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ABSTRACT 

In recent years the management of physical assets has become increasingly important, 
especially in asset-intensive organisations. This article presents an approach to quantifying 
the reliability of rolling stock assets in the rail environment, making use of failure 
statistics. Failure distributions and the interdependency of different systems are used to 
determine the impact of component failures on overall system reliability, and to determine 
the reliability of individual train sets. Recommendations about the future planning of 
maintenance are included in the article.  

OPSOMMING 

Die bestuur van fisiese bates het in die afgelope tyd al meer belangrik geword, veral in bate 
intensiewe organisasies. Hierdie artikel stel ’n metode voor wat die betroubaarheid van 
rollende materiaal bates in die spoor bedryf kwantifiseer deur gebruik te maak van 
falingstatistiek. Falingverspreidings en interafhanklikheid van stelsels word gebruik om te 
bepaal wat die invloed is van komponent falings op die betroubaarheid van die totale 
stelsel. Hierdie benadering word dan gebruik om die betroubaarheid van individuele 
treinstelle te bepaal. Aanbevelings word ook gemaak hoe om betroubaarheid te gebruik om 
die beplanning van instandhouding te doen. 
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1 INTRODUCTION 

An effective rail system depends on the seamless integration of a number of complex 
systems. If one system fails, the whole service can be severely affected. Reliability, 
availability, maintainability, and safety (RAMS) are seen as major contributors to the 
quality of railway service (Figure 1), and are well covered in the European standard EN 
50126 [1]. This standard recognises that railway safety and availability are interlinked and 
are regarded as the most important elements, and they can only be achieved if all the 
reliability and maintainability requirements are achieved. The quality of railway service is 
not only influenced by the four RAMS elements, but also by operations, maintenance, and 
other factors, as shown in Figure 1. 
 

Railway RAMS

Safety Availability

Reliability and 
Maintainability

Operation and 
Maintenance

Quality of Railway service
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Figure 1: Contributing factors to the quality of a railway service [1] 

While all the elements of RAMS are important in the management of physical railway assets, 
in this article the focus will be on quantifying the reliability of railway rolling stock and the 
application of reliability techniques to define a forward-looking and leading reliability 
measure. As a case study, the method is applied using data from a South African rail 
operator that operates an ageing rolling stock fleet and predominantly makes use of time-
based maintenance. Furthermore, the method for using the leading reliability measure in 
deciding on maintenance intervals will be discussed. 

2 BACKGROUND 

2.1 Concept of reliability  

The word ‘reliability’ developed from the word ‘rely’, which is defined as a ‘sense of 
dependence or trust and perhaps has a notion to fall back on’ [2]. It was first used as early 
as 1816 by the poet Samuel T. Coleridge, who wrote about his friend who inspired 
everybody around him with “perfect consistency and absolute reliability” [3]. Since then 
the concept of reliability has become rather popular, and is used extensively by the general 
public as well by the technical community.  
 
When used by the technical community, the context and interpretation of the word 
becomes rather specific, and can deviate substantially from the popular meaning. There are 
divergent definitions of ‘reliability’; but one of the more appropriate and recently-used 
definitions in the context of asset reliability is “the probability that an item will perform its 
intended function for a specific interval under stated conditions” [1]. At first glance the 
definition seems to be self-explanatory, and misinterpretation appears improbable; but 
stakeholders need to ensure that the extent of intended function, the duration of the 
specific interval, and the scope of stated conditions are well understood. 
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Reliability analysis is a systematic approach to analysing the reliability of systems, 
identifying and accessing the frequency and causes of failures, and controlling the 
consequence of failures [4]. There are many reasons why reliability is important, such as 
reputation, customer satisfaction, operation and maintenance cost, repeat business, and 
competitive advantage [5]. But from a maintenance point of view, reliability will contribute 
to greater availability, which is particularly important in the context of RAMS. 

2.2 Reliability, availability, and the human factor 

As part of RAMS, availability is seen as one of the most important reliability performance 
measures of maintained systems [6]. It is defined that the item must be “in a state to 
perform the required function under given conditions…” [1],[7]. The importance of 
reliability and availability in the rail industry is best described by Milutinovic [7], who 
quantifies the influence of reliability on availability. Reliability and availability are often 
misinterpreted, and in certain cases they are wrongly used as interchangeable terms.  
 
Reliability can be grouped into the reliability of equipment and the reliability of people [8]. 
In EN 50126 [1] the contribution of humans to railway RAMS is acknowledged, and more 
rigorous control of the human factors is called for. Studies have been done on human 
factors that include the influence of human reliability on systems. Karanikas [8] concluded 
that human errors contribute to more than three quarters of the failures during the life of 
an asset, and added that “expecting to achieve perfection from an imperfect human is 
unrealistic”. Vanderhaegen [9] describes human behavioral degradation when performing 
tasks, and system degradation due to human actions. Without ignoring the importance of 
human reliability, in this article the focus will be primarily on the reliability of equipment, 
regardless of the cause of failure.  
 
As stated, reliability is important, but it should not be pursued at any cost. Ultimately, the 
cost of reliability needs to be weighed against the total combined operation and downtime 
cost. 

2.3 Reliability and maintenance 

Maintenance of industrial equipment is defined by Pintelon and Gelders [10] as “all 
activities necessary to restore equipment to, or keep it in a specified operating condition”. 
The objective of maintenance is to maximise equipment availability by improving the 
reliability of the system [10] through scheduled preventative maintenance, replacements, 
and inspections (PMRI) [6]. Asset-intensive organisations should recognise the importance of 
an effective maintenance function. Sadly, however, in many organisations maintenance is 
seen as an expense account [11] and not as a value-adding process that is able to increase 
reliability. 
 
Pham and Wang [12] realised that not all maintenance activities improve the condition of 
an item, and categorised maintenance according to the degree to which the operating 
conditions of an item is restored. They defined the following types of maintenance: 
 
• perfect maintenance, which restores the operating condition of the system to as-good-

as-new; 
• minimal maintenance, which leaves the condition as-bad-as-old; 
• imperfect maintenance, which leaves the system somewhere between the bad-as-old 

and good-as-new condition; 
• worse maintenance, which causes a system failure rate or actual age increases 

without breakdown; 
• worst maintenance, which unintentionally causes a failure or breakdown.  
 
Possible causes identified by Pham and Wang [12] as ‘imperfect’, ‘worse’, or ‘worst’ 
maintenance include repairing the wrong part, partially repairing the fault, replacing with 
faulty parts, and human error. 
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It was believed by traditional maintenance practitioners that most failures of equipment 
were age-related, and a common mistake was to use a single maintenance strategy for all 
equipment. Failure models are often used to select the most appropriate maintenance 
strategies, and most of the six traditional failure curves for ageing equipment [13] can be 
managed by periodic time-based maintenance activities [14]. Some failures, however, 
cannot be prevented even by applying the best maintenance strategy, and these failures 
need to be predicted using statistical methods. This approach forms the focus of this 
article. 

2.4 Reliability in the rail context 

Many studies have been done on railway reliability and its effects, such as the relationship 
between reliability and productivity in railroad services [15], the importance of railway 
reliability to convince drivers of passenger vehicles to switch to public transport [16], the 
effect of unreliability on travel time [17], overcrowding because of delays and its effect on 
the productivity and efficiency of workers [18], and the effect of reliability on the 
availability of the service [7]. Railway reliability can be measured in different ways, such as 
the punctuality of the service [15], cancellations and delays [19], and the number of 
realised connections between trains [19]. 
 
From a passenger perspective, the punctuality of the service is often used as a reliability 
measure, defined as the probability that the train will arrive at the final destination within 
a certain margin of the scheduled arrival time. The average punctuality of some major 
European metro railroad operators is around 95 per cent [20], where trains arrive at the 
final destination within the international margin of five minutes, although some operators 
use a three-minute margin and still manage a punctuality of around 95per cent. In South 
Africa the punctuality of the Metrorail railway system was 84.5 per cent in 2011 [20] based 
on five minutes, which leaves room for improvement when compared with international 
benchmarks.  
 
Studies clearly show that reliability is important to railroad companies, and the 
consequences of unreliability cannot be ignored. It is also clear that most reliability 
measures are based on the performance of the rail service, and that they are lagging 
indicators that cannot be related to the source of the unreliability. Lagging indicators show 
how well assets are managed, whereas leading indicators are forward-looking and help to 
manage the performance of an asset [8]. 

3 MODELLING RELIABILITY 

3.1 Systems and theories 

Calculating the reliability of a system requires a mathematical modelling of the system in 
terms of the underlying driving factors. When constant reliability values are used, a 
snapshot of system reliability is given at a specific time, and when time-dependent 
reliability expressions are used, the system reliability can be observed over a period of time 
[6]. 
 
Systems can be classified as non-repairable or repairable. A non-repairable system is 
discarded after its first failure [13],[21] and modelled using the renewal theory. With the 
renewal theory, the system is replaced after a failure and the condition is restored to the 
good-as-new condition, and failures are independent and identically distributed (i.i.d.). The 
renewal theory is not only limited to non-repairable systems, and even if a system can be 
physically repaired (defined as a repairable system) it can still produce failure data that is 
i.i.d., and can therefore be classified as non-repairable [22].  
 
Normally a repairable system is not renewed to the good-as-new condition, but minimally 
repaired to the bad-as-old condition by the repair or replacement of the failed 
component(s) [13]. If the failure data has a trend, the condition of the system can 
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deteriorate (or improve) over time, and must be modelled using regression techniques [13]. 
There is more about trend testing later. 
 
The uncertainty associated with reliability can be classified as aleatory or epistemic 
uncertainty. Epistemic uncertainty represents failures caused by a lack of knowledge of the 
system, and it can be represented by mathematical structures such as interval analysis, 
possibility theory, evidence theory, and probability theory [23]. Epistemic uncertainty can 
be reduced by better understanding the system, such as by experimental results or physical 
models. Aleatory uncertainty is related to randomness, and is based on the mathematical 
structure of probability [23], which is the primary focus of this article.  

3.2 Overview of system reliability and RBDs 

For more comprehensive insight into the reliability of a system, it is important to be well-
versed in the configuration of the system and the interaction between the system and its 
larger domain systems, as well as its peer systems, sub-systems, and components. Bourouni 
[4] describes a number of reliability assessment techniques, and compares the Reliability 
Block Diagram (RBD) to other reliability assessment techniques. He describes the RBD as the 
most logical and natural representation of a system, showing how units (components or sub-
systems) are logically linked in series, parallel, or combinations of units.  
 
When units are linked in series, the failure of any unit results in system failure, and the 
reliability of a series system is the product of individual reliabilities, represented by  
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Units linked in parallel allow for redundancy, and the system remains operational even if 
only one unit is operational. The reliability of a pure parallel system can be calculated from 
individual unreliabilities, as shown below. 
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the individual unreliability of each unit defined as 1-Ri. 
 
Unlike a pure series system, where the failure of a single unit results in system failure, or 
where a single unit needs to be operative in a parallel system, there are special variations 
where the system only operates when a certain number of units are operative in a certain 
sequence (k-out-of-n system) [5]. There are three variations of the k-out-of-n system, 
comprising the consecutive, balanced, and general k-out-of-n systems.  
 
In the series configuration, the consecutive k-out-of-n system only fails if more than k 
consecutive units have failed [6]. In a balanced k-out-of-n system the failure of one unit 
can force the shutdown of another unit when in a particular arrangement [6]. In the general 
k-out-of-n system, redundancy can be built into parallel systems, where the system is 
operational when at least k units out of a total n units are operational, and the reliability of 
the system can be calculated as follows:  
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where l is the total number of possible combinations,  
i : items required to survive 
j : items allowed to fail 
w : total number of units in the system 
 
The general case of k-out-of-n systems is often adequate to model a system, and the pure 
series and parallel systems are special cases of the general case of k-out-of-n system. When 
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the system is operational when only one unit is operational, it can be denoted as a general 
case of 1-out-of-n system, which in turn is a pure parallel system. When the system is only 
operational when all the units are operational, it is a general case of n-out-of-n systems 
simplified by a series system.  

3.3 Reliability data and the selection of failure distributions 

Reliability is regarded as the science of failures [4], and the purpose of the reliability 
engineer is to analyse trends in failure data and to determine the Rate of OCcurrence Of 
Failures (ROCOF) as accurately as possible. The ROCOF represents the number of failures 
per unit time, and a common but erroneous approach of reliability engineers is to use only 
the mean time between failures (MTBF) in calculating the ROCOF, ignoring the 
chronological order of failure events. The result is that an assumption is indirectly made 
that failures occur randomly over the given period, and the opportunity to model failure 
trends is lost.  
 
A practical model for the analysis of failure data, modified by Coetzee [24], is shown in 
Figure 2. It suggests that before a failure distribution can be fitted, failure data should first 
be tested for a trend; and if no trend is present, the dependency of failures should be 
determined. Vlok [25] comments that the test for dependence is most often omitted 
because a large number of failure observations are required to perform the test with 
reasonable confidence, and therefore independence is normally assumed. 
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Figure 2: Model identification framework [26] 

An informal graphical assessment of a trend in failure data is to plot the cumulative number 
of failures versus the cumulative system operating time. The graph is known as the ROCOF 
plot [27], and if the ROCOF is constant, the plotted points will be roughly aligned, and so 
the times between successive failures are identically distributed (marked ‘IID’ in Figure 3). 
If the times between successive failures decrease, the curve presents a trend with larger 
increments in the number of failures per unit time, and the tail end of this curve indicates 
reliability deterioration (marked ‘Deterioration’ in Figure 3). Reliability growth is the 
opposite: it is when the times between successive failures increase, and the graph curves 
down with smaller increments in the number of failures per unit time (marked ‘Growth’ in 
Figure 3).  
 
A simple trend validation can be performed by inspecting the data set using various 
techniques. The Laplace Trend Test (LTT) [13],[25] is the most extensively-used test for 
data sets, and was therefore chosen for this purpose. For failure data that ends in a failure, 
the trend parameter u can be calculated by: 
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Figure 3: Graphical assessment of trends in failure data (ROCOF plot [27]) 

The null hypothesis (H0) for the Laplace test is that the distribution of the arrival times 
corresponds to a Homogeneous Poisson Process (HPP) if the rejection criterion is met [28]. 
The rejection criterion is based on a standard normal distribution assumption, and it will 
reject H0 if u>zα/2 or u<-zα/2 [28]. Based on a typical 95 per cent confidence level (α=5%), H0 
will be rejected if u>1.96 or u<-1.96, and if u=0 it means that the trend is a horizontal line. 
 
Coetzee [13] interprets the value of the Laplace value u in Table 1, and from the results 
the type of theory can be selected. Once either the renewable theory or the repairable 
system theory is selected, a family of distributions can be selected and the parameters 
determined by the most appropriate method.  

Table 1: Interpretation of Laplace value u [13] 

Value of u Description Type of theory 
-2<u<-1, 
1<u<2 

Grey area Either renewal theory or repairable 
system theory 

u<-2 Reliability improvement, data non-
homogeneous 

Repairable system theory 

u>2 Reliability degradation, data non-
homogeneous 

Repairable system theory 

-1<u<1 Non-committal, data homogeneous Renewal theory, HPP 
 
When the Laplace u value is within the grey area, further tests can be performed. Without 
discussing in detail the Lewis-Robinson test [28], Mann test [29], Weibull test or the Carroll-
Hung method [30] can be used to determine whether the data has a trend. 
 
As discussed earlier, systems can be classified into non-repairable and repairable systems. 
These will be discussed below. 
3.3.1 Non-repairable systems  
The failure data for a non-repairable system is i.i.d., based on the LTT test, and failures in 
the data set can be assumed to come from the same statistical distribution, independently 
of one another. The data is homogeneous, can be represented by various standard 
distributions, and the renewal theory applies.  
 



135 

A variety of distributions can be used to model homogenous failure data. The Weibull 
distribution is one of the most commonly-used and flexible lifetime distributions [31], as 
shown below.  
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Substantial research has been done on more effective distributions, such as that by Unkle 
and Venkataraman [32], who found synergy between the Weibull and the Army Material 
Systems Analysis Activity (AMSAA) models. Xie and Lie [33] developed an additive Weibull 
distribution to represent the bathtub-shaped failure rate data with a single distribution that 
is related to the exponential and Weibull distributions. For the same purpose, Xie et al. [33] 
developed the new Weibull distribution, and when β<1, the lifetime data has a bathtub-
shaped hazard rate function.  
 
Similarly to the case of repairable systems, the reliability and related functions can be 
derived for the Weibull distribution. The exponential distribution, which assumes a constant 
failure rate, is a special case of the Weibull distribution with β=1 and λ=1/η. It can be seen 
that the Weibull model is flexible and can be expanded or simplified. In the Weibull 
distribution, the β and η parameters can supply valuable information about the component 
in question.  
 
The LTT has already confirmed that the life data is independent and identically-distributed, 
and the shape parameter (β) can indicate whether the hazard rate is increasing (β>1) or 
decreasing (β<1). The η is the characteristic life, which is an indication of the expected life 
and also an indication at what age 63.2 per cent of the components will fail [13].  
3.3.2 Repairable systems 
When a system is subjected to imperfect maintenance, it suffers from reliability 
degradation, with an increase in the ROCOF. These are repairable systems, represented by 
non-homogenous data, and can best be modelled by the non-homogeneous Poisson process 
(NHPP) [13],[24],[25]. The NHPP is generally suitable for the purpose of modelling data with 
a trend, relatively easy to use, and has been tested fairly well [24]. Two formats of the 
NHPP found in the literature are the log-linear NHPP, represented by  
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and the power law NHPP, represented by  
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The NHPP repairable systems are best modelled with α1>0 (log-linear NHPP) and β>1 (power 
law NHPP), and a linearly increasing failure rate when β=2 (power law NHPP) [13]. System 
reliability, the expected number of failures, and MTBF can be calculated from the NHPP 
models, as shown in Table 2. 
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The estimation of the parameters from life data can be done using techniques such as the 
least-squares estimation (LSE) and the maximum likelihood estimation (MLE), and a test 
such as the Kolmogorov-Smirnov (KS) test can be used to determine the goodness of fit. 
However, this is not the primary purpose of this article, and it is not discussed further. 

4 METHODOLOGY FOR MODELLING RELIABILITY 

In the literature review, the importance of measuring and managing reliability is discussed, 
and different methods are discussed to calculate reliability. The methodology followed to 
calculate the reliability of a system is presented in this section, summarised in Figure 4. It 
consists of three steps, starting with the creation of the model, and ending with the 
interpretation of the results. Each step is discussed in more detail below, and is applied in 
the case study. 

Identification of 
sub-systems and 
creation of RBDs

Collection and 
processing of 

data

Step 1 Step 2 Step 3

System analysis 
and results

 
 

Figure 4: Methodology followed for calculating reliability 

4.1 Step 1: Identification of systems and creating RBDs 

The first step is to analyse the system, simplify the system, and identify the important sub-
systems. It is important that the contribution of sub-systems to reliability, their interaction 
with other sub-systems, and their redundancy be understood. The optimal assignment of 
components for every sub-system is also important, and the sub-systems must be balanced. 

4.2 Step 2: Collecting and processing data 

Once the sub-systems and components are identified, the best source of failure data must 
be identified, the data extracted, and analysis techniques used to determine relationships 
within the data sets (data mining). Techniques such as the Laplace trend test are used to 
search for trends in data sets, and failure distributions are then fitted to the data 
accordingly. Various software packages are available that can process data easily, but 
Microsoft® Excel was preferred for all the data processing. 

4.3 Step 3: System analysis and results 

Once the interactions of sub-systems are known, RBDs are created and failure distributions 
are determined for the components. The system can then be analysed. Again Microsoft® 
Excel was used to simulate the performance of the system over a period of time, and the 
contribution of components and sub-systems to system reliability could be identified.  

5 CASE STUDY 

The methodology is discussed in the previous section. It is now demonstrated by means of a 
case study, where the reliability of rolling stock at Metrorail (a subsidiary of the Passenger 
Rail Service of South Africa (PRASA)) was modelled. Metrorail operates an ageing fleet of 
trains, some in operation since 1958, and they predominantly make use of cancellations and 
delays as reliability measures for their fleet [20].  

5.1 Train set configuration 

Metrorail defines a motor coach (MC) as a powered rail vehicle able to pull unpowered 
passenger trailers (PT) and also able to transport passengers. A typical Metrorail train set 
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consists of nine PTs and three MCs, with an MC in the middle and at each end of the train 
set. The contribution of PTs towards the reliability of a train set is insignificant compared 
with the contribution of the MCs. Thus, for the purpose of this article, the train set is 
represented by three MCs only. 
 
An MC consists of various sub-systems, configured in series and parallel. Although the sub-
systems have several components, a basic model was constructed demonstrating the 
interaction of four different sub-systems (refer to Table 3). Although a risk analysis, based 
on the impact and probability of occurrence, would have been more effective in identifying 
the components within each sub-system, the approach in this study is to construct a basic 
model where each sub-system is represented by a single component. The reasons for 
specifically selecting these components for the MC model are: 
 
• each component is the main component in the respective sub-system; 
• the components are either an electric motor or driven by an electric motor; 
• these combined components contribute to more than 60 per cent of cancellations and 

delays of rolling stock at Metrorail [20];  
• these components are serialised, repaired by Metrorail, and the failure data is 

available. 

5.2 RBD models 

Detail of the selected components is listed in Table 3, where the number of components 
required to survive in either an MC or a train set is indicated. The RBD of an MC is shown in 
Figure 5, which show the inter-relationship of the components and the redundancy. 

Table 3: Description of main components and systems of an MC 

   Number required to survive 
Sub-system Represented by Abbre-

viation 
MC Train set 

Power generation Auxiliary power supply 
generator 

AUX 1/1 2/3 

Compressed air  Compressor COMP 1/1 2/3 
Vacuum system Vacuum exhauster VE 1/1 2/3 
Propulsion system Traction motor TM 2/4 6/12 

 

AUX COMPVE

TM1 TM2

TM4TM3

 

Figure 5: Simplified RBD for an MC 

Most of the components are connected in series on an MC with redundancy only in the 
traction motors (TMs). The TMs are best described as a balanced k-out-of-n system 
represented by a series-parallel system, where each bogie on the MC is represented by two 
TMs in series. AN MC needs to have at least two TMs operating in series, which means that 
the failure of one TM will shut down the other TM on the same bogie.  
 
By making use of equations (1), (2) and with individual reliabilities for each component, the 
reliability of the TM sub-system can be calculated as  
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where R=Reliability, R1=Reliability of TM1, R2 = Reliability of TM2, etc. 
 
The RBD for a train set consisting of three MCs is shown in Figure 6. It can be seen that 
more redundancy is present in this configuration than in a single MC. The power generation, 
vacuum, and compressed air systems are best described as k-out-of-n systems, where two 
out of three sub-systems are required to be operational for the system to be functional.  
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Figure 6: Simplified RBD for a three-MC train set 

5.3 Collecting and processing data 

Once the logic of the sub-systems is understood and a RBD has been constructed, the failure 
characteristics of the different components can be calculated. Failure data from 2004 to 
2013 was used from Metrorail’s FMMS (Facility Maintenance Management System) to 
determine life distributions. The data represents nearly 200 MCs of the 5M-type train. It 
was reported by Metrorail that the data is incomplete, as the FMMS was not operating at 
times. Thus the assumption is made that the available data represents the real situation. 
For the purpose of this article, three MCs were selected with the worst failure data during 
the observation period.  
 
For the sake of simplicity, failure data was limited to the replacement of components only – 
that is, perfect maintenance – ignoring any maintenance done in between the 
replacements. All components have one or more truncated failure observations (also called 
suspensions), where the last failure data points of the data set are not failures, but merely 
the end or beginning of the observation period.  
The ROCOF graph for the exhauster of MC3 is shown in Figure 7. Three distinct periods are 
visible: 
 
• Points 1 to 3, where reliability growth can be observed  
• Points 3 to 5, deterioration period 
• Points 5 to 7, reliability growth 
 
The u factor for the LTT was calculated as 3.03, which indicates a strong overall reliability 
degradation trend over the observation period. So, although it seemed like the three 
periods were predominantly reliability growth periods, it is important to validate the data 
by performing trend tests. 
 
The LTT is performed on the components of the three selected MCs, and where the LTT 
results were in the grey area, the Lewis Robinson and Mann tests were used. The same 
methodology is followed for all the MCs, but for the sake of simplicity only, the results for 
MC3 are reported in Table 4.  
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Figure 7: Failure data plot for MC3 exhauster 

It can be seen that the compressor, vacuum exhauster, and traction motor 4 have reliability 
degradation trends. By using the LSE method, the data was fitted to either the power law 
NHPP or the log linear NHPP function. The LLT results were non-committal for the auxiliary 
equipment, traction motor 1, and traction motor 2. For these pieces of equipment the 
renewable theory HPP was followed, and the failure data fitted to the Weibull distribution 
using the linear regression method. The LTT results for traction motor 3 were in the grey 
area, and the Lewis Robinson test was not any more conclusive (U=1.55). Furthermore, with 
the Mann test, it was concluded that there was no trend (Mann Kendall Statistic=-7, 
Coefficient of Variation=1.12) and it was therefore concluded that the HPP with the Weibull 
distribution would be the best fit, and the Weibull parameters were calculated using the 
LSE (η=644.1, Β=0.764).  

Table 4: Failure distribution parameters for the main components of MC3 

Compo-
nent 

LLT LTT implication Failure behaviour Parameters 

AUX -0.41 Non-committal Weibull η=956.6 Β=0.408 
COMP 2.71 Reliability Degradation Log Linear NHPP α0=-8.1975 α0=0.00086 
VE 3.03 Reliability Degradation Log Linear NHPP α0=-8.9519 α0=0.00112 
TM1  -0.33 Non-committal Weibull η=1441.5 Β=0.733 
TM2 0.15 Non-committal Weibull η=876.5 Β=1.046 
TM3 1.73 Grey area Additional tests required 
TM4  2.20 Reliability Degradation Log Linear NHPP α0=-12.4974 α0=0.00181 

For each component, the KS test was used to determine the goodness of fit. The null 
hypothesis of the KS test states that the data follows the specified distribution, and it was 
rejected when the KS statistic (Dn) was greater than the critical value for the KS test (based 
on a confidence level of 90 per cent). 

6 DISCUSSION OF RESULTS 

An analysis was done of three individual MCs and a train set, made up of the three MCs. The 
results and a comparison of the reliabilities are reported in Figure 8. It becomes clear that 
the reliability of MC2 and MC3 follows a similar trend, with MC1 initially higher than MC2 
and MC3, but then reducing to significantly less reliable than MC2 or MC3.  
 
From the plot in Figure 8, the time period for a reliable life (also called warranty time) can 
be derived. Because of redundancy in the MCs, the reliability of the train set is higher than 
the reliability of any of the individual MCs. For example, the warranty time for the MCs 
over 14 days is 95.5 per cent for MC1, 94.8 per cent for MC2, and 83.0 per cent for MC3. 
The overall warranty time for the train set is 99.3 per cent over 14 days, which is higher 
than any of the individual reliabilities of the MCs. This shows, however, that this train set  
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Figure 8: Reliability of a train set, and the individual reliabilities of MCs.  

can only guarantee 99.3 per cent reliability over a 14-day period, which could have an 
impact on punctuality, cancellations, and delays. 
 
The reliability of MC3 shows an initial sharp decline. In Figure 9 the sub-systems of MC3 are 
shown, where it can be clearly seen that the auxiliary equipment has a significantly lower 
reliability than the other sub-systems. It follows a Weibull distribution with η=956.6 and 
=0. 408, and with such a low  value, the steep reliability degradation can be expected.  
 
At Metrorail the train sets are maintained every 14 days, and both the maintenance and 
operations departments expect a high level of reliability during the 14-day cycle. The train 
operations department, which operates the train sets, can quantify their expected 
reliability in terms of the percentage of successful missions completed, where a successful 
mission is defined as a train trip without failure.  
 
This percentage of successful missions can be used by the maintenance department as a 
reliability target; and by using the reliability model described in this article, the reliability 
of the train sets could be quantified based on failure statistics, and compared with the 
reliability target.  
 

 

Figure 9: Reliability of the individual sub-systems compared with the reliability of MC3. 
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7 CONCLUSION 

Based on the results presented in this article, it can be concluded that system reliability for 
rolling stock in the rail environment can be successfully quantified. This reliability measure 
is a leading indicator, and the source of unreliability can be identified. Based on lifetime 
data and the interdependency of different systems, the overall reliability and the 
contribution of each component in the entire system can be calculated. It is also shown 
how time-dependent reliability expressions are used to study reliability over the life of the 
system.  
 
Instead of using time-based maintenance, maintenance schedules can now be created 
based on the reliability of individual train sets. Train sets that meet the reliability target 
can be scheduled for maintenance less frequently than train sets that do not meet the 
target. Not only will the availability of train sets be higher, but the effort of the 
maintenance department will be focused on the less reliable train sets. This provides a 
different approach to maintenance management for ageing rolling stock fleets, and with 
the abundance of failure statistics, this method can contribute to RAMS in rolling stock. 
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