- and/or ILS-qualified 
paramedics might respond to some. ALS capability is determined by the presence of at least 
one ALS-qualified paramedic in a vehicle, and is constrained by the availability of these 
individuals who are typically in short supply in most services.  
 
All emergency vehicles are under the command and control of the Emergency Control 
Centre (ECC), which is responsible for receiving calls for emergency assistance from the 
public, performing triage on each call (known as an ‘incident’), and dispatching and 
controlling an appropriate emergency vehicle to the incident based on the vehicle’s 
proximity to the incident and incident acuity. Further details of the dispatch and other 
processes are described in the conceptual model below. 

2 METHODS AND MODELLING APPROACH 

2.1 Overview 

The initial simulation model, referred to below as the baseline model, was based solely on 
part of the existing EMS system in Cape Town, and was validated against this system. The 
research design identified two experimental factors, each with two levels. The emergency 
vehicle location factor consisted of a centralised (static) level and a decentralised 
(dynamic) level, while the response system design factor consisted of a single-tier level and 
a two-tier level. In order to assess the effects of these two factors on response time 
performance, the baseline model was altered after validation in order to implement each 
level of the two experimental factors. This yielded four individual models (scenarios) that 
were run independently for the same run length and number of replications to produce 
response time data for comparison. 
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2.2 The modelling approach 

The simulation modelling followed the stepwise approach described by Banks et al. [19]. 
Some of these steps have been combined in the form of a summarised description of the 
modelling approach. 

2.3 The conceptual model and input data modelling 

A conceptual model detailing the model content (scope, level of detail, entities, resources, 
and other objects) was created after interviews with three system experts responsible for 
management, response planning, and dispatch operations. System documents and policies 
were also consulted as part of the conceptual modelling process. The conceptual model 
included a description of the emergency vehicle dispatch process logic for high-acuity 
(Priority 1 - P1) and low-acuity (Priority 2 - P2) incidents. The process flow diagrams are 
shown in Figures 1 and 2. 
 

 

Figure 1: Process flow diagram for Priority 1 dispatch 

P1 = Priority 1; PRV = Primary Response Vehicle; AMB = Ambulance; 
ALS = Advanced Life Support; FIFO = First-in-first-out 

 
Process logic was also described for non-response emergency vehicle movement and shift 
changes. Non-response emergency vehicle movement involved the movement of vehicles 
between holding points, based on demand and availability in the areas served by each 
holding point. This movement was determined by dispatchers at the ECC who monitored 
each holding point and instructed vehicles at holding points with adequate capacity to 
move to holding points where vehicle capacity had decreased (typically, where no idle 
vehicles were available). A similar distribution and balancing of vehicles at the inter-sector 
level was coordinated by dispatchers at the ECC. 
 
Data on incident arrival rates, incident priorities, incident exempt status (meaning whether 
or not a patient was transported to hospital), time delays for call-taking and dispatch, and 
time delays for on-scene activities were obtained from an analysis of data from the ECC 
Computer Aided Dispatch (CAD) system. Data between 1 January 2012 and 31 December 
2012, representing incidents in the four selected sectors, was used. Probability distributions 
and parameters for dispatch and on-scene time delays were obtained using an input 
analyser application [20]. Time delays at hospitals for handover of patients and emergency 



30 

vehicle cleaning and preparation were not available from the CAD system. This data was 
obtained from a survey on hospital delay times performed by ECC personnel between 2012 
and 2013. Only mean delay times were available, and thus no probability distribution could 
be fitted; exponential distributions were used for hospital delay times at each sector 
hospital based on expert knowledge of the hospital delay process. 
 

 
Figure 2: Process flow diagram for Priority 2 dispatch 

P2 = Priority 2; AMB = Ambulance; ALS = Advanced Life Support; FIFO = First-in-first-out 

2.4 Model translation 

The conceptual model was translated into a software representation using an object-
oriented simulation application called Simio [21], which offers a rich graphical user 
interface for model development, with a substantial number of standard objects such as 
nodes and vehicles. Each of these objects has built-in process logic that can be extended 
with a wide variety of event-linked process steps for individual intelligence. Objects can 
also be sub-classed in order to extend their basic capabilities. Simio was selected 
particularly because of its rich vehicle object modelling and customisation capabilities. 
 
Incident locations 
The four EMS sectors chosen for modelling were represented as polygons drawn to scale in 
Simio’s two-dimensional simulation grid, known as the facility window. Location data in the 
form of geographic coordinates for each incident was obtained from the ECC CAD system. 
These coordinates were plotted as points on a map of Cape Town using Geographic 
Information System (GIS) software [22]. In order to simplify the model, mapped incident 
points were clustered into 2 km x 2 km cells using a grid overlay and count function in the 
GIS software. Dividing each cell’s point count by the total count gave a proportional point 
or incident weighting per cell. A node object was located at the centre of each 2 km x 2 km 
cell in Simio’s facility window, representing the clustered incidents in each cell. Figure 3 
shows a facility window view of two sectors, some of their associated clustered incident 
nodes, and the location of key facilities by such nodes. 
 
Patient entities 
Patient entities in the model represented real patients requiring emergency care. 
Conceptually, there was a one-to-one relationship between patients and incidents. 
However, because of the clustering of incident locations in the model, many patient 
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entities were typically associated with a single incident node, without any loss of 
functionality. 
 
Patient entities were created by a separate source object for each modelled sector. The 
arrival rate of patient entities was controlled by a rate table containing mean hourly 
incident counts obtained from the CAD system data. Rate tables in Simio are used to 
simulate time-varying arrival rates following a non-stationary Poisson process based on 
hourly counts specified in the associated rate table. Each patient entity source was 
configured to assign state variables for incident priority, exempt status, and whether or not 
the incident was classified as a major incident according to identified probability 
distributions (Figure 4). After creation, each patient entity underwent a delay that 
simulated ECC call-taking and dispatch processing. Probability distributions and parameters 
for P1 and P2 incident delays were obtained from CAD system data using the input analyser.  
 

 

Figure 3: Partitioning of the window for dynamic incident generation 

Following the call-taking and dispatch processing delay, each patient entity was transferred 
to an incident node. For each sector, a data table was created containing a list of incident 
nodes and associated incident weightings reflecting the distribution of incidents over cells 
described above. Patient entities were assigned to incident nodes randomly, but following 
the proportional weighting for each node using a built-in Simio function. In this way, 
patient entities were distributed to incident nodes in a manner reflecting the spatial 
distribution of incidents in the real system. Transfers between source objects and 
destination incident nodes were executed in zero time. 
 

 

Figure 4: Allocation table for entity properties 

Vehicles, on-scene processing, and patient entity transport 
The arrival of a patient entity at each incident node triggered a series of events and 
processes that resulted in the selection and movement of one or more emergency vehicles 
to the relevant node. Both ambulances and PRVs were modelled. Ambulances were 
modelled by sub-classing the transporter object, provided as part of Simio’s standard 
library of objects. Much of the logic required for selecting and moving transporters between 
nodes, and for transporting other entities, is determined by the configuration of the 
transporter’s properties and other variables. Incident nodes are also configured to select 
transporters only from specific lists, and rules for the selection of transporters can be 
specified. Through configuration of both transporters and incident nodes in each sector, the 
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dispatch logic for ambulances contained in Figures 1 and 2 was implemented in the model. 
PRVs were also modelled by sub-classing the transporter objects, but these were configured 
so that they functioned as vehicles and did not transport patient entities. These vehicles 
were also configured to implement the PRV dispatch logic in Figures 1 and 2. Figure 5 is a 
view of some add-on processes logic used to configure the ambulance vehicle on allocation 
to an incident.  
 

 

Figure 5: A vehicle configuration with Simio add-on processes 
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Both ambulances and PRVs were configured to move between nodes through the ‘free-
space’ of the model’s facility window. This makes it possible for vehicles to be immediately 
diverted to their new destinations in cases where they were either seized or released for 
response activities while not at a node. No data on real emergency vehicle speeds was 
available from the modelled system; consequently, mean vehicle speeds were determined 
during validation of the model by setting speeds that produced acceptable response times 
when all other aspects of the model had been configured. Vehicle mean speeds were 
modulated by a weighting factor that estimated the effect of traffic congestion at various 
times of the day.  
 
Each incident node was also configured with add-on process logic that was executed when 
either an ambulance or a PRV entered the node. This logic was used to determine vehicle 
behaviour under various circumstances for each vehicle type, and was mostly related to 
determining how long the on-scene delay was. On-scene delays were derived from 
probability distributions and parameters obtained from CAD system data. For ambulances, 
on completion of the on-scene delay, each patient entity was loaded and the vehicle routed 
to the hospital associated with the sector containing the incident node. For PRVs, on 
completion of the on-scene delay, the vehicle was either released and made idle again or in 
some cases accompanied the ambulance with which it was associated to the relevant 
hospital. 
 
Arrival of ambulances (and PRVs in some cases) at hospital nodes was handled in a similar 
way to that described above. Add-on process logic was used to determine vehicle behaviour 
and simulate the hospital hand-over and vehicle preparation delay. Mean hospital delay 
times were derived from system data and modelled using exponential distributions, as raw 
data was not available for the determination of probability distributions. On completion of 
hospital delay time, each vehicle was returned to an idle state and either returned to its 
holding point or re-allocated to another waiting patient entity. 
 
Non-response vehicle movement and on/off-shift behaviour 
In keeping with dispatch policies contained in the conceptual model, ambulance capacity at 
each holding point (also represented in the model by a node object) within each sector was 
monitored continuously. Capacity was determined by how many idle ambulances were 
associated with each holding point. When any holding point’s capacity decreased to zero, 
an idle ambulance was moved from the closest holding point to that holding point. When 
the holding point’s capacity exceeded at least one idle ambulance again, the moved 
ambulance was returned to its original holding point. In this way, ambulances were moved 
between holding points according to demand, as they are in the real system. No such 
movement was used for PRVs, as there was only a single PRV per sector. A similar approach 
was implemented at sector level; when the ambulance capacity of a sector decreased to 
zero, ambulances were allocated from neighbouring sectors that had the capacity. 
 
Shift changes were simulated through process logic by changing an on/off shift state 
variable in each vehicle depending on the system time. As a condition for allocation to a 
patient entity, each vehicle’s shift state variable had to be set to ‘on-shift’. Shift changes 
occurred during 30-minute windows between 06:00 and 07:00 AM and PM every day, with 50 
per cent of the vehicles in a sector flagged as ‘off-shift’ in each 30-minute window. Off-
shift vehicles were not moved from their holding points, but were not available for 
allocation. Busy vehicles were allowed to continue their response or transport activities and 
were then returned to their holding point if off-shift. 
 
Measurement of time intervals 
Response-related time intervals were measured at various points in the model. Although not 
directly related to response time performance, on-scene and transport times were also 
measured. Details of the relevant time intervals and when they were measured are given in 
Table 1. Each time interval was written to a text file and later used in data analysis (see 
write steps in Figure 5). 
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Table 1: Simulation time intervals 

Time Description Start End 

Dispatch Time 
 
 

Time taken for the 
dispatch process to be 
completed 

Beginning of dispatch 
delay  

End of dispatch delay  

Response Time Time taken for the 
vehicle to reach the 
incident node, from 
beginning of the 
dispatch process 

Beginning of dispatch 
delay  

Entry into incident node 

Scene Time 
 
 

Time spent at the 
incident node 

Entry into incident node Exit from incident node 

Transport Time 
 
 

Time taken to travel 
between the incident 
node and the receiving 
hospital 

Exit from incident node Entry into hospital node 

Hospital Time 
 
 

Time taken to hand 
patient over at the 
receiving hospital and 
prepare vehicle for the 
next incident 

Entry into hospital node Exit from hospital node 

2.5 Verification and validation 

Model verification was addressed throughout the translation process. One of the key 
verification methods was the use of modular development, which involved first building a 
limited component of one sector, with incremental testing and assessment of output data.  
 
Animation was used extensively, as were Simio’s debugging tools, which consisted of the 
model trace and watch facility. Once the correct behaviour of vehicles had been verified, a 
complete sector was developed, and then the other sectors were added until the full-scale 
model was in place. Verification was enhanced by the fact that no direct coding was 
necessary in order to build the model. All development used Simio’s graphical user 
interface, visual tools, and add-on process logic. 
 
Validation consisted primarily of comparing model output with data obtained from the CAD 
system. Before this comparison was made, an appropriate warm-up period, simulation run 
length, and number of replications was determined using time series plots and plots of 
cumulative means and 95 per cent confidence intervals for P1 and P2 response times. Based 
on this, a warm-up period of eight days was chosen, with a run length of seven days and 15 
replications, giving a 0.45 per cent confidence interval deviation. 
 
For validation purposes, response times for P1 and P2 cases were compared, along with P1 
and P2 on-scene and hospital transport times. The method developed by Welch and 
described by Law and Kelton [23] was used to construct 95 per cent confidence intervals for 
the differences between model and system data. Results indicated that three of the eight 
model variables were not significantly different from system variables. In the remaining 
cases, the differences were significant; however, the percentage difference between model 
and system data ranged between 0.59 per cent and 1.31 per cent. These differences were 
considered small enough to accept the validity of the model for the purposes of the study. 

2.6 Implementation of the experimental factors 

The processes described above resulted in a baseline model of EMS operations in four of six 
sectors of the Cape Town area. This model was changed in order to implement each of the 
two experimental factors: emergency vehicle location and response system design. These 
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changes resulted in four different models, each representing the four combinations of the 
levels of experimental factors, and are summarised in Table 2. 
 
Common random numbers were used as a method of variance reduction between the four 
models. This was accomplished by synchronising random number streams used for input 
distributions in each of the models. Data for analysis was obtained by running each of the 
four models for the same warm-up period, run length, and number of replications as those 
used during validation. 

Table 2: Changes to baseline model implementing experimental factors 

Factor Level Changes to Baseline Model 

Emergency Vehicle 
Location 

Decentralised/Dynamic No changes to holding points or 
non-response movement of 
emergency vehicles in baseline 
model 

Centralised/Static Emergency vehicles located at 
hospital in each sector instead of 
holding points 
No movement of emergency 
vehicles within sectors in response 
to demand 

Response System Design Single-tier No PRVs. One additional ALS 
ambulance added to each sector in 
order to maintain ratio of non-
ALS:ALS emergency vehicles 

Two-tier No changes to numbers/ratio of 
PRVs and ambulances in baseline 
model 
PRVs dispatched to all P1 incidents 
instead of only major incidents 

PRV = Primary Response Vehicle, ALS = Advanced Life Support 

2.7 Data analysis 

Dependent variables included P1 and P2 response times (as defined in Table 1) and the 
proportion of P1 and P2 incidents meeting the South African national benchmark response 
time targets for urban areas. These are 15 minutes or less for P1 incidents, and not more 
than 60 minutes for P2 incidents. The independent variables were the two experimental 
factors already identified. 
 
Analysis of variance (ANOVA) was used for statistical analysis of output data from the four 
simulation models. The General Linear Model procedure in IBM SPSS [24] was used with a 
five per cent significance level. Interaction plots were produced of estimated marginal 
means for all dependent variables across both factor groups. In order to assess fit of the 
linear model with experimental data, residuals were checked for mean values, constancy of 
variance, and normality. Residuals were also checked for signs of autocorrelation. 

3 RESULTS 

The normality assumption of ANOVA was confirmed by assessing each dependent variable 
set (Kolmogorov-Smirnov tests, all p > 0.05), while the homogeneity of variances 
assumption was assessed with Box’s test of equality of covariance matrices (M = 30.250, p = 
0.661) and Levene’s test of equality of error variances (all p > 0.05). Suitability of the 
statistical model was assessed by analysis of residuals for all dependent variables, which 
were confirmed to satisfy the assumptions of zero mean and constant variance. Partial 
autocorrelation plots were used to assess the assumption of independence. Some evidence 
was found of autocorrelation in both sets of P2 data (response times and proportion of 
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responses meeting the 60-minute target), which suggested that the model could have been 
slightly improved; however, this is unlikely to have changed any conclusions drawn from the 
results below. Normality of residuals was assessed with Kolmogorov-Smirnov tests (all p > 
0.05). Tests of the main effects of the model are shown in Table 3. 

Table 3: Multivariate test results 

Effect F Hypothesis df Error df p Partial η2 

Response System Design 156.406 4.00 53.00 <0.001 0.922 

Emergency Vehicle Location 3493.738 4.00 53.00 <0.001 0.996 

Interaction 20.974 4.00 53.00 <0.001 0.613 

Interaction = Response Model*Vehicle Location; df = degrees of freedom 
 
The multivariate test of overall differences among factors was significant, with moderate to 
large estimated effect sizes. Observed power (not shown in Table 3) was 1.0 for all factors. 
Values for Hotelling’s Trace, which is an estimate of the relative contribution of each factor 
to the model, were 11.804 (Response System Design), 263.678 (Emergency Vehicle 
Location), and 1.583 (Response System Design * Emergency Vehicle Location). Results from 
univariate between-subjects tests are shown in Table 4. 
 
The model is significant for all of the dependent variables, as indicated in each of the 
dependent variable rows for the corrected model source. Both Response System Design and 
Emergency Vehicle Location have significant effects on all of the dependent variables, 
except for P1 ‘response time’ and P2 ‘responses meeting the response target’ under 
Response System Design * Emergency Vehicle Location. There is some variation in the 
strength of the effect observed above. Effect sizes for P2 ‘response time’ and P1 and P2 
‘responses meeting the response targets’ for the response model factor are smaller than 
those for other single factor-dependent variable effects, while effect sizes under the 
interaction of Response System Design and Emergency Vehicle Location are all very small. 
Interaction plots of the estimated means of each dependent variable across levels of each 
factor are shown in Figures 6 and 7. 
 
Figures 6 and 7 confirm visually what the results in Table 4 indicate: that decentralised/ 
dynamic emergency vehicle location is associated with the best response time performance 
in both the P1 and the P2 groups. The impact of the two different response system designs 
can also be seen; however, this effect is less pronounced in general. The choice of response 
system design does have more of an impact on response times across levels of vehicle 
location for P1 cases than for P2’s (Figure 6 left versus right). This effect is not evident, 
however, when considering the proportion of P1 and P2 ‘responses meeting response time 
targets’ (Figure 7 left versus right). Although the differential slopes of lines in Figures 5 and 
6 confirm an interaction effect (Table 4), both individual main effects are significant for P1 
and P2 cases. 

4 DISCUSSION 

4.1 Emergency medical services system design 

The current study shared some similarities with previously published EMS simulation 
studies; however, it was also quite different in that its aim was not only to answer 
operational questions in the real system from which the model was derived. Rather, this 
study attempted to answer broader questions about two commonly-used EMS systems design 
approaches in South Africa: the location of emergency vehicles in a centralised/static way 
(more commonly used) versus a decentralised/dynamic way, and the use of a single- or 
two-tier (more common) response design. By making the relevant experimental changes to 
a single baseline model of EMS operations in Cape Town, and with the use of common 
random numbers as a variance reduction technique, the differences in response time 
performance between the four models can be attributed mainly to the experimental 
factors. 
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Table 4: Univariate test results 

Source Dependent Variable F df p *R2 Partial η2 

Corrected Model P1 RT 939.57 3 < 0.001 0.979 0.981 

 P2 RT 608.665 3 < 0.001 0.969 0.970 

 P1 % Target 3017.540 3 < 0.001 0.994 0.994 

 P2 % Target 166.974 3 < 0.001 0.894 0.899 

Response System  P1 RT 543.627 1 < 0.001 - 0.907 

Design P2 RT 14.158 1 < 0.001 - 0.202 

 P1 % Target 90.127 1 < 0.001 - 0.617 

 P2 % Target 4.249 1 0.044 - 0.071 

Emergency P1 RT 2272.970 1 < 0.001 - 0.976 

Vehicle Location P2 RT 1806.397 1 < 0.001 - 0.970 

 P1 % Target 8897.584 1 < 0.001 - 0.994 

 P2 % Target 495.391 1 < 0.001 - 0.898 

Interaction P1 RT 2.134 1 0.150 - 0.037 

 P2 RT 5.440 1 0.023 - 0.089 

 P1 % Target 65.009 1 < 0.001 - 0.537 

 P2 % Target 1.282 1 0.262 - 0.022 

* Adjusted, RT = Response Time; P1 = Priority 1; P2 = Priority 2; Interaction = Response Model*Vehicle 
Location; % Target = proportion of cases meeting the relevant response target; df = degrees of freedom 
 

 

Figure 6: Interaction plot: Priority 1 (left) and Priority 2 (right) response times 

 

Figure 7: Interaction plot: Proportion of Priority 1 (left) and Priority 2 (right) incidents 
having response time < 15 minutes 
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4.2 Implications of the results for emergency medical services systems design  

The results of this study suggest that both the location of emergency vehicles and the 
response system design used have a significant effect on response time performance, and so 
are important factors in this regard. Of the two factors, ‘emergency vehicle location’ had a 
greater effect. The combination of a decentralised/dynamic emergency vehicle location 
strategy and a single-tier response system design produced the best response time 
performance. Despite being the single relative best scenario and resulting in response time 
performance better than the baseline model, the decentralised/dynamic single-tier model 
did not produce response times capable of meeting the South African national benchmark 
targets for either P1 or P2 cases. 
 
The fact that decentralised emergency vehicle location at holding points produced better 
response time performance in this model is not surprising, and it corroborates other data on 
the importance of emergency vehicle proximity to incidents [25–31], albeit using a baseline 
model that is more expansive and complex. Although the location of emergency vehicles at 
holding points and their demand-based movement between holding points requires a 
greater degree of organisation and control from a dispatching perspective, the benefits of 
this approach for response time performance have been clearly demonstrated. 
 
Results indicating that the single-tier response design produced better response time 
performance are important in the South African context, because many urban EMS systems 
use the two-tiered approach in the belief that this optimises the availability of ALS-
qualified personnel (as described in this paper’s background section). It would appear that 
the provision of ALS in a small number of PRVs, each serving a relatively large sector, 
negatively affects response time performance when at least some ALS ambulances are 
available – even a relatively small proportion, as in the baseline model with 20 per cent of 
ambulances having ALS capability. The reason for this is again related to proximity, with 
ALS ambulances better located to respond quickly to P1 incidents than a handful of PRVs, 
when the ambulances are located in a decentralised manner. 
 
As summarised above, the results of this study have identified the best-performing 
combination of experimental factors; however, the model representing this combination is 
still not capable of yielding adequate response time performance from a benchmarking 
perspective. There may be a number of possible modifications to the existing approach, 
which may be capable of improving response time performance further. Given the effect of 
emergency vehicle decentralisation, it is logical to think that finer-grained decentralisation 
might further improve response times. Emergency vehicle allocation and re-allocation that 
is more responsive to shifting demand patterns may also have the potential to place these 
vehicles better in proximity to incidents. Both of these approaches require further 
research, using the baseline model already developed. 

5 CONCLUSION 

This study used discrete-event simulation to assess the effects of emergency vehicle 
location and response system design on response time performance in a model based on 
EMS operations in a large urban centre in South Africa. Results indicated that a single-tier 
decentralised/dynamic model produced the best response time performance, although this 
still did not meet the South African benchmark targets for response times in urban systems. 
It is possible that further decentralisation in a single-tiered system and deployment of 
emergency vehicles in a way that more closely matches demand may bring about the 
required level of response time performance. 

6 LIMITATIONS 

Conclusions drawn from this study are limited by the fact that the baseline model was 
validated against a system with unique case-load, resources, and spatial relationships 
between incidents, emergency vehicle locations (holding points), and hospitals. Therefore 
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it cannot be said with certainty that the same effects of the experimental factors would be 
seen when these are applied to models of other large urban EMS systems. Some data was 
not available for modelling purposes, most notably emergency vehicle average speeds, 
which may have affected the accuracy of the model. 
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