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ABSTRACT 

A carefully done Phase I analysis is a vital part of an overall statistical process control and 
monitoring regime. Distribution-free control charts can play a useful role in this analysis, as 
a parametric model assumption often cannot be adequately verified. The performance of 
two distribution-free charts for the location – the mean-rank and the median chart – are 
compared in this paper. For benchmarking reasons, the parametric 𝑋�-chart is included in 
the comparisons. It is seen that the distribution-free charts are in-control robust, whereas 
the 𝑋�-chart is not, and they both perform similarly to the 𝑋�-chart for normally distributed 
data. However, for non-normal data, they both outperform the 𝑋�-chart. The results provide 
evidence in favour of using distribution-free Phase I charts in practice. Concluding remarks 
and suggestions for future research are given. 

OPSOMMING 

’n Versigtige analise van Fase I is ’n belangrike deel van ’n algehele statistiese 
proseskontrole en monitering skema. Verdelingsvrye kontrolekaarte kan ’n nuttige rol in 
hierdie fase speel, aangesien die model aannames nie voldoende geverifieer kan word nie. 
Die prestasie van twee verdelingsvrye kontrolekaarte – die gemiddelde-rank en die mediaan 
kontrolekaarte – word vergelyk in hierdie artikel. Vir vergelykingsredes, is die parametriese 
𝑋�-kontrolekaart ingeluit in die vergelykings. Dit is gevind dat die verdelingsvrye 
kontrolekaarte robuuste eienskappe het, terwyl die 𝑋�-kontrolekaart dit nie het nie, en 
beide presteer op soortgelyke wyse as die 𝑋�-kontrolekaart vir normaalverdeelde data. 
Egter, vir nie-normale data vaar albei beter as die 𝑋�-kontrolekaart. Hierdie resultate bied 
bewyse ten gunste van die gebruik van verdelingsvrye Fase I kontrolekaarte in die praktyk. 
Slotopmerkings en voorstelle vir toekomstige navorsing word gegee. 
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1 INTRODUCTION 

In Statistical Process Control (SPC) there are generally two phases or stages (see, for 
example, [1]). The initial phase is called Phase I, in which a retrospective analysis is 
performed on existing (historical) data in order to establish that a process is stable, i.e., in-
control (IC), and thus to find an IC (or a reference) sample. This is an extremely important 
stage of process control. When process parameters are unknown or unspecified, a Phase I 
analysis must be done before process monitoring can begin, prospectively, in Phase II. Thus, 
most Phase II control charts assume that a reference sample is available from a 
corresponding Phase I analysis, from which the control limits can be estimated. Thus the 
success of prospective process monitoring in Phase II depends critically on the success of 
the Phase I analysis.  
 
According to Montgomery [1], Shewhart-type control charts are particularly useful for Phase 
I analysis because they are easy to construct and interpret and they are effective in 
detecting large, sustained shifts in the process parameters and outliers, measurement 
errors, data recording, and/or transmission errors and the like, which are perhaps expected 
in the early part of a process development. For a thorough account of the Phase I control 
charting literature, see Chakraborti et al. [2]. Recognising and highlighting the importance 
of Phase I analysis, a more recent comprehensive account of it is given in Jones-Farmer et 
al. [3]. This reinforces the need for an effective Phase I analysis using appropriate methods 
and metrics. Many of the available control charts in the literature are parametric control 
charts, based on an assumption of a particular underlying process distribution, such as the 
normal. The performance of these charts generally deteriorates when the underlying 
assumptions are not met. In fact, it is well-known that the Shewhart charts are very 
sensitive to the normality assumption, in that their false alarm rates are inflated, often 
significantly, when the underlying distribution deviates from normality. Moreover, it is 
often not possible to know much about the underlying distribution in the early stages of 
process development and study (i.e., Phase I), so that a specific distributional assumption 
(such as normality) cannot be reasonably justified; see for example Woodall [4]. In these 
settings, nonparametric control charts can provide a useful and robust alternative to the 
practitioner. Two major advantages of the nonparametric charts are that one does not have 
to make an assumption about the form and the shape of the underlying process distribution, 
and that the IC properties of nonparametric (or distribution-free) charts (such as the false 
alarm probability (FAP)) remain known and constant (stable) over all continuous 
distributions. This makes the nonparametric charts particularly suitable for Phase I 
applications, since if the IC properties of a chart are not stable and robust – its further 
applications in Phase II become somewhat meaningless. For a list of advantages and a 
thorough account of the fast-growing nonparametric control charts literature, see 
Chakraborti et al. [5].  
 
Although a lot of work has been done in nonparametric SPC over the last few years, much 
of this has been for prospective or Phase II process monitoring, which assumes the 
availability of an IC reference sample from a Phase I analysis. Although some work has been 
done in monitoring scale using Phase I charts (see, for example, Jones-Farmer and Champ 
[6]), in this paper our focus is on the Phase I analysis and monitoring of location parameters 
so as to find the reference sample. As we noted earlier, the success of an overall SPC 
monitoring and control regime depends on a successful Phase I analysis, and nonparametric 
control charts can be especially useful in this setting. In this paper, we compare the 
performance of two of the available nonparametric Shewhart-type Phase I control charts 
according to their IC and out-of-control (OOC) performance based on the FAP, which is the 
probability of at least one false alarm out of 𝑚 Phase I samples (where a false alarm is the 
event that a single charting statistic plots on or outside the control limits when the process 
is IC). Note that the FAP is the metric usually used in Phase I, as the signalling events are 
dependent. 
 
Of the two nonparametric charts included in our study, the first chart is the mean-rank 
chart, which is based on the standardised subgroup mean-rank, as proposed by Jones-
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Farmer et al. [7]. This chart is distribution-free and, consequently, it maintains a constant 
and known FAP for all continuous distributions. The second nonparametric chart in our 
study is the one proposed by Graham et al. [8], which is based on the subgroup precedence 
counts from the pooled median. This chart is also distribution-free and thus maintains a 
stable and known IC performance for all continuous distributions. Both of these 
distribution-free charts are effective at detecting shifts in the location of the process and 
useful to establish control in Phase I. We emphasise that, to date, a head-to-head 
performance comparison of the mean-rank and median charts is not available; we intend, 
therefore, to fill that gap in this study. This is important information, since practitioners 
need to know which of these nonparametric charts should be used, and when. However, 
although the focus is on nonparametric charts, we include a normal theory (parametric) 
chart in our study for benchmarking purposes. This is the Phase I 𝑋�-chart for the mean, 
proposed by Champ and Jones [9], which is based on the assumption of normality. When the 
underlying process is indeed normally distributed, this chart is expected to achieve an FAP 
very close to or equal to the nominal FAP0, and should be more effective in detecting shifts 
in the process mean with a higher signalling probability. However, when the process 
distribution deviates from the normal distribution, its efficacy becomes questionable. This 
is typical of parametric charts; and this is why their IC robustness is always a practical 
concern.  
 
We study the performance of all three charts in a simulation study for different 
combinations of subgroup size 𝑚 and sample size 𝑛. First, we introduce the Phase I control 
charts, starting with the two nonparametric charts. 

2 PHASE I CONTROL CHARTS 

2.1 Phase I mean-rank chart 

A nonparametric Phase I Shewhart-type control chart was proposed by Jones-Farmer et al. 
[7]. This chart is based on the well-known Kruskal-Wallis test (see Gibbons and Chakraborti 
[10]). We begin by combining the observations from the 𝑚 Phase I samples in a single 
pooled sample of size 𝑁 = 𝑚 × 𝑛 and ordering the observations from the lowest to the 
highest. Then ranks (𝑅𝑖𝑗 where 𝑖 = 1,2, … ,𝑚 and 𝑗 = 1,2, … ,𝑛) are assigned to each 
observation of this pooled sample. The average rank for the ith sample is given by 
 
𝑅�𝑖 = 𝑛−1 ∑ 𝑅𝑖𝑗𝑛

𝑗=1       for   𝑖 = 1,2, … ,𝑚. (1)  

The charting statistics for the mean-rank chart are the standardised sample mean-ranks, 
given by 
 

𝑍𝑖 =  𝑅
�𝑖−𝐸(𝑅�𝑖|𝐼𝐶)
�𝑣𝑎𝑟(𝑅�𝑖|𝐼𝐶)

    for   𝑖 = 1,2, … ,𝑚. (2)  

Since the expected value and the variance of the ranks, when the process is IC, are given by 

𝐸�𝑅𝑖𝑗� = 𝑁+1
2

  and 𝑣𝑎𝑟�𝑅𝑖𝑗� = (𝑁−1)(𝑁+1)
12

 (see Gibbons and Chakraborti [10], page 192), the 

expected value and the variance of 𝑅�𝑖 for an IC process are given by 𝐸(𝑅�𝑖) = 𝑁+1
2

  and 

𝑣𝑎𝑟(𝑅�𝑖) = (𝑁−𝑛)(𝑁+1)
12𝑛

 , respectively. Thus, 𝑍𝑖 in Equation (2) simplifies to 

𝑍𝑖 =  
𝑅�𝑖−

𝑁+1
2

�(𝑁−𝑛)(𝑁+1)
12𝑛

        for   𝑖 = 1,2, … ,𝑚 . (3) 

Jones-Farmer et al. [7] studied two choices of the control limits: the simulated and the 
approximate normal theory control limits. For the latter choice, note that by the central 
limit theorem for large 𝑛, the standardised mean rank 𝑍𝑖 approximately follows a standard 
normal distribution when the process is IC. However, the charting statistics 𝑍1,𝑍2, … ,𝑍𝑚 are 
dependent random variables, and this dependence needs to be properly accounted for. 
Appealing to available results in the literature, Jones-Farmer et al. [7] claimed that, 
asymptotically, the joint distribution of 𝑍1,𝑍2, … ,𝑍𝑚 can be approximated by a multivariate 
normal distribution with means equal to zero, standard deviations equal to one, and a 
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common pairwise correlation 𝜌𝑖𝑗 = �1/(𝑚− 1). Since this correlation tends to zero as 𝑚 
increases (for equal subgroup sizes), the authors suggested that the lower control limit 
(LCL) and the upper control limit (UCL) can be approximated using the quantiles of the 
(univariate) standard normal distribution. The control limits are chosen such that the 
attained FAP does not exceed a given FAP0 = 𝛼. Using Monte Carlo simulations, the authors 
provided tables for the control limits using the normal approximation for 𝛼 = 0.05 or 0.10. 
The centre line of the proposed chart, CL,  is equal to zero. It was recommended that the 
simulated limits, and not the approximate normal theory tables, be used, since the latter 
were more conservative (see Jones-Farmer et al. [7]). In short, these control limits are 
based on the simulated empirical distribution of the standardised mean rank, 𝑍𝑖, and vary 
based on the combination of 𝑚 and 𝑛. Although exact limits are possible to be obtained by 
enumerating the distribution of the standardised mean rank, doing so is impractical for 
moderate values of 𝑚. Accordingly, the authors provided control limits, for specific (𝑚,𝑛) 
combinations using 100,000 Monte Carlo simulations. They recommended that a 
conservative approach be used so that the attained FAP does not exceed a given FAP0 = 𝛼; 
i.e., the control limits are found using Monte Carlo simulations so that 𝐹𝐴𝑃 ≤ 𝛼. Using 
simulations, we extended the tables of the control limits in Jones-Farmer et al. [7] by 
considering some of their combinations of 𝑚 and 𝑛 and incorporating other combinations of 
𝑚 and 𝑛. This should be of benefit in practice.  
 
We describe the second nonparametric Phase I control chart next.  

2.2 Phase I median chart 

An alternative to the mean-rank chart, proposed by Graham et al. [8], is called the median 
chart. This chart is based on the well-known Mood test (see Gibbons and Chakraborti [10], 
page 323). Suppose that 𝑀 denotes the median of the pooled sample of size N. The charting 
statistic for the median chart is the subgroup precedence statistic – i.e., the number of 
observations that precede 𝑀 – and is given by 𝑈𝑖 = ∑ 𝐼�𝑋𝑖𝑗 < 𝑀�𝑛

𝑗=1  for 𝑖 = 1,2, … ,𝑚, where 
𝑀 denotes the pooled median and 𝐼(𝐴) = 1 or 0 when A is true or false. 
 
As in the case of the mean-rank statistics, the charting statistics 𝑈1,𝑈2, … ,𝑈𝑚 are 
dependent, and so the IC joint distribution of 𝑈1,𝑈2, … ,𝑈𝑚 is necessary in order to calculate 
the FAP and the charting constant 𝑎. For a more detailed derivation of the IC joint 
distribution and of the FAP, refer to Graham et al. [8]. Since the IC distribution is 
symmetrical about its mean, the authors propose using symmetrically placed control limits 
with 𝐿𝐶𝐿 = 𝑎,  𝑈𝐶𝐿 = 𝑛 − 𝑎 and 𝐶𝐿 = 0.   
 
Since the joint distribution of the 𝑈𝑖′𝑠 is discrete, a conservative approach is used where 
𝑎 is found as the largest positive integer, such that the attained FAP is less than or equal a 
specified FAP0. It can be shown that 
 

𝐹𝐴𝑃 = 𝐹𝐴𝑃(𝑚,𝑛,𝑈𝐶𝐿 = 𝑛 − 𝑎, 𝐿𝐶𝐿 = 𝑎)
=   1− ∑ ∑ …∑ 𝑓𝑈1,𝑈2,…,𝑈𝑚(𝑢1,𝑢2, … ,𝑢𝑚)𝑛−𝑎−1

𝑢𝑚=𝑎+1
𝑛−𝑎−1
𝑢2=𝑎+1

𝑛−𝑎−1
𝑢1=𝑎+1 . (4)  

 
Thus 𝑎 is the largest positive integer, so that 
 
𝑎 = 𝑚𝑎𝑥�𝑐:𝐹𝐴𝑃0 ≥ 1 −∑ ∑ …∑ 𝑓𝑈1,𝑈2,…,𝑈𝑚(𝑢1,𝑢2, … ,𝑢𝑚)𝑛−𝑐−1

𝑢𝑚=𝑐+1
𝑛−𝑐−1
𝑢2=𝑐+1

𝑛−𝑐−1
𝑢1=𝑐+1  �. (5) 

 
Graham et al. [8] found that some of the attained FAP values can be very conservative, 
meaning that they may be much smaller than the FAP0 value. They provided tables for the 
control limits for several combinations of subgroup size 𝑚 of size 𝑛, for FAP0 values 0.01, 
0.05, and 0.10 respectively. They noted that the sample size 𝑛 needs to be much larger 
than the number of Phase I sample 𝑚 in order to achieve industry-standard small FAP 
values. 
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Graham et al. [8] also showed that the correlation between any two charting statistics, 
when the process is IC, is −1/(𝑚− 1), which tends to zero as 𝑚 increases. Consequently, 
we can approximate the control limits by ignoring the dependence among the charting 
statistics, simply using the marginal univariate hypergeometric distribution of the 𝑈𝑖′𝑠.    
 
Although our main purpose is to compare the two nonparametric Phase I charts head to 
head, for benchmarking and robustness considerations, we also include the normal theory 
Phase I 𝑋�-chart proposed by Champ and Jones [9]. This is briefly described in the next 
section. 

2.3 Phase I 𝑿� chart 

A Phase I 𝑋�-chart was proposed by Champ and Jones [9], which assumed that the underlying 
distribution is normal. The charting statistic for this chart is the mean, 𝑋�, of each Phase I 
sample, and the control limits are given by 
 
𝑋� ± 𝑘 𝜎� √𝑛⁄   (6) 
 
where 𝑋� is the grand mean; i.e., 𝑋� = 1

𝑚𝑛
∑ ∑ 𝑋𝑖𝑗𝑛

𝑗=1
𝑚
𝑖=1   and 𝑋𝑖𝑗 denotes the jth observation 

from the ith subgroup. The unbiased estimator of the process standard deviation 𝜎 is based 

on the average sample variances, and is given by 𝜎� = 1
𝑐4
� 1
𝑚
∑ 𝑆𝑖2𝑚
𝑖=1 �

1
2, where 𝑐4 is an 

unbiasing constant and 𝑆𝑖2 is the ith sample variance. The constant 𝑘 > 0 is the chart design 
constant. 
 
Champ and Jones [9] provided tables for the charting constant 𝑘 for several combinations of 
𝑚 and 𝑛. They also studied the choice of the control limits for 𝑚 ≥ 20, using simulations, 
with (i) exact limits based on the multivariate t distribution, (ii) approximate limits using 
the univariate Student’s t critical values, and (iii) approximate limits assuming that 𝑇𝑣,𝑖 
approximately follows a standard normal distribution (this is only recommended where 
𝑚 ≥ 30). The reader is referred to their paper for more details. Briefly speaking, the 
charting constant 𝑘 (i.e., the control limit) is found using 100,000 Monte Carlo simulations 
for a specific (𝑚,𝑛) combination so that the attained FAP does not exceed the given FAP0 
= 𝛼.The authors recommended that when 𝑚 < 20 subgroups are available, the constants 
given for the multivariate t distribution are to be used to compute the limits. However, for 
𝑚 ≥ 20, the authors suggested that the constants be obtained using the (univariate) t 
distribution with 𝑚(𝑛 − 1) degrees of freedom. 

3 COMPARATIVE STUDY 

3.1 Implementation of the control charts 

In order to compare the performance of the control charts, first the control limits need to 
be found; we discuss this here. To this end, note that the discreteness of the two 
nonparametric charting statistics causes the attained FAP values to be sometimes very 
conservative and often much smaller than a nominal value – say, 0.05. Thus we chose 
combinations of 𝑚 and 𝑛 values that yielded attained FAP values closest to the nominal 
value of 0.05. This is also one of the reasons why larger values of 𝑛 were used, which is not 
the typical approach when implementing variables control charts. However, note that this 
(larger 𝑛 > 𝑚) is often necessary for the case of attributes control charts where the 
charting statistics have discrete distributions, as in the case of the nonparametric charts. 
Since exact calculations are tedious and involve multidimensional sums and integrals, 
simulation was used. In Table 1, the control limits for the two nonparametric charts are 
provided, along with the constant k for the 𝑋�-chart and the attained FAP values, for a FAP0 
= 0.05 and a number of combinations of 𝑚 and 𝑛 values. When investigating which 
combinations of 𝑚 and 𝑛 to consider, recall that for the median chart, the sample size 𝑛 
needs to be much larger than the number of Phase I sample 𝑚 in order to achieve industry-
standard small FAP values. Accordingly, we considered smaller values of 𝑚 (= 4, 5, 6, 7, 8, 



183 

9, and 10) paired with larger values of 𝑛 (=15(1)25), obtained the corresponding FAP values, 
and selected the pairs that yielded the attained FAP values closest to the nominal value of 
0.05. We included one larger value of 𝑚 (=50), together with the value of 𝑛 (=15), which 
yielded an attained FAP value closest to the nominal value of 0.05. Table 1 will be useful to 
implement the Phase I control charts under consideration in practice. 

Table 1: The constant 𝒌 for the 𝑿�-chart, the control limits for the mean-rank chart, and 
the constant a (LCL) for the median chart, for a FAP0 = 0.05, along with the attained 

FAP values 

 𝑿�-chart Mean-rank chart Median chart 
𝒎 𝒏 k Attained 𝑭𝑨𝑷 Control limits (±) Attained 𝑭𝑨𝑷 a = LCL Attained 𝑭𝑨𝑷 
4 18 2.529 0.0496 2.452 0.0497 4 0.0479 
5 16 2.608 0.0495 2.532 0.0499 3 0.0486 
5 19 2.608 0.0496 2.547 0.0499 4 0.0434 
7 17 2.722 0.0499 2.647 0.0499 3 0.0493 
7 20 2.721 0.0493 2.650 0.0499 4 0.0450 
8 23 2.749 0.0495 2.697 0.0499 5 0.0495 
9 15 2.811 0.0498 2.718 0.0499 2 0.0406 
9 18 2.809 0.0492 2.733 0.0499 3 0.0411 
10 15 2.840 0.0498 2.755 0.0499 2 0.0472 
10 18 2.841 0.0497 2.757 0.0499 3 0.0480 
10 21 2.827 0.0497 2.761 0.0497 4 0.0456 
10 24 2.826 0.0491 2.768 0.0497 5 0.0415 
50 15 3.306 0.0499 3.196 0.0497 1 0.0429 

3.2 Performance comparisons 

A comparison of the chart performance was done by means of extensive Monte Carlo 
simulations using 50,000 iterations in SAS® v 9.3. For each iteration, 𝑚 samples, each of size 
𝑛, were generated from one of three distributions: the standard normal distribution 
(N(0,1)), the symmetric but heavier-tailed Student’s t distribution with three degrees of 
freedom (t(3)), and the right-skewed Gamma distribution with a shape parameter of two 
and a scale parameter of one (Gamma(2,1)). We compare both the IC and the OOC 
performance of the Phase I control charts. The IC performance indicates how robust the 
chart is with respect to the specified FAP0 value; the nonparametric charts are expected to 
be IC robust (because they are distribution-free), but since the charting statistics are 
discrete, it is of interest to see what the attained FAP values are and how far off they 
might be from the nominal values. On the other hand, the OOC comparison involves 
comparing the probabilities of alarm (at least one signal) under some ‘OOC condition’ when 
the charts have the same or roughly the same FAP0 (i.e. the same IC performance). The 
chart with the highest probability of at least one signal under the OOC condition is 
favoured.  
3.2.1 IC performance 
The control limits for the two nonparametric charts were found from Table 1. For the 𝑋�-
chart, the control limits were set up using the constant k from Table 1. Then, using 
simulations, the attained FAP values were found and compared with the FAP0 of 0.05. 
Figures 1(a) to 1(c) show the IC performance of the three charts for the N(0,1), t(3), and 
Gamma(2,1) distribution respectively. Since the 𝑋�-chart assumes normality, it is expected 
that this chart will perform well in the case of N(0,1) distribution. From Figure 1(a) it can 
be seen that that is the case. However, the mean-rank chart also has attained FAP values 
very near the nominal level of 0.05. The median chart also performs well; but its attained 
FAP values are more conservative. Thus, in the IC case, all three charts seem to perform 
well in the case of the normal distribution, performing at or close to the FAP0 values.  
 
When the underlying distribution is symmetric but more heavy-tailed, such as the t(3) 
distribution, as shown in Figure 1(b), the mean-rank chart still provides attained FAP values 
very close to the FAP0. The median chart also performs well, but its attained FAP values are 
again seen to be conservative. The 𝑋�-chart, however, performs very poorly, with attained 
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FAP values larger than the nominal level and in fact increasing as 𝑚 increases; for 𝑚 = 50 it 
even reaches values larger than 0.25, which is unacceptable. 
 
Finally, when the underlying distribution is skewed, such as the Gamma(2,1) distribution, 
the 𝑋�-chart performs very poorly, with attained FAP values larger than the nominal level. In 
addition, the attained FAP values increase as 𝑚 increases, as in the case of the t(3) 
distribution; for 𝑚 = 50 it reaches values just under 0.10. This is shown in Figure 1(c). 
However, the mean-rank chart is seen to provide attained FAP values very close to the 
nominal value. The median chart also performs well, but the attained FAP values are again 
shown to be conservative. 
 
In summary: from Figures 1(a) to 1(c) it is seen that the mean-rank chart has the best 
overall IC performance; however, the median chart is competitive, and performs well 
although somewhat conservatively (in terms of the attained FAP values). Although the 𝑋�-
chart performs well when the data follows a standard normal distribution, it performs quite 
poorly in the non-normal cases – i.e., for the t(3) and the Gamma(2,1) distributions. Thus 
the lack of IC robustness of the Phase I 𝑋�-chart should be a serious concern for its 
implementation in practice. 
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Figure 1: The attained FAP values for various distributions when 𝑭𝑨𝑷𝟎 = 0.05 and the 

process is IC (see online for colour version) 
3.2.2 OOC performance 
As noted earlier, the OOC comparison involves comparing the probabilities of alarm (at 
least one signal) for the charts under different distributions and shift configurations. 
Following Jones-Farmer et al. [7], two configurations were considered: (i) an isolated mean 
shift (a shift in only one subgroup mean and in none of the other subgroup means) of size 𝛿 
(in units of standard deviations), with the shift introduced in the first subgroup without loss 
of generality; and (ii) a sustained mean shift (a shift in one of the subgroup means and 
sustained throughout the remaining subgroup means) of size 𝛿 (in units of standard 
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deviations), with the shift introduced two-thirds of the way into the sample and sustained 
until the end of the sample. This means that the mean stayed IC until two-thirds of the way 
into the sample, of size 𝑚, at which point a constant shift was observed in the mean and 
was sustained until the end of the sample. For example, say 𝑚 = 30, then the mean stayed 
IC for the first 20 observations with a constant shift occurring at observation number 21 
which was then sustained through samples 21 to 30. Decreases as well as increases in the 
mean were considered with shifts of size 𝛿 = -3(0.5)3. Since the shift is expressed in units 
of the process standard deviation 𝜎, the amount of the shift in the mean,  𝜎𝛿, is given by 
1𝛿, √3𝛿 and √2𝛿, for the standard normal, t(3), and Gamma(2,1) distributions respectively. 
The OOC mean is the IC mean plus 𝜎𝛿, with 𝛿 ≠ 0. 
 
For the OOC comparisons, it was necessary to re-calculate the chart design constant 𝑘 for 
the 𝑋�-chart for the t(3) and the Gamma(2,1) distributions, so that all three charts have the 
same or nearly the same FAP value (when the process is IC) to ensure a fair OOC 
performance comparison. Table 2 shows these ‘adjusted’ 𝑘 values, which were obtained via 
simulation. Note that this was not necessary for the nonparametric charts, as their IC 
performance remains the same for all continuous distributions. 

Table 2: Adjusted 𝒌 values for the 𝑿�- chart for non-normal distributions 

  Adjusted k 
𝒎 𝒏 t(3) Gamma(2,1) 
4 18 2.503 2.522 
5 16 2.503 2.623 
5 19 2.625 2.619 
7 17 2.622 2.745 
7 20 2.793 2.735 
8 23 2.853 2.789 
9 15 2.955 2.865 
9 18 2.941 2.849 
10 15 3.029 2.908 
10 18 3.009 2.891 
10 21 2.989 2.874 
10 24 2.984 2.864 
50 15 4.555 3.591 

 
3.2.2.1 Isolated shifts 
The OOC performance for the isolated shift case was studied for all combinations of 𝑚 and 
𝑛 in Table 1. However, owing to space constraints we report the results for the 
combinations: (𝑚,𝑛) = (4,18), (10,24), and (50,15), for the standard normal, t(3), and the 
Gamma(2,1) distributions respectively in Tables 3 to 5. The chart that performs the best – 
i.e., detects shifts with the highest probability – is indicated with the use of grey shading. If 
more than one cell is highlighted, it indicates that the charts are performing similarly. The 
remaining results are similar. The sample size 𝑛 did not seem to have much of an effect on 
the performance, especially since the sample sizes were close to each other. It can be seen 
that the shift is detected with a smaller probability as the number of subgroups, 𝑚, 
increases. This could be due to the fact that the isolated shift is only observed in the first 
subgroup. As the subgroup size increases, the impact of the shift becomes watered down as 
there are more IC observations. Next, for the two symmetric distributions (N(0,1) and t(3)), 
the direction of the shift did not seem to make a difference with respect to the alarm 
probability of the charts. From Table 3, it can be seen that the 𝑋�-chart performs best under 
the normal distribution, detecting shifts with the highest probability. However, as in the 
isolated shift case, the mean-rank chart’s performance is again seen to be very close to 
that of the 𝑋�-chart. For example, for a shift of 𝛿 = 0.5, the mean-rank chart’s performance 
is only 4.83 per cent below that of the 𝑋�-chart, and for a larger shift of 𝛿 = 1.0, the mean-
rank chart’s performance is only 2.37 per cent below that of the 𝑋�-chart. The median chart 
detects the shifts with a lower probability. Overall, all three charts seem to perform better 
for a smaller subgroup size than for a larger subgroup size.  
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Table 3: Attained alarm probability values for the standard normal distribution for FAP0 
= 0.05 and for an isolated shift 

 𝑚 = 4 and 𝑛 = 18 𝑚 = 10 and 𝑛 = 21 𝑚 = 50 and 𝑛 = 15 

𝛿 𝑋 
Mean-
rank Median 𝑋 

Mean-
rank Median 𝑋 

Mean-
rank Median 

-3.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 
-2.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9953 
-2.0 1.0000 1.0000 0.9990 1.0000 1.0000 0.9996 1.0000 0.9999 0.9519 
-1.5 0.9985 0.9975 0.9609 0.9999 0.9997 0.9771 0.9931 0.9836 0.7328 
-1.0 0.8802 0.8594 0.6669 0.9384 0.9194 0.6954 0.7164 0.6574 0.3036 
-0.5 0.2939 0.2787 0.1915 0.2971 0.2803 0.1652 0.1267 0.1176 0.0693 
0.0 0.0494 0.0496 0.0476 0.0500 0.0500 0.0459 0.0500 0.0500 0.0424 
0.5 0.2924 0.2783 0.1923 0.2934 0.2808 0.1643 0.1265 0.1199 0.0679 
1.0 0.8802 0.8598 0.6685 0.9393 0.9179 0.6894 0.7141 0.6549 0.3000 
1.5 0.9983 0.9969 0.9613 0.9999 0.9998 0.9772 0.9935 0.9847 0.7308 
2.0 1.0000 1.0000 0.9991 1.0000 1.0000 0.9996 1.0000 0.9999 0.9532 
2.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9960 
3.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 

 
For the t(3) distribution, the control limits for the 𝑋�-chart were obtained using Table 2. 
From Table 4, it can be seen that the mean-rank chart detects the mean shifts with the 
highest probability for a small as well as a large subgroup size. The median chart performs 
the second best, and the 𝑋�-chart shows the poorest results. For 𝑚 = 50 and 𝑛 = 15, we see 
that the median chart at first outperforms the 𝑋�-chart, but for larger shifts, the 𝑋�-chart 
seems to reach an alarm probability of 1 faster than the median chart. Again, it is observed 
that the smaller the subgroup size, the easier it is for the chart to detect the isolated shift. 

Table 4: Attained alarm probability values for the t(3) distribution for FAP0 = 0.05 and 
for an isolated shift 

 𝑚 = 4 and 𝑛 = 18 𝑚 = 10 and 𝑛 = 21 𝑚 = 50 and 𝑛 = 15 

𝛿 𝑋 
Mean-
rank Median 𝑋 

Mean-
rank Median 𝑋 

Mean-
rank Median 

-3.0 0.9987 1.0000 1.0000 0.9996 1.0000 1.0000 0.9998 1.0000 0.9955 
-2.5 0.9980 1.0000 1.0000 0.9993 1.0000 1.0000 0.9993 1.0000 0.9877 
-2.0 0.9956 1.0000 1.0000 0.9983 1.0000 0.9999 0.9946 0.9999 0.9643 
-1.5 0.9859 0.9999 0.9979 0.9932 1.0000 0.9981 0.9105 0.9985 0.8794 
-1.0 0.8943 0.9825 0.9443 0.9165 0.9949 0.9488 0.3224 0.9290 0.6031 
-0.5 0.3756 0.5197 0.4334 0.2935 0.5676 0.4121 0.0577 0.2697 0.1456 
0.0 0.0505 0.0470 0.0484 0.0494 0.0510 0.0474 0.0477 0.0492 0.0437 
0.5 0.3742 0.5126 0.4319 0.2944 0.5637 0.4126 0.0578 0.2674 0.1468 
1.0 0.8949 0.9814 0.9455 0.9177 0.9952 0.9483 0.3182 0.9277 0.6047 
1.5 0.9861 0.9999 0.9984 0.9928 1.0000 0.9984 0.9102 0.9984 0.8811 
2.0 0.9955 1.0000 1.000 0.9980 1.0000 0.9999 0.9950 1.0000 0.9638 
2.5 0.9981 1.0000 1.0000 0.9990 1.0000 1.0000 0.9993 1.0000 0.9883 
3.0 0.9989 1.0000 1.0000 0.9996 1.0000 1.0000 0.9997 1.0000 0.9954 

 
For the Gamma(2,1) distribution, the control limits for the 𝑋�-chart were again obtained 
using Table 2. The three charts perform almost equally well for positive shifts when 𝑚 is 
small. However, when 𝑚 = 50, the 𝑋�-chart has slightly lower alarm probabilities than the 
other two charts, which seem to perform almost identically. For negative shifts, however, 
the mean-rank chart performs the best, with the median chart showing rather low alarm 
probabilities. The 𝑋�-chart performs almost as well as the mean-rank chart. The three charts 
again perform better when 𝑚 is small, especially in the case of the median chart, where 
the performance drops drastically when 𝑚 = 50. The mean-rank chart shows the overall 
best performance for an isolated shift, whereas both the median chart and the 𝑋�-chart 
show some dissatisfactory results. Since the Gamma(2,1) distribution is right-skewed and 
the interpretations might not be straightforward using Table 5, the attained alarm 
probabilities are illustrated in Figure 2. Recall that for the two symmetric distributions 
(N(0,1) and t(3)), the direction of the shift does not make a difference regarding the alarm 
probability and, accordingly, interpreting Tables 3 and 4 is more straightforward and thus 
no figures are provided. 
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Table 5: Attained alarm probability values for the Gamma(2,1) distribution for FAP0 = 
0.05 and for an isolated shift 

 𝑚 = 4 and 𝑛 = 18 𝑚 = 10 and 𝑛 = 21 𝑚 = 50 and 𝑛 = 15 

𝛿 𝑋 
Mean-
rank Median 𝑋 

Mean-
rank Median 𝑋 

Mean-
rank Median 

-3.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.000 1.0000 1.0000 0.9686 
-2.5 1.0000 1.0000 0.9988 1.0000 1.0000 0.9991 1.0000 1.0000 0.9116 
-2.0 1.0000 1.000 0.9905 1.0000 1.0000 0.9902 0.9999 0.9987 0.7716 
-1.5 0.9952 0.9964 0.9228 0.9992 0.9992 0.9142 0.9778 0.9749 0.5212 
-1.0 0.8766 0.9151 0.6396 0.9242 0.9520 0.6038 0.6398 0.7755 0.2264 
-0.5 0.3180 0.4064 0.2054 0.2976 0.4376 0.1688 0.0879 0.2198 0.0676 
0.0 0.0500 0.0496 0.0485 0.0492 0.0502 0.0458 0.0502 0.0505 0.0434 
0.5 0.3003 0.3968 0.2740 0.2678 0.4135 0.2784 0.0993 0.1382 0.1066 
1.0 0.8786 0.9677 0.8938 0.9337 0.9964 0.9834 0.5973 0.9094 0.8991 
1.5 0.9980 1.0000 0.9994 1.0000 1.0000 1.0000 0.9918 1.0000 1.0000 
2.0 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
3.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

 

Figure 2: Attained alarm probability values for the Gamma(2,1) distribution for FAP0 = 
0.05 and for an isolated shift (see online for colour version) 

3.2.2.2 Sustained shifts 
The OOC performance for the sustained shift case was studied for all combinations of 𝑚 and 
𝑛 in Table 1. Again, as in the case of the isolated shifts, we report the representative 
results for the combinations: (𝑚,𝑛) = (4,18), (10,24), and (50,15), for the three 
distributions under consideration, in Tables 6 to 8. It is seen that for the two symmetric 
distributions (N(0,1) and t(3)), the direction of the shift does not make a difference 
regarding the alarm probability.  
 
From Table 6, it can be seen that when the underlying process distribution is N(0,1), the 𝑋�-
chart displays the highest alarm probabilities, with the mean-rank chart performing 
similarly. On the other hand, the median chart detects the shift with a slightly lower 
probability than the other two charts. For all three charts, it was observed that the 
probabilities of detecting a shift were higher when 𝑚 = 50.  
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Table 6: Attained alarm probability values for the standard normal distribution for FAP0 
= 0.05 and for a sustained shift 

 𝑚 = 4 and 𝑛 = 18 𝑚 = 10 and 𝑛 = 21 𝑚 = 50 and 𝑛 = 15 

𝛿 𝑋 
Mean-
rank Median 𝑋 

Mean-
rank Median 𝑋 

Mean-
rank Median 

-3.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
-2.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
-2.0 1.0000 1.0000 0.9987 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
-1.5 0.9985 0.9975 0.9603 1.0000 1.0000 0.9988 1.0000 1.0000 0.9994 
-1.0 0.8822 0.8587 0.6668 0.9869 0.9781 0.8488 0.9953 0.9734 0.8162 
-0.5 0.2957 0.2752 0.1913 0.4156 0.3899 0.2457 0.4095 0.3517 0.2103 
0.0 0.0492 0.0481 0.0469 0.0482 0.0490 0.0455 0.0492 0.0486 0.0442 
0.5 0.2965 0.2775 0.1916 0.4150 0.3840 0.2449 0.4050 0.3480 0.2120 
1.0 0.8790 0.8558 0.6679 0.9870 0.9766 0.8491 0.9955 0.9746 0.8156 
1.5 0.9982 0.9972 0.9618 1.0000 1.0000 0.9988 1.0000 1.0000 0.9994 
2.0 1.0000 1.0000 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
3.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 
In the case of the t(3) distribution, the control limits for the 𝑋�-chart were again adjusted 
using Table 2. As shown in Table 7, all three charts perform similarly for 𝑚 = 4 to 𝑚 = 10, 
with the mean-rank showing the highest alarm probabilities and the 𝑋�-chart having the 
lowest alarm probabilities; but as 𝑚 increases, the performance of the 𝑋�-chart becomes 
much weaker. The mean-rank and median charts show the highest alarm probabilities for 𝑚 
= 50, although the mean-rank chart still outperforms the median chart.  

Table 7: Attained alarm probability values for the t(3) distribution for FAP0 = 0.05 and 
for a sustained shift 

 𝑚 = 4 and 𝑛 = 18 𝑚 = 10 and 𝑛 = 21 𝑚 = 50 and 𝑛 = 15 

𝛿 𝑋 
Mean-
rank Median 𝑋 

Mean-
rank Median 𝑋 

Mean-
rank Median 

-3.0 0.9990 1.0000 1.0000 0.9996 1.0000 1.0000 0.9995 1.0000 1.0000 
-2.5 0.9981 1.0000 1.0000 0.9991 1.0000 1.0000 0.9986 1.0000 1.0000 
-2.0 0.9957 1.0000 0.9999 0.9983 1.0000 1.0000 0.9960 1.0000 1.0000 
-1.5 0.9858 0.9999 0.9987 0.9949 1.0000 1.0000 0.9721 1.0000 1.0000 
-1.0 0.8974 0.9815 0.9437 0.9591 0.9999 0.9981 0.5224 1.0000 0.9990 
-0.5 0.3746 0.5184 0.4293 0.3949 0.7002 0.5869 0.0993 0.6488 0.5296 
0.0 0.0506 0.0482 0.0478 0.0505 0.0528 0.0458 0.0466 0.0501 0.0421 
0.5 0.3737 0.5146 0.4331 0.3942 0.7014 0.5888 0.0996 0.6473 0.5297 
1.0 0.8951 0.9822 0.9443 0.9578 0.9999 0.9981 0.5241 1.0000 0.9994 
1.5 0.9856 0.9998 0.9980 0.9958 1.0000 1.0000 0.9725 1.0000 1.0000 
2.0 0.9957 1.0000 0.9999 0.9987 1.0000 1.0000 0.9965 1.0000 1.0000 
2.5 0.9983 1.0000 1.0000 0.9993 1.0000 1.0000 0.9983 1.0000 1.0000 
3.0 0.9988 1.0000 1.0000 0.9995 1.0000 1.0000 0.9994 1.0000 1.0000 

 
As can be seen from Table 8 and Figure 3 for the Gamma(2,1) distribution, for which the 
control limits for the 𝑋�-chart were again adjusted using Table 2, the mean-rank chart shows 
the highest alarm probabilities for a negative as well as a positive shift. The 𝑋�-chart and 
the median chart perform almost identically for positive shifts, but for negative shifts the 
median chart shows lower probabilities than the 𝑋�-chart. Since the Gamma(2,1) distribution 
is right-skewed and the interpretations might not be straightforward using Table 8, the 
attained alarm probabilities are illustrated in Figure 3. Recall that for the two symmetric 
distributions (N(0,1) and t(3)), the direction of the shift does not make a difference 
regarding the alarm probability and, accordingly, interpreting Tables 6 and 7 are more 
straightforward and thus no figures are provided. 
 
Over all the combinations of 𝑚 and 𝑛 for the sustained shift, the mean-rank chart shows the 
highest alarm probabilities, indicating that it will detect a shift faster, with the median 
chart and 𝑋�-chart showing less satisfactory results in some instances.   
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Table 8: Attained alarm probability values for the Gamma(2,1) distribution for FAP0 = 
0.05 and for a sustained shift 

 𝑚 = 4 and 𝑛 = 18 𝑚 = 10 and 𝑛 = 21 𝑚 = 50 and 𝑛 = 15 

𝛿 𝑋 
Mean-
rank Median 𝑋 

Mean-
rank Median 𝑋 

Mean-
rank Median 

-3.0 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
-2.5 1.0000 1.0000 0.9993 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
-2.0 0.9999 0.9999 0.9903 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
-1.5 0.9947 0.9960 0.9251 1.0000 1.0000 0.9963 1.0000 1.0000 0.9985 
-1.0 0.8740 0.9154 0.6455 0.9843 0.9962 0.8453 0.9632 0.9993 0.8302 
-0.5 0.3162 0.4063 0.2062 0.4085 0.5942 0.2691 0.2104 0.6258 0.2336 
0.0 0.0499 0.0496 0.0490 0.0502 0.0496 0.0472 0.0501 0.0480 0.0433 
0.5 0.2958 0.3974 0.2712 0.3803 0.5171 0.3445 0.2809 0.4293 0.2833 
1.0 0.8819 0.9662 0.8965 0.9772 0.9983 0.9789 0.9591 0.9912 0.9708 
1.5 0.9981 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
3.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

  
Figure 3: Attained alarm probability values for the Gamma(2,1) distribution for FAP0 = 

0.05 and for a sustained shift (see online for colour version) 

4 REMARKS AND CONCLUSIONS 

In this paper we compared the performances of two available nonparametric Phase I charts: 
the mean-rank and the median chart. Careful consideration was given to the discreteness of 
the corresponding charting statistics, which can cause the attained FAP values sometimes 
to be very conservative and much smaller than the nominal FAP value for some number of 
subgroup-sample size (𝑚,𝑛) combinations. We included the normal theory Phase I 𝑋�-chart 
for comparison purposes. It was found that in terms of both IC- and OC performance, the 
mean-rank and the median charts perform similarly and satisfactorily to the 𝑋�-chart when 
the underlying distribution is normal. However, for heavy-tailed or skewed distributions, 
the two nonparametric charts both outperform the 𝑋�-chart, and there are serious concerns 
about the IC performance (highly inflated false alarm probabilities) of the 𝑋�-chart in these 
cases. In summary, the considerably better IC performance of the median chart compared 
with that of the 𝑋�-chart for non-normal data outweighs its slightly worse performance 
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compared with the 𝑋�-chart in some OOC cases, as the IC performance is deemed to be more 
crucial in Phase I applications. The mean-rank chart showed the best results overall, and 
would be the recommended chart to use in practice where the need for a nonparametric 
chart arises. 
 
Our results make a strong case for using nonparametric Phase I charts in practice, 
particularly with the computing resources available today. We believe that Phase I control 
chart research has not received enough attention, since the vast majority of the SPC 
literature concerns Phase II control charting techniques. Thus further work on Phase I 
nonparametric control charts would be welcome. More research needs to be done regarding 
Phase I analysis for small subgroup sizes and even for individual observations because, 
although traditional SPC applications of control charts involve sub-grouped data, recent 
advances have led to more and more instances where individual measurements are 
collected over time. 
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