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ABSTRACT 

Despite the reported effectiveness of analytical algorithms in facility layout planning, a 
detailed literature survey suggests a lack of new analytical methods in recent years. This 
paper focuses on open space facilities layout planning that involves modules with constant 
aspect ratios. We propose a construction-cum-improvement algorithm involving a novel 
combination of a boundary search-based heuristic placement and steepest descent-based 
analytical improvement. In the construction phase, the algorithm places a new module at 
the optimal location on the boundary of a previously constructed cluster of modules. In the 
improvement phase, the algorithm alternates between boundary search and steepest 
descent moves until it converges to a local optimum. Experiments with well-known test 
problems indicate that the proposed algorithm produced solutions superior both to 
published results and to those produced by VIP-PLANOPT, a popular, oft-cited and 
commercially available layout planning and optimisation software. 

OPSOMMING 

Ten spyte van die berigte effektiwiteit van analitiese algoritmes met betrekking tot 
fasiliteitsuitlegbeplanning, dui ‘n gedetailleerde literatuurstudie op ‘n tekort aan nuwe 
analitiese metodes. In hierdie studie word daar op oop-area fasiliteitsuitlegbeplanning, wat 
modules met konstante aspek verhouding behels, gefokus. ‘n Konstrukise-en-verbeterings 
algoritme, wat ‘n nuwe kombinasie van grenssoek gebaseerde heuristiese plasing en steilste 
gradiënt gebaseerde analitiese verbetering insluit, voorgestel. In die konstruksiefase plaas 
die algoritme ‘n nuwe module by die optimale posisie op die grens van ’n voorheen geboude 
groep van modules. Die verbeteringsfase wissel tussen grenssoek- en steilste gradiënt 
bewegings totdat die algoritme konvergeer tot ‘n plaaslike optimum. Eksperimente met 
welbekende toetsprobleme dui daarop dat die voorgestelde algoritme beter resultate as 
gepubliseerde data en dié van VIP-PLANOPT (‘n populêre, dikwels na verwysde, 
kommersiële fasiliteitsbeplanning sagteware) behaal. 
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1 INTRODUCTION 

Facilities layout planning (FLP) involves the allocation of space to activities [1,2]. It is a 
difficult combinatorial optimisation problem that has received considerable attention from 
researchers. Some of the more recent work includes [3-10]. Although FLP has been studied 
extensively with reference to industrial facility layout design, it has applications in various 
fields of engineering such as machine layout [11], transportation and town planning [12], 
very large-scale integration (VLSI) design [13], macrocell placement [14], and architectural 
floor plan design [10].  
 
The most common genre of FLP involves a finite number of rectangular building blocks or 
modules 𝑀𝑖  (𝑖 = 1,2 …  𝑁), representing various activities or functional units such as 
departments, machines, rooms, cells, activities, or spaces. The objective is to minimise the 
cost of inter-module flow by placing all the modules on the packing space without overlaps, 
in such a manner that the edges of Mi are parallel to the x and y axes respectively. It is a 
well-known NP-complete problem; and so a verifiably optimal solution cannot be known 
even for modest size problems [15-17]. Conceivably, published research in this area relies 
largely on comparing the performance of new algorithms with solutions reported for 
previously published algorithms, without any attempts to obtain verifiably global optima.  
 
The objective of this paper is to present an effective algorithm for solving a special class of 
FLP that involves hard modules of unequal dimensions in open space: i.e., with no user-
specified boundary constraints. This is in contrast with existing algorithms for solving FLP 
that involve placing soft modules within a user-specified boundary, which permits 
modification in the module dimensions within user-specified limits on the aspect ratios. 
Indeed, such a type of FLP that involves soft modules with a user-specified enclosing 
boundary has its own role and applications [18]. However, there are numerous applications 
where alterations in the module dimensions are not permitted [18]. For instance, in a 
machine layout design application, the dimensions of a machine cannot be changed to fit 
into a given space. Similarly, many plants have various units that have fixed dimensions 
that cannot be modified; the same is true with macrocell placement and architectural 
applications. Further, the requirement of an enclosed space is not always critical, as often 
there is enough empty space in the land proposed for a facility and minimising the 
operational costs is more important than simple space use. In short, the FLP with hard 
modules in open space is an important class of problem from the standpoints of both 
research and application. Although this important class of FLP has been addressed quite 
well in the literature, there has been a relative dearth of research over the previous 
decade or so. 
 
The proposed layout optimisation algorithm is a novel combination of heuristic cluster 
boundary search in the construction phase and analytical steepest descent search in the 
improvement phase. This adaptive heuristic boundary search algorithm also employs a near-
optimality hypothesis and a definition of local optima for reducing the otherwise infinite 
search space to tractable limits. It is to be noted that the analytical steepest descent for 
layout improvement has been employed in the past [19,20]. In addition, the heuristic 
cluster boundary search using a corner search has also been reported [1,2,21]. However, 
little research can be found on synergistically employing the two techniques in the same 
algorithm – an option that offers significant promise. Simulation results presented in this 
paper demonstrate that the proposed technique is more effective than all previously 
published algorithms. 
 
The rest of the paper is organised as follows: Section 2 provides a discussion on various 
classes of FLP, as well as past research in this area. Section 3 defines the problem, along 
with a mathematical formulation of the problem. Section 4 provides a detailed description 
of the proposed algorithm. Section 5 provides results and discussions. Section 6 concludes 
the paper with some interesting future research directions. 
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2 LITERATURE SURVEY 

There are various classes of FLP based on size, shape, and flexibility of the modules, as well 
as the layout space and dynamicity. For instance, the modules in FLP may be of identical 
shape and size. Such problems are usually referred to as Equal Area FLP (EA-FLP), where a 
certain area is divided into identical cells and each module is assigned to one of the cells, 
making it a cell assignment problem. Several solution approaches have been used to tackle 
EA-FLP. One popular approach is to treat it as a quadratic assignment problem (QAP) [22]. 
James, Rego and Glover [23] present an example of solving EA-FLP using Tabu search. Other 
methods for solving this type of problem are also reported in the literature [24-27]. 
 
In contrast, modules in an FLP may be of unequal area. In the case of unequal area FLP 
(UA-FLP), modules may be either ‘soft’ or ‘hard’. A soft module has a pre-specified area 
with variable aspect ratio, where the aspect ratio of a soft module is defined as the ratio of 
the length along Y-axis to its length along X-axis. We refer to this class of problems as soft 
module unequal area FLP (SUA-FLP). There are several published articles on UA-FLP that 
involve only soft modules. For instance, the idea of using an ant system for optimally 
placing soft modules in a given rectangular boundary has been reported in [28]. In addition, 
a heuristic applicable to both static and dynamic FLP has been reported in [29]. A hybrid 
algorithm involving slicing tree and Tabu search is reported in [30,31]. 
 
Problems that involve only ‘hard’ modules will be referred to as ‘hard module unequal area 
FLP’ (HUA-FLP). In these problems, module areas and aspect ratios are pre-specified. 
Conceivably, these harder-to-solve problems have received relatively little attention from 
the research community. Nevertheless, this class of problems is of particular interest from 
the perspectives of both theoretical research and practical applications. 
 
Another way of classifying FLP is based on the static and dynamic nature of the layouts. In 
static FLP (SFLP), the material flows between modules are assumed to be constant for the 
planning horizon. In contrast, in dynamic FLP (DFLP), flows between departments vary 
during the planning horizon. Several approaches to solving these problems have been 
reported, including [6,29,32-34]. However, the basic optimisation approach remains the 
same for both SFLP and DFLP. For instance, McKendall and Hakobyan [29] report an 
efficient technique for both SLFP and DFLP based on the pioneering cluster boundary search 
technique proposed by Imam and Mir [35]. 
 
Various FLP problems impose a boundary constraint such that the resultant layout is 
enclosed in a pre-specified area. The boundary constraints in some applications may be 
specified as a single row of modules of constant width [36,37], as multiple rows [38], or as 
a rectangle [39]. In contrast, numerous FLP applications do not impose any boundary 
constraint and permit a layout design in an open space [1,10-14,40]. 
 
The proposed algorithm is directed at attacking the open space unequal area hard module 
facility layout problems (OUH-FLP). It is interesting to note that OUH-FLP has some 
similarities with the popular cutting-stock problem (CSP) and the two-dimensional bin-
packing problem (2D-BPP), in the sense that all these problems are also geared towards 
optimising some sort of space use [41]. For instance, the cutting-stock problem is an NP-
complete optimisation problem, which is essentially reducible to the knapsack problem 
[42]. In this problem, a given shape or design is required to be cut out of parent material 
such that trim loss or the amount of parent material wasted is minimised [43]. The FLP 
problem is quite similar to the cutting-stock problem from the aspect of minimising the 
unused space/material. As such, there are some similarities between problem-solving 
approaches for FLP, CSP, and 2D-BPP. Despite these similarities, it should be noted that FLP 
also involves costs associated with moving materials from one facility to another, which 
differentiates FLP from the general CSP and 2D-BPP. 
 
As described earlier, our proposed algorithm is focused on solving the ubiquitous OUH-FLP. 
In the past, OUH-FLP has been solved using various techniques ranging from analytical 
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methods to evolutionary algorithms. Such techniques include the cluster boundary search 
algorithm reported in [35], analytic annealing [14], optimisation through controlled 
convergence [44], and nonlinear programming [19]. Notably, a novel hybrid optimisation 
approach by synergistically employing simulated annealing and analytical optimisation was 
reported in [40]. Recently, the analytical cluster boundary search method by [35] has been 
adapted through a perpetual loop for searching better solutions by using a new module 
sequence in each iteration [29].  
 
Despite the reported efficiency and efficacy of such analytical algorithms, our extensive 
literature survey indicates that no new analytical methods for solving OUH-FLP have been 
published since Mir and Imam [40], with the exception of McKendall and Hakobyan [29]. The 
thrust of the limited published research in OUH-FLP is towards employing evolutionary 
algorithms or heuristics. Among such recent algorithms, simulated annealing has been 
successfully applied to solve OUH-FLP [45]. Nevertheless, the recent evolutionary 
approaches used to solve OUH-FLP are based largely on genetic algorithms (GA). Kado [46] 
provides a good survey of some of the earlier work that addresses OUH-FLP using GA and 
some benchmark problems reported in the literature. The OUH-FLP problem was also 
tackled using a modified GA that the authors termed a ‘co-evolutionary algorithm’ [47]. 
 
Among the evolutionary algorithms, memetic algorithm (MA) is very promising for solving a 
wide variety of optimisation problems [48]. MA is a form of hybrid global-local heuristic 
search methodology, where global search represents a GA while the local search resembles 
a meme [48, 49]. MAs are known to provide greatly improved exploratory power and 
computational efficiency [50]. A good account of such MAs is presented in [51]. Recently, 
MA has also been used to solve the general QAP [52]. However, the use of MAs in solving 
OUH-FLP has not received much attention in the literature – with some recent exceptions, 
such as an effective MA reported in [8]. Nevertheless, this important application area is still 
open to more effective and efficient analytical and heuristic algorithms. This paper is an 
effort in this direction, and proposes a hybrid analytical-cum-heuristic algorithm. 

3 PROBLEM STATEMENT 

Let there be 𝑁 modules of arbitrary but fixed dimensions to be placed at their optimal 
positions in the Euclidean plane without any overlaps, such that a given cost function 𝜁 is 
minimised. The position of a module Mi is defined by the coordinates of its centroid (𝑥𝑖 ,𝑦𝑖). 
Let (𝐿𝑖 ,𝑊𝑖) denote the length and width of module 𝑖 along the 𝑋- and 𝑌-axes respectively. 
Let 𝑓𝑖𝑗 represent the cost of inter-module flow per unit distance between modules Mi and 
Mj and 𝛿𝑖𝑗 be the inter-module distance measured between the centroid of modules Mi and 
Mj. The cost function 𝜁 is defined as follows: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝜁(𝑥1, 𝑦1, 𝑥2, 𝑦2, … ,𝑥𝑁 , 𝑦𝑁) = � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

  (1) 

The inter-module distance could be any of the distance norm, including Manhattan 
(rectilinear), Euclidean, or squared Euclidean. In order to avoid the overlapping of modules, 
any overlap area 𝐴𝑖𝑗 between two modules Mi and Mj should be restricted to zero. This 
overlap 𝐴𝑖𝑗 is defined in the following using [40]: 

 
 𝐴𝑖𝑗 = 𝜆𝑖𝑗�Δ𝑋𝑖𝑗��𝛥𝑌𝑖𝑗�  (2) 
where 
 

𝛥𝑋𝑖𝑗 = �
𝐿𝑖 + 𝐿𝑗

2 � − �𝑥𝑖 − 𝑥𝑗�  (3) 

 
𝛥𝑌𝑖𝑗 = �

𝑊𝑖 + 𝑊𝑗

2 � − �𝑦𝑖 − 𝑦𝑗�  (4) 

 𝜆𝑖𝑗 = �−1 𝑓𝑜𝑟 Δ𝑋𝑖𝑗 ≤ 0 𝑎𝑛𝑑 Δ𝑌𝑖𝑗 ≤ 0 
+1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (5) 

 
A positive value of 𝐴𝑖𝑗 indicates that there is an overlap between modules Mi and Mj. In the 
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light of this discussion and Equations (1) to (5), the OUH-FLP problem can now be 
formulated as: 
 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝜁(𝑥1, 𝑦1, 𝑥2, 𝑦2, … , 𝑥𝑁, 𝑦𝑁) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
𝐴𝑖𝑗 ≤ 0;    𝑖 = 1,2, … ,𝑁 − 1; 𝑗 = 𝑖 + 1 𝑡𝑜 𝑁 

(6) 

4 PROPOSED ALGORITHM 

We propose a hybrid algorithm involving dual hybridisations: the construction-cum-
improvement hybrid and the analytical-cum-heuristic hybrid. We refer to the proposed 
algorithm as the adaptive cluster boundary search (ACS) algorithm. The algorithm is 
adaptive in two ways: the first phase is a constructive algorithm in which the search space 
adapts to the contour of the boundary formed by the layout obtained in the previous 
iteration. The second phase is an improvement type algorithm that adapts to the values of 
the derivatives of the placed modules. These derivatives represent error in the placement 
from the optimal placement, and the modules are moved to minimise this error. This will 
be explained further in Section 4.4.  
 
In the following section, we provide a detailed description of the main components of the 
proposed algorithm. Pseudo-code and a flow chart of the proposed ACS algorithm are given 
in Appendix A and Figure 1 respectively. 

 

Figure 1: Flow chart of the proposed algorithm 
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4.1 Initialisation 

The constructive part of the algorithm starts with an initial layout consisting of two 
modules. This layout is obtained by randomly selecting a module as the first incoming 
module (IM1) and placing it at an arbitrary position. Once placed, this module will be called 
‘placed module’ (PM) and will be denoted by (PMi, xi, yi), where i identifies the placed 
module at position (xi, yi). This PMi is then added to the set of placed modules denoted by 
𝜉𝑃𝑀. This is followed by randomly selecting another module as the second incoming module 
(IM2) and placing it optimally on the boundary of the PM. Such a placement that results in 
the minimum cost position on the boundary of the PMs will be referred to as ‘initial 
boundary placement’ (IBP), inspired by the idea described in [35]. Since at this stage only 
two PMs have been placed, the partial layout is also the global optimum layout; there is 
thus no need to go beyond the IBP to perform an improvement cycle until there are more 
than two PMs. 

4.2 Main algorithm 

The main ACS algorithm loop starts with the selection of the third module. Each time in this 
loop, an incoming module IM is randomly selected from the list of candidate modules (CM). 
This is followed by IBP to determine the best possible position on the boundary of the 
layout consisting of a contiguous cluster of PMs. The algorithm ensures a contiguous cluster 
of PMs with no splits by merging any mini-clusters formed during placements.  
 
After the placement of the IM through IBP, the improvement cycle starts. The improvement 
cycle consists of several steps: the steepest descent-based analytical improvement 
described in Section 4.4, the removal of any overlaps, the heuristic boundary search for 
placement of any modules moved during overlap removal, and the heuristic improvement 
described in Section 4.5.  
 
The main loop continues until all modules have been placed.  

4.3 Heuristic boundary search 

The heuristic boundary search explores placement of an IM or PMj, as the case may be, only 
at the vacant four corners of the placed module PMχ. This heuristic reduces the otherwise 
infinite solution space to tractable limits, as for a given IM there are only O(n) possible 
locations. More specifically, for given i modules in the cluster, there are a maximum of 12i 
possible locations to explore, which is a very loose upper bound. 
 
In the proposed algorithm, the heuristic boundary search is called twice: first, to place 
every incoming module (IM); and second, to find a better location for a placed module 
(PMπ) after the application of the steepest descent improvement technique. 

4.4 Analytical improvement  

Once the best position for an IM has been found on the cluster of placed modules using 
heuristic boundary search, the analytical improvement through steepest descent is carried 
out on all PMs. For this purpose, the slopes of steepest descent for all PMs are determined 
as follows: 

 𝑆𝑘,𝑥 = 𝜕𝜁
𝜕𝑥𝑘

, 𝑆𝑘,𝑦 = 𝜕𝜁
𝜕𝑦𝑘

 (7) 

 |𝑆𝑘| = �𝑆𝑘,𝑥
2 + 𝑆𝑘,𝑦

2  (8) 

where Sk,x and Sk,y are the x and y components of slope of the kth PM and |𝑆𝑘| represents the 
magnitude of this slope. Following the decreasing order of|𝑆𝑘|, each PM is moved in the 
direction of the steepest descent, ignoring any overlaps, until the cost does not decrease 
any further. Any overlapping modules, except for the module moved by the analytical 
improvement procedure, are placed at superior positions using heuristic boundary search. If 
the new layout does not result in an improved cost, the improvement procedure is 
backtracked, the module with the next highest slope is moved, and the procedure is 
repeated. If the move is successful, the slopes are calculated again and the analytical 
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improvement procedure is repeated. Once all modules have been considered, or no further 
improvement is possible, the heuristic boundary search is applied to all modules. This cycle 
of analytical improvement through steepest descent and heuristic boundary search is 
repeated until no gains are possible.  
4.4.1 Adaptivity 
The presented algorithm is highly adaptive. First, the algorithm has a constructive phase 
and an improvement phase, which are both adaptive. The adaptive nature is controlled by 
the parameters of OUH-FLP, which are addressed in this paper. There are only six distinct 
parameters: (a) cost matrix, (b) module dimensions, (c) positions of modules, (d) boundary 
of placed modules, (e) cost of the layout, and (f) the derivatives of the cost with respect to 
the x and y coordinates of the layout.  
 
In the constructive phase, the search space for each incoming module adapts to the 
contours of the boundary obtained in the previous iteration. Here the parameter that 
controls the algorithm is the boundary of the layout obtained in the previous iteration. The 
boundary data is kept in a digital form. The module is guided by the boundary data to move 
and search for its own optimal location along the layout boundary. Thus the search space in 
the constructive part of the algorithm is adaptive.  
 
In the improvement part of the algorithm, a module is selected for movement, and is 
moved in the direction of the steepest descent that is based on the derivatives of the cost 
function with respect to the x and y coordinates. Both the selection of the module and its 
movement are adaptive. The derivatives represent an estimate of error in the placement of 
the module in a given layout. Optimality is achieved when all derivatives are zero and a 
layout becomes optimal (at least locally), and no module can be moved to obtain a better 
layout. Considering this, we use the derivatives and select the module with the highest 
derivative. The module is then moved in the direction of steepest descent, which again is a 
function of derivatives. Thus the parameter making the algorithm adaptive is the derivative 
representing the error in the placement of a module. It is similar to several applications 
where the estimate of error in the previous iteration is used in deciding the move. Such 
algorithms are referred to as adaptive algorithms, such as the well-known ‘adaptive 
coordinate descent method’ [53] and the ‘adaptive algorithms for deterministic and 
stochastic differential equations’ [54]. 
4.4.2 An example of analytical improvement 
This analytical improvement procedure and the subsequent overlap removal are explained 
here through the example given in Figure 2. This figure shows a cluster of eight PMs formed 
after applying a heuristic boundary search on IM8. Since the best position of IM8 on the 
boundary of the cluster has been obtained, analytical improvement through steepest 
descent procedure will be applied to each of the PMs. In the example shown in Figure 2, M6 
has the highest value of Sk. This module is therefore moved first in its direction of steepest 
descent, which is vertically upwards. The optimal position is shown in Figure 2(b), while 
ignoring the overlap with M3. To remove any overlap, heuristic boundary search is applied 
to M3 for determining its best position on the boundary of the cluster, resulting in the 
layout shown in Figure 2(c). It is to be noted that the analytical improvement may result in 
an overlap of multiple modules. In such a case, all overlapping modules, except for the 
module moved by the analytical improvement procedure, are placed at superior positions 
using heuristic boundary search. 

4.5 Heuristic improvement  

Our heuristic improvement is inspired by the ideas explored in [55]. It involves minor 
horizontal and vertical perturbations in the position of each module present in the cluster, 
by considering one module at a time. These perturbations are retained only when these 
result in cost improvement. Furthermore, to reduce computational complexity, we perform 
these heuristic improvements in a slightly greedy manner. For instance, a useful rightward 
perturbation would mean ignoring any leftward perturbation or vice versa; although vertical 
perturbations are still explored.  
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Figure 2: Example of the application of the analytic improvement procedure 

4.6 Final tuning 

This final tuning was performed once only at the end of all the iterations of analytical and 
heuristic improvements. It involves detecting any super modules, where adjacent modules 
perfectly align along one side, either vertically or horizontally. The heuristic improvement 
described in Section 4.5 is then applied to such super modules. Our simulation studies 
indicate that the overall improvement due to this final tuning was only about 0.1–0.2 per 
cent of the cost of the final solution. However, since the computational cost of this simple 
fine tuning is almost negligible – in the range of a few milliseconds in total – it is a 
worthwhile investment. 

5 RESULTS AND DISCUSSIONS 

The proposed algorithm was implemented using Matlab, and was used to solve the 
benchmark problems listed in Table 1, using a 2.0 GHz quad-core computer running on 
Windows 7 with a memory of 8 GB. The data for the benchmark problems can be found in 
[56]. Comparison of layouts obtained from the proposed ACS algorithm with the verifiably 
best available published results and those obtained from VIP-PLANOPT 10 [57], a popular, 
oft-cited commercially available layout planning and optimisation software, are presented 
here. Recently, results from VIP-PLANOPT have often been employed as benchmarks for 
testing the effectiveness of new algorithms in facility layout planning [1,5,8,29,58-60]. 
Thus we deem it appropriate to include it in our comparative analysis.  
 
It should be noted here that several solutions published in the literature are without the 
necessary data or layout diagram of the claimed superior layout, barring any possibility of 
independently authenticating those solutions. We made concerted efforts to obtain 
verifiable data for those published solutions by personally communicating with authors who 
claimed those good solutions. When no necessary data was available, such published claims 
were excluded from our comparative analyses. Table 1 provides a summary of these 
comparative analyses, clearly indicating the superiority of the proposed algorithm.  

5.1 Summary of results 

A summary of results is provided in Table 1. In this table, each row provides a separate 
benchmark problem; the columns give the problem ID, the problem size in terms of the 
number of modules, the cost function, the best verifiable published result, the best 
solution obtained using VIP-PLANOPT 10, and the best solution obtained through the 
proposed ACS algorithm. The distance norm used in all the problems is rectilinear, except 
for problem numbers 5, 6 and 12, where the squared Euclidean norm has been used, and 
problem 13, where the Euclidean norm has been used. 
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It can be seen from Table 1 and from Figures 3 to 8 that the solutions obtained by the 
proposed technique are better than all previously published analytical, heuristic, 
evolutionary, and memetic algorithms, as well as commercially available layout 
optimisation software. Data relevant to the layouts optimised using the proposed ACS 
algorithm, such as coordinates of the lower left corners and problem dimensions, etc., are 
available from [56]. 

Table 1: Summary of results 

 Problem ID Size 
(Modules) Cost Function Best 

Published 
Best from 
PLANOPT ACS  

1 OUH-003-Ixx 
[57] 3 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 270.00 [1] 270.00 270.00 ** 

2 
 

OUH-004-Dxx 
[61] 

4 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 1,510.00 [1] 1,510.00 1,510.00 ** 

3 
 

OUH-006-Dxx 
[61] 

6 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 3,314.80 [1] 3,379.00 3,274.00 *** 

4 
 

OUH-008-Dxx 
[61] 

8 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 - 10,468.00 10,468.00   ** 

5 
 

OUH-008-IMx 
[62] 

8 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 689.50 [1] 692.50 676.50 *** 

6 
 

OUHf-008-EOS 
[57] 

8 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 757.50 [1] 763.50 762.23 * 

7 
 

OUH-010-Dxx 
[61] 

10 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 19,279.00 [1] 19,162.00 18,488.59 *** 

8 
 

OUH-011-IMx 
[62] 

11 2� � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1
+ 𝐴𝑟𝑒𝑎 

2,714.19 [2] 2,730.70 2,626.48 *** 

9 
 

OUH-012-Dxx 
[61] 

12 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 - 43,180.50 41,257.19 *** 

10 
 

OUH-020-Mix 
[63] 

20 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 1,151.40 [3] 1,157.00 1,140.00 *** 

11 
 

OUH-020-CHM 
[64] 

20 ��𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=1

+ 𝐴𝑟𝑒𝑎
𝑁

𝑖=1

 140.00 [1] 128.00 119.00 *** 

12 
 

OUH-028-Mix 
[63] 

28 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 8,640.00 [4] 6,447.25 6,289.64 *** 

13 
 

OUH-050-EOS 
[57] 

50 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 71,291.40 [3] 78,224.70 71,151.41 *** 

        
***ACS surpassed the best; **ACS achieved the best; *ACS comparable to the best 

  
Figure 3: Two possible optimal layouts of OUH-003-Ixx 
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Figure 4: Optimal layouts for 4 and 6 module benchmark problems 

 

Figure 5: Optimal layouts for 8 module benchmark problems 

 

Figure 6: Optimal layouts for 10, 11, and 12 module benchmark problems 

 

Figure 7: Optimal layouts for 20 module benchmark problems 
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Figure 8: Optimal layouts for 28 and 50 module benchmark problems  

6 CONCLUSION 

This paper presents an effective algorithm for solving a special class of FLP that involves 
unequal area hard modules in open space. The proposed construction-cum-improvement 
algorithm is a novel combination of analytical steepest descent and heuristic cluster 
boundary search. We also provide an extensive literature review related to open-space hard 
module FLP, along with a compilation of published problems. Test results demonstrate that 
the proposed algorithm resulted in significant improvements over published techniques and 
commercially available software. This research is expected to renew the interest of the 
research community in this important research domain. In future, we want to explore the 
idea of a more exhaustive final tuning by considering not only the super modules, but also 
their subsets, which may result in more promising solutions. Some fuzzy logic rules for 
ruling out less promising placements in the heuristic cluster boundary search may also help 
to improve the overall efficiency. 
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APPENDIX A: Pseudo-Code for the Adaptive Cluster Boundary Search (ACS) algorithm 

Let, 
𝜁 = Cost of the objective function 𝜉𝐶𝑀 = Set of candidate modules 
TM = Total number of modules 𝜉𝑃𝑀 = Set of placed modules with  

locations 
IM = Incoming module 𝜉𝑃𝑀𝑇 = Temporary Set of PMs 
PM = Placed module 𝜉𝑃𝑀𝑂 = Set of PMs with possible overlap(s) 

TPM = Total number of PMs 𝜉𝑃𝑀𝑆 = Set of PMs with slopes in descending order 
(𝐼𝑀, 𝑥𝐼𝑀, 𝑦𝐼𝑀) 

 
= Incoming module placed at (𝑥𝐼𝑀,𝑦𝐼𝑀) 𝜒,𝜋 = A 𝑃𝑀𝜒 at whose corners an 𝐼𝑀𝜋 or  

another 𝑃𝑀𝜋 is being placed 
TPMO = Total number of PMs with possible 

overlap(s) 
ε = A small positive number 

 
/Initialization/ 

Set TPM = 0, 𝜁 = ∞ 
Select 𝐼𝑀 𝜖 𝜉𝐶𝑀 
Place IM at (0, 0) 
Add (𝐼𝑀, 0,0) to 𝜉𝑃𝑀 
Increment TPM 

 
Main ( ) 

For p = 2 to TM 
Select 𝐼𝑀 𝜖 𝜉𝐶𝑀 

 𝜋 = 𝑝 
Call BoundarySearch ( )  
Add (𝐼𝑀, 𝑥𝐼𝑀,𝑦𝐼𝑀) to 𝜉𝑃𝑀 
Increment TPM 
Call ComputeCost ( ) 
𝜁 = 𝜁𝑇𝑃𝑀 
Call SteepestDescent ( )  
For q = 1 to TPM 
 𝜋 = 𝑞 

Call BoundarySearch ( )  
Call HeuristicImpr ( ) 

 
BoundarySearch ( ) 

For k = 1 to TPM 
 𝜒 = 𝑘 
 Call ModulePlacement ( ) 
 If 𝜁𝑀𝑖𝑛 < 𝜁 
  𝜁 = 𝜁𝑀𝑖𝑛 
  𝜉𝑃𝑀 = 𝜉𝑃𝑀𝑇 

 
ModulePlacement ( ) 
 Set 𝜁𝑀𝑖𝑛= ∞, 𝜉𝑃𝑀𝑇 = 𝜉𝑃𝑀 
 For i = 1 to 4 
  For j = 1 to 4 
  If i ≠ j: Place ith corner of 𝐼𝑀𝜋/𝑃𝑀𝜋 at jth corner of 𝑃𝑀𝜒 
  Call ComputeCost ( ) 
  If 𝜁𝑇𝑃𝑀 < 𝜁𝑀𝑖𝑛 
   𝜁𝑀𝑖𝑛 = 𝜁𝑇𝑃𝑀 
   Save current module placements as 𝜉𝑃𝑀𝑇 
 Return 𝜁𝑀𝑖𝑛 
 Return 𝜉𝑃𝑀𝑇 
 
SteepestDescent ( ) 
 For k = 1 to TPM 
  Compute 𝑆𝑘,𝑥 = 𝜕�

𝜕𝑥𝑘
, 𝑆𝑘,𝑦 = 𝜕�

𝜕𝑦𝑘
 

 Compute 𝑆[𝑘] = �𝑆𝑘,𝑥
2 + 𝑆𝑘,𝑦

2  

 Sort 𝜉𝑃𝑀 by S in descending order and save in 𝜉𝑃𝑀𝑆 
𝜉𝑃𝑀𝑇 = 𝜉𝑃𝑀 
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For i = 1 to TPM 
Do while 𝜁𝑇𝑃𝑀 < 𝜁 

Move 𝑃𝑀𝑖  𝜖 𝜉𝑃𝑀𝑆 in the direction of S[i] 
Call ComputeCost ( ) 

Call CheckOverlaps ( ) 
If TPMO ≠ Ø 

Call RemoveOverlaps ( ) 
Call ComputeCost ( ) 
Save layout in 𝜉𝑃𝑀𝑇 
If  𝜁𝑇𝑃𝑀 < 𝜁 

𝜉𝑃𝑀 = 𝜉𝑃𝑀𝑇 
𝜁 = 𝜁𝑇𝑃𝑀 

 
HeuristicImpr ( ) 

For i = 1 to 𝜋 
For j = 1 to 4            / j = 1: positive x; j = 2: negative x; j = 3: positive y; j = 4: negative y / 

Do while 𝜁𝑇𝑃𝑀 < 𝜁  
Move 𝑃𝑀𝑖 in direction “j” by ε 
Call ComputeCost ( ) 

Save layout in 𝜉𝑃𝑀𝑇 
If 𝜁𝑇𝑃𝑀 < 𝜁 

𝜉𝑃𝑀 = 𝜉𝑃𝑀𝑇 
𝜁 = 𝜁𝑇𝑃𝑀 

 
CheckOverlaps ( ) 

For i = 1 to TPM 
For j = i+1 to TPM 

If overlap 
Add module to 𝜉𝑃𝑀𝑂 
Increment TPMO 

 
RemoveOverlaps ( ) 

While TPMO > 0 
Select first module in 𝜉𝑃𝑀𝑂 
𝜋 = 1 
Call BoundarySearch ( ) 
Decrement TPMO 
Update 𝜉𝑃𝑀𝑂 

ComputeCost ( ) 
 Set 𝜁𝑇𝑃𝑀 = 0 
 For i = 1 to TPM – 1 
  For j = (i + 1) to TPM 
   Compute 𝜁𝑇𝑃𝑀 = 𝜁𝑇𝑃𝑀 + 𝑓𝑖𝑗𝛿𝑖𝑗 
 Return 𝜁𝑇𝑃𝑀 
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