
A HYBRID ALGORITHM FOR OPTIMISING FACILITY LAYOUT

I.A. Tasadduq1*, M.H. Imam2 & A. Ahmad3

1Department of Computer Engineering
Umm Al-Qura University

Makkah, Saudi Arabia
iatasadduq@uqu.edu.sa

2Department of Civil Engineering

Umm Al-Qura University
Makkah, Saudi Arabia
mmimam@uqu.edu.sa

3Systems Design Engineering

University of Waterloo
Waterloo, Canada

arahim@uwaterloo.ca

ABSTRACT

Despite the reported effectiveness of analytical algorithms in facility layout planning, a
detailed literature survey suggests a lack of new analytical methods in recent years. This
paper focuses on open space facilities layout planning that involves modules with constant
aspect ratios. We propose a construction-cum-improvement algorithm involving a novel
combination of a boundary search-based heuristic placement and steepest descent-based
analytical improvement. In the construction phase, the algorithm places a new module at
the optimal location on the boundary of a previously constructed cluster of modules. In the
improvement phase, the algorithm alternates between boundary search and steepest
descent moves until it converges to a local optimum. Experiments with well-known test
problems indicate that the proposed algorithm produced solutions superior both to
published results and to those produced by VIP-PLANOPT, a popular, oft-cited and
commercially available layout planning and optimisation software.

OPSOMMING

Ten spyte van die berigte effektiwiteit van analitiese algoritmes met betrekking tot
fasiliteitsuitlegbeplanning, dui ‘n gedetailleerde literatuurstudie op ‘n tekort aan nuwe
analitiese metodes. In hierdie studie word daar op oop-area fasiliteitsuitlegbeplanning, wat
modules met konstante aspek verhouding behels, gefokus. ‘n Konstrukise-en-verbeterings
algoritme, wat ‘n nuwe kombinasie van grenssoek gebaseerde heuristiese plasing en steilste
gradiënt gebaseerde analitiese verbetering insluit, voorgestel. In die konstruksiefase plaas
die algoritme ‘n nuwe module by die optimale posisie op die grens van ’n voorheen geboude
groep van modules. Die verbeteringsfase wissel tussen grenssoek- en steilste gradiënt
bewegings totdat die algoritme konvergeer tot ‘n plaaslike optimum. Eksperimente met
welbekende toetsprobleme dui daarop dat die voorgestelde algoritme beter resultate as
gepubliseerde data en dié van VIP-PLANOPT (‘n populêre, dikwels na verwysde,
kommersiële fasiliteitsbeplanning sagteware) behaal.

* Corresponding author

South African Journal of Industrial Engineering May 2015 Vol 26(1), pp 120-134

1 INTRODUCTION

Facilities layout planning (FLP) involves the allocation of space to activities [1,2]. It is a
difficult combinatorial optimisation problem that has received considerable attention from
researchers. Some of the more recent work includes [3-10]. Although FLP has been studied
extensively with reference to industrial facility layout design, it has applications in various
fields of engineering such as machine layout [11], transportation and town planning [12],
very large-scale integration (VLSI) design [13], macrocell placement [14], and architectural
floor plan design [10].

The most common genre of FLP involves a finite number of rectangular building blocks or
modules 𝑀𝑖 (𝑖 = 1,2 … 𝑁), representing various activities or functional units such as
departments, machines, rooms, cells, activities, or spaces. The objective is to minimise the
cost of inter-module flow by placing all the modules on the packing space without overlaps,
in such a manner that the edges of Mi are parallel to the x and y axes respectively. It is a
well-known NP-complete problem; and so a verifiably optimal solution cannot be known
even for modest size problems [15-17]. Conceivably, published research in this area relies
largely on comparing the performance of new algorithms with solutions reported for
previously published algorithms, without any attempts to obtain verifiably global optima.

The objective of this paper is to present an effective algorithm for solving a special class of
FLP that involves hard modules of unequal dimensions in open space: i.e., with no user-
specified boundary constraints. This is in contrast with existing algorithms for solving FLP
that involve placing soft modules within a user-specified boundary, which permits
modification in the module dimensions within user-specified limits on the aspect ratios.
Indeed, such a type of FLP that involves soft modules with a user-specified enclosing
boundary has its own role and applications [18]. However, there are numerous applications
where alterations in the module dimensions are not permitted [18]. For instance, in a
machine layout design application, the dimensions of a machine cannot be changed to fit
into a given space. Similarly, many plants have various units that have fixed dimensions
that cannot be modified; the same is true with macrocell placement and architectural
applications. Further, the requirement of an enclosed space is not always critical, as often
there is enough empty space in the land proposed for a facility and minimising the
operational costs is more important than simple space use. In short, the FLP with hard
modules in open space is an important class of problem from the standpoints of both
research and application. Although this important class of FLP has been addressed quite
well in the literature, there has been a relative dearth of research over the previous
decade or so.

The proposed layout optimisation algorithm is a novel combination of heuristic cluster
boundary search in the construction phase and analytical steepest descent search in the
improvement phase. This adaptive heuristic boundary search algorithm also employs a near-
optimality hypothesis and a definition of local optima for reducing the otherwise infinite
search space to tractable limits. It is to be noted that the analytical steepest descent for
layout improvement has been employed in the past [19,20]. In addition, the heuristic
cluster boundary search using a corner search has also been reported [1,2,21]. However,
little research can be found on synergistically employing the two techniques in the same
algorithm – an option that offers significant promise. Simulation results presented in this
paper demonstrate that the proposed technique is more effective than all previously
published algorithms.

The rest of the paper is organised as follows: Section 2 provides a discussion on various
classes of FLP, as well as past research in this area. Section 3 defines the problem, along
with a mathematical formulation of the problem. Section 4 provides a detailed description
of the proposed algorithm. Section 5 provides results and discussions. Section 6 concludes
the paper with some interesting future research directions.

121

2 LITERATURE SURVEY

There are various classes of FLP based on size, shape, and flexibility of the modules, as well
as the layout space and dynamicity. For instance, the modules in FLP may be of identical
shape and size. Such problems are usually referred to as Equal Area FLP (EA-FLP), where a
certain area is divided into identical cells and each module is assigned to one of the cells,
making it a cell assignment problem. Several solution approaches have been used to tackle
EA-FLP. One popular approach is to treat it as a quadratic assignment problem (QAP) [22].
James, Rego and Glover [23] present an example of solving EA-FLP using Tabu search. Other
methods for solving this type of problem are also reported in the literature [24-27].

In contrast, modules in an FLP may be of unequal area. In the case of unequal area FLP
(UA-FLP), modules may be either ‘soft’ or ‘hard’. A soft module has a pre-specified area
with variable aspect ratio, where the aspect ratio of a soft module is defined as the ratio of
the length along Y-axis to its length along X-axis. We refer to this class of problems as soft
module unequal area FLP (SUA-FLP). There are several published articles on UA-FLP that
involve only soft modules. For instance, the idea of using an ant system for optimally
placing soft modules in a given rectangular boundary has been reported in [28]. In addition,
a heuristic applicable to both static and dynamic FLP has been reported in [29]. A hybrid
algorithm involving slicing tree and Tabu search is reported in [30,31].

Problems that involve only ‘hard’ modules will be referred to as ‘hard module unequal area
FLP’ (HUA-FLP). In these problems, module areas and aspect ratios are pre-specified.
Conceivably, these harder-to-solve problems have received relatively little attention from
the research community. Nevertheless, this class of problems is of particular interest from
the perspectives of both theoretical research and practical applications.

Another way of classifying FLP is based on the static and dynamic nature of the layouts. In
static FLP (SFLP), the material flows between modules are assumed to be constant for the
planning horizon. In contrast, in dynamic FLP (DFLP), flows between departments vary
during the planning horizon. Several approaches to solving these problems have been
reported, including [6,29,32-34]. However, the basic optimisation approach remains the
same for both SFLP and DFLP. For instance, McKendall and Hakobyan [29] report an
efficient technique for both SLFP and DFLP based on the pioneering cluster boundary search
technique proposed by Imam and Mir [35].

Various FLP problems impose a boundary constraint such that the resultant layout is
enclosed in a pre-specified area. The boundary constraints in some applications may be
specified as a single row of modules of constant width [36,37], as multiple rows [38], or as
a rectangle [39]. In contrast, numerous FLP applications do not impose any boundary
constraint and permit a layout design in an open space [1,10-14,40].

The proposed algorithm is directed at attacking the open space unequal area hard module
facility layout problems (OUH-FLP). It is interesting to note that OUH-FLP has some
similarities with the popular cutting-stock problem (CSP) and the two-dimensional bin-
packing problem (2D-BPP), in the sense that all these problems are also geared towards
optimising some sort of space use [41]. For instance, the cutting-stock problem is an NP-
complete optimisation problem, which is essentially reducible to the knapsack problem
[42]. In this problem, a given shape or design is required to be cut out of parent material
such that trim loss or the amount of parent material wasted is minimised [43]. The FLP
problem is quite similar to the cutting-stock problem from the aspect of minimising the
unused space/material. As such, there are some similarities between problem-solving
approaches for FLP, CSP, and 2D-BPP. Despite these similarities, it should be noted that FLP
also involves costs associated with moving materials from one facility to another, which
differentiates FLP from the general CSP and 2D-BPP.

As described earlier, our proposed algorithm is focused on solving the ubiquitous OUH-FLP.
In the past, OUH-FLP has been solved using various techniques ranging from analytical

122

methods to evolutionary algorithms. Such techniques include the cluster boundary search
algorithm reported in [35], analytic annealing [14], optimisation through controlled
convergence [44], and nonlinear programming [19]. Notably, a novel hybrid optimisation
approach by synergistically employing simulated annealing and analytical optimisation was
reported in [40]. Recently, the analytical cluster boundary search method by [35] has been
adapted through a perpetual loop for searching better solutions by using a new module
sequence in each iteration [29].

Despite the reported efficiency and efficacy of such analytical algorithms, our extensive
literature survey indicates that no new analytical methods for solving OUH-FLP have been
published since Mir and Imam [40], with the exception of McKendall and Hakobyan [29]. The
thrust of the limited published research in OUH-FLP is towards employing evolutionary
algorithms or heuristics. Among such recent algorithms, simulated annealing has been
successfully applied to solve OUH-FLP [45]. Nevertheless, the recent evolutionary
approaches used to solve OUH-FLP are based largely on genetic algorithms (GA). Kado [46]
provides a good survey of some of the earlier work that addresses OUH-FLP using GA and
some benchmark problems reported in the literature. The OUH-FLP problem was also
tackled using a modified GA that the authors termed a ‘co-evolutionary algorithm’ [47].

Among the evolutionary algorithms, memetic algorithm (MA) is very promising for solving a
wide variety of optimisation problems [48]. MA is a form of hybrid global-local heuristic
search methodology, where global search represents a GA while the local search resembles
a meme [48, 49]. MAs are known to provide greatly improved exploratory power and
computational efficiency [50]. A good account of such MAs is presented in [51]. Recently,
MA has also been used to solve the general QAP [52]. However, the use of MAs in solving
OUH-FLP has not received much attention in the literature – with some recent exceptions,
such as an effective MA reported in [8]. Nevertheless, this important application area is still
open to more effective and efficient analytical and heuristic algorithms. This paper is an
effort in this direction, and proposes a hybrid analytical-cum-heuristic algorithm.

3 PROBLEM STATEMENT

Let there be 𝑁 modules of arbitrary but fixed dimensions to be placed at their optimal
positions in the Euclidean plane without any overlaps, such that a given cost function 𝜁 is
minimised. The position of a module Mi is defined by the coordinates of its centroid (𝑥𝑖 ,𝑦𝑖).
Let (𝐿𝑖 ,𝑊𝑖) denote the length and width of module 𝑖 along the 𝑋- and 𝑌-axes respectively.
Let 𝑓𝑖𝑗 represent the cost of inter-module flow per unit distance between modules Mi and
Mj and 𝛿𝑖𝑗 be the inter-module distance measured between the centroid of modules Mi and
Mj. The cost function 𝜁 is defined as follows:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝜁(𝑥1, 𝑦1, 𝑥2, 𝑦2, … ,𝑥𝑁 , 𝑦𝑁) = � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 (1)

The inter-module distance could be any of the distance norm, including Manhattan
(rectilinear), Euclidean, or squared Euclidean. In order to avoid the overlapping of modules,
any overlap area 𝐴𝑖𝑗 between two modules Mi and Mj should be restricted to zero. This
overlap 𝐴𝑖𝑗 is defined in the following using [40]:

 𝐴𝑖𝑗 = 𝜆𝑖𝑗�Δ𝑋𝑖𝑗��𝛥𝑌𝑖𝑗� (2)
where

𝛥𝑋𝑖𝑗 = �
𝐿𝑖 + 𝐿𝑗

2 � − �𝑥𝑖 − 𝑥𝑗� (3)

𝛥𝑌𝑖𝑗 = �

𝑊𝑖 + 𝑊𝑗

2 � − �𝑦𝑖 − 𝑦𝑗� (4)

 𝜆𝑖𝑗 = �−1 𝑓𝑜𝑟 Δ𝑋𝑖𝑗 ≤ 0 𝑎𝑛𝑑 Δ𝑌𝑖𝑗 ≤ 0
+1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

A positive value of 𝐴𝑖𝑗 indicates that there is an overlap between modules Mi and Mj. In the

123

light of this discussion and Equations (1) to (5), the OUH-FLP problem can now be
formulated as:
 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝜁(𝑥1, 𝑦1, 𝑥2, 𝑦2, … , 𝑥𝑁, 𝑦𝑁)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝐴𝑖𝑗 ≤ 0; 𝑖 = 1,2, … ,𝑁 − 1; 𝑗 = 𝑖 + 1 𝑡𝑜 𝑁

(6)

4 PROPOSED ALGORITHM

We propose a hybrid algorithm involving dual hybridisations: the construction-cum-
improvement hybrid and the analytical-cum-heuristic hybrid. We refer to the proposed
algorithm as the adaptive cluster boundary search (ACS) algorithm. The algorithm is
adaptive in two ways: the first phase is a constructive algorithm in which the search space
adapts to the contour of the boundary formed by the layout obtained in the previous
iteration. The second phase is an improvement type algorithm that adapts to the values of
the derivatives of the placed modules. These derivatives represent error in the placement
from the optimal placement, and the modules are moved to minimise this error. This will
be explained further in Section 4.4.

In the following section, we provide a detailed description of the main components of the
proposed algorithm. Pseudo-code and a flow chart of the proposed ACS algorithm are given
in Appendix A and Figure 1 respectively.

Figure 1: Flow chart of the proposed algorithm

124

4.1 Initialisation

The constructive part of the algorithm starts with an initial layout consisting of two
modules. This layout is obtained by randomly selecting a module as the first incoming
module (IM1) and placing it at an arbitrary position. Once placed, this module will be called
‘placed module’ (PM) and will be denoted by (PMi, xi, yi), where i identifies the placed
module at position (xi, yi). This PMi is then added to the set of placed modules denoted by
𝜉𝑃𝑀. This is followed by randomly selecting another module as the second incoming module
(IM2) and placing it optimally on the boundary of the PM. Such a placement that results in
the minimum cost position on the boundary of the PMs will be referred to as ‘initial
boundary placement’ (IBP), inspired by the idea described in [35]. Since at this stage only
two PMs have been placed, the partial layout is also the global optimum layout; there is
thus no need to go beyond the IBP to perform an improvement cycle until there are more
than two PMs.

4.2 Main algorithm

The main ACS algorithm loop starts with the selection of the third module. Each time in this
loop, an incoming module IM is randomly selected from the list of candidate modules (CM).
This is followed by IBP to determine the best possible position on the boundary of the
layout consisting of a contiguous cluster of PMs. The algorithm ensures a contiguous cluster
of PMs with no splits by merging any mini-clusters formed during placements.

After the placement of the IM through IBP, the improvement cycle starts. The improvement
cycle consists of several steps: the steepest descent-based analytical improvement
described in Section 4.4, the removal of any overlaps, the heuristic boundary search for
placement of any modules moved during overlap removal, and the heuristic improvement
described in Section 4.5.

The main loop continues until all modules have been placed.

4.3 Heuristic boundary search

The heuristic boundary search explores placement of an IM or PMj, as the case may be, only
at the vacant four corners of the placed module PMχ. This heuristic reduces the otherwise
infinite solution space to tractable limits, as for a given IM there are only O(n) possible
locations. More specifically, for given i modules in the cluster, there are a maximum of 12i
possible locations to explore, which is a very loose upper bound.

In the proposed algorithm, the heuristic boundary search is called twice: first, to place
every incoming module (IM); and second, to find a better location for a placed module
(PMπ) after the application of the steepest descent improvement technique.

4.4 Analytical improvement

Once the best position for an IM has been found on the cluster of placed modules using
heuristic boundary search, the analytical improvement through steepest descent is carried
out on all PMs. For this purpose, the slopes of steepest descent for all PMs are determined
as follows:

 𝑆𝑘,𝑥 = 𝜕𝜁
𝜕𝑥𝑘

, 𝑆𝑘,𝑦 = 𝜕𝜁
𝜕𝑦𝑘

 (7)

 |𝑆𝑘| = �𝑆𝑘,𝑥
2 + 𝑆𝑘,𝑦

2 (8)

where Sk,x and Sk,y are the x and y components of slope of the kth PM and |𝑆𝑘| represents the
magnitude of this slope. Following the decreasing order of|𝑆𝑘|, each PM is moved in the
direction of the steepest descent, ignoring any overlaps, until the cost does not decrease
any further. Any overlapping modules, except for the module moved by the analytical
improvement procedure, are placed at superior positions using heuristic boundary search. If
the new layout does not result in an improved cost, the improvement procedure is
backtracked, the module with the next highest slope is moved, and the procedure is
repeated. If the move is successful, the slopes are calculated again and the analytical

125

improvement procedure is repeated. Once all modules have been considered, or no further
improvement is possible, the heuristic boundary search is applied to all modules. This cycle
of analytical improvement through steepest descent and heuristic boundary search is
repeated until no gains are possible.
4.4.1 Adaptivity
The presented algorithm is highly adaptive. First, the algorithm has a constructive phase
and an improvement phase, which are both adaptive. The adaptive nature is controlled by
the parameters of OUH-FLP, which are addressed in this paper. There are only six distinct
parameters: (a) cost matrix, (b) module dimensions, (c) positions of modules, (d) boundary
of placed modules, (e) cost of the layout, and (f) the derivatives of the cost with respect to
the x and y coordinates of the layout.

In the constructive phase, the search space for each incoming module adapts to the
contours of the boundary obtained in the previous iteration. Here the parameter that
controls the algorithm is the boundary of the layout obtained in the previous iteration. The
boundary data is kept in a digital form. The module is guided by the boundary data to move
and search for its own optimal location along the layout boundary. Thus the search space in
the constructive part of the algorithm is adaptive.

In the improvement part of the algorithm, a module is selected for movement, and is
moved in the direction of the steepest descent that is based on the derivatives of the cost
function with respect to the x and y coordinates. Both the selection of the module and its
movement are adaptive. The derivatives represent an estimate of error in the placement of
the module in a given layout. Optimality is achieved when all derivatives are zero and a
layout becomes optimal (at least locally), and no module can be moved to obtain a better
layout. Considering this, we use the derivatives and select the module with the highest
derivative. The module is then moved in the direction of steepest descent, which again is a
function of derivatives. Thus the parameter making the algorithm adaptive is the derivative
representing the error in the placement of a module. It is similar to several applications
where the estimate of error in the previous iteration is used in deciding the move. Such
algorithms are referred to as adaptive algorithms, such as the well-known ‘adaptive
coordinate descent method’ [53] and the ‘adaptive algorithms for deterministic and
stochastic differential equations’ [54].
4.4.2 An example of analytical improvement
This analytical improvement procedure and the subsequent overlap removal are explained
here through the example given in Figure 2. This figure shows a cluster of eight PMs formed
after applying a heuristic boundary search on IM8. Since the best position of IM8 on the
boundary of the cluster has been obtained, analytical improvement through steepest
descent procedure will be applied to each of the PMs. In the example shown in Figure 2, M6
has the highest value of Sk. This module is therefore moved first in its direction of steepest
descent, which is vertically upwards. The optimal position is shown in Figure 2(b), while
ignoring the overlap with M3. To remove any overlap, heuristic boundary search is applied
to M3 for determining its best position on the boundary of the cluster, resulting in the
layout shown in Figure 2(c). It is to be noted that the analytical improvement may result in
an overlap of multiple modules. In such a case, all overlapping modules, except for the
module moved by the analytical improvement procedure, are placed at superior positions
using heuristic boundary search.

4.5 Heuristic improvement

Our heuristic improvement is inspired by the ideas explored in [55]. It involves minor
horizontal and vertical perturbations in the position of each module present in the cluster,
by considering one module at a time. These perturbations are retained only when these
result in cost improvement. Furthermore, to reduce computational complexity, we perform
these heuristic improvements in a slightly greedy manner. For instance, a useful rightward
perturbation would mean ignoring any leftward perturbation or vice versa; although vertical
perturbations are still explored.

126

Figure 2: Example of the application of the analytic improvement procedure

4.6 Final tuning

This final tuning was performed once only at the end of all the iterations of analytical and
heuristic improvements. It involves detecting any super modules, where adjacent modules
perfectly align along one side, either vertically or horizontally. The heuristic improvement
described in Section 4.5 is then applied to such super modules. Our simulation studies
indicate that the overall improvement due to this final tuning was only about 0.1–0.2 per
cent of the cost of the final solution. However, since the computational cost of this simple
fine tuning is almost negligible – in the range of a few milliseconds in total – it is a
worthwhile investment.

5 RESULTS AND DISCUSSIONS

The proposed algorithm was implemented using Matlab, and was used to solve the
benchmark problems listed in Table 1, using a 2.0 GHz quad-core computer running on
Windows 7 with a memory of 8 GB. The data for the benchmark problems can be found in
[56]. Comparison of layouts obtained from the proposed ACS algorithm with the verifiably
best available published results and those obtained from VIP-PLANOPT 10 [57], a popular,
oft-cited commercially available layout planning and optimisation software, are presented
here. Recently, results from VIP-PLANOPT have often been employed as benchmarks for
testing the effectiveness of new algorithms in facility layout planning [1,5,8,29,58-60].
Thus we deem it appropriate to include it in our comparative analysis.

It should be noted here that several solutions published in the literature are without the
necessary data or layout diagram of the claimed superior layout, barring any possibility of
independently authenticating those solutions. We made concerted efforts to obtain
verifiable data for those published solutions by personally communicating with authors who
claimed those good solutions. When no necessary data was available, such published claims
were excluded from our comparative analyses. Table 1 provides a summary of these
comparative analyses, clearly indicating the superiority of the proposed algorithm.

5.1 Summary of results

A summary of results is provided in Table 1. In this table, each row provides a separate
benchmark problem; the columns give the problem ID, the problem size in terms of the
number of modules, the cost function, the best verifiable published result, the best
solution obtained using VIP-PLANOPT 10, and the best solution obtained through the
proposed ACS algorithm. The distance norm used in all the problems is rectilinear, except
for problem numbers 5, 6 and 12, where the squared Euclidean norm has been used, and
problem 13, where the Euclidean norm has been used.

127

It can be seen from Table 1 and from Figures 3 to 8 that the solutions obtained by the
proposed technique are better than all previously published analytical, heuristic,
evolutionary, and memetic algorithms, as well as commercially available layout
optimisation software. Data relevant to the layouts optimised using the proposed ACS
algorithm, such as coordinates of the lower left corners and problem dimensions, etc., are
available from [56].

Table 1: Summary of results

 Problem ID Size
(Modules) Cost Function Best

Published
Best from
PLANOPT ACS

1 OUH-003-Ixx
[57] 3 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 270.00 [1] 270.00 270.00 **

2

OUH-004-Dxx
[61]

4 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 1,510.00 [1] 1,510.00 1,510.00 **

3

OUH-006-Dxx
[61]

6 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 3,314.80 [1] 3,379.00 3,274.00 ***

4

OUH-008-Dxx
[61]

8 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 - 10,468.00 10,468.00 **

5

OUH-008-IMx
[62]

8 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 689.50 [1] 692.50 676.50 ***

6

OUHf-008-EOS
[57]

8 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 757.50 [1] 763.50 762.23 *

7

OUH-010-Dxx
[61]

10 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 19,279.00 [1] 19,162.00 18,488.59 ***

8

OUH-011-IMx
[62]

11 2� � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1
+ 𝐴𝑟𝑒𝑎

2,714.19 [2] 2,730.70 2,626.48 ***

9

OUH-012-Dxx
[61]

12 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 - 43,180.50 41,257.19 ***

10

OUH-020-Mix
[63]

20 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 1,151.40 [3] 1,157.00 1,140.00 ***

11

OUH-020-CHM
[64]

20 ��𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=1

+ 𝐴𝑟𝑒𝑎
𝑁

𝑖=1

 140.00 [1] 128.00 119.00 ***

12

OUH-028-Mix
[63]

28 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 8,640.00 [4] 6,447.25 6,289.64 ***

13

OUH-050-EOS
[57]

50 � � 𝑓𝑖𝑗𝛿𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 71,291.40 [3] 78,224.70 71,151.41 ***

***ACS surpassed the best; **ACS achieved the best; *ACS comparable to the best

Figure 3: Two possible optimal layouts of OUH-003-Ixx

128

Figure 4: Optimal layouts for 4 and 6 module benchmark problems

Figure 5: Optimal layouts for 8 module benchmark problems

Figure 6: Optimal layouts for 10, 11, and 12 module benchmark problems

Figure 7: Optimal layouts for 20 module benchmark problems

129

Figure 8: Optimal layouts for 28 and 50 module benchmark problems

6 CONCLUSION

This paper presents an effective algorithm for solving a special class of FLP that involves
unequal area hard modules in open space. The proposed construction-cum-improvement
algorithm is a novel combination of analytical steepest descent and heuristic cluster
boundary search. We also provide an extensive literature review related to open-space hard
module FLP, along with a compilation of published problems. Test results demonstrate that
the proposed algorithm resulted in significant improvements over published techniques and
commercially available software. This research is expected to renew the interest of the
research community in this important research domain. In future, we want to explore the
idea of a more exhaustive final tuning by considering not only the super modules, but also
their subsets, which may result in more promising solutions. Some fuzzy logic rules for
ruling out less promising placements in the heuristic cluster boundary search may also help
to improve the overall efficiency.

REFERENCES

[1] Ahmad, A.R., Basir, O., Hassanein, K. and Imam, M.H. 2006. An effective module placement
strategy for genetic algorithms based layout design. International Journal of Production
Research, 44, pp. 1545-1567.

[2] Ahmad, A.R. 2005. An intelligent expert system for decision analysis & support in multi-
attribute layout optimization. PhD thesis, University of Waterloo, Canada. Available online:
https://uwspace.uwaterloo.ca/handle/10012/785

[3] Kulturel-Konak, S. and Konak, A. 2013. Linear programming based genetic algorithm for the
unequal area facility layout problem. International Journal of Production Research, 51, pp. 4302-
4324.

[4] Hosseini-Nasab, H. and Emami, L. 2013. A hybrid particle swarm optimisation for dynamic
facility layout problem. International Journal of Production Research, 51, pp. 4325-4335.

[5] Xiao, Y., Seo, Y. and Seo, M. 2013. A two-step heuristic algorithm for layout design of unequal-
sized facilities with input/output points. International Journal of Production Research, 51, pp.
4200-4222.

[6] McKendall, A.R. and Liu, W.-H. 2012. New Tabu search heuristics for the dynamic facility layout
problem. International Journal of Production Research, 50, pp. 867-878.

[7] Yang, C.-L., Chuang, S.-P. and Hsu, T.-S. 2011. A genetic algorithm for dynamic facility planning
in job shop manufacturing. The International Journal of Advanced Manufacturing Technology, 52,
pp. 303-309.

[8] Tasadduq, I.A., Imam, M.H. and Ahmad, A.-R. 2011. A novel metasearch algorithm for facility
layout problems. In: 41st International Conference on Computers & Industrial Engineering.

[9] Anjos, M. F., & Liers, F. 2012. Global approaches for facility layout and VLSI floorplanning. In
Handbook on Semidefinite, Conic and Polynomial Optimization (pp. 849-877). Springer US.

[10] Chung, J. and Tanchoco, J.M.H. 2010. Layout design with hexagonal floor plans and material
flow patterns. International Journal of Production Research, 48, pp. 3407-3428.

130

[11] Moslemipour, G., Lee, T.S. and Rilling, D. 2012. A review of intelligent approaches for designing
dynamic and robust layouts in flexible manufacturing systems. The International Journal of
Advanced Manufacturing Technology, 60, pp. 11-27.

[12] Saif, M.A. and Imam, M.H. 2004. Computer aided layout optimisation model for minimizing
traffic volume. In: Topping, B.H.V. and Soares, C.A.M. (eds) Proceedings of the Fourth
International Conference on Engineering Computational Technology. Paper 49. Stirlingshire, UK:
Civil-Comp Press.

[13] LaPaugh, A.S. 2010. VLSI Layout Algorithms. In: Atallah, M.J. and Blanton, M. (eds) Algorithms
and theory of computation handbook: Special topics and techniques.Chapman and Hall/CRC.

[14] Mir, M. and Imam, M.H. 1996. Analytic annealing for macrocell placement problem. Computers
& Electrical Engineering, 22, pp. 169-177.

[15] Ahmad, A.R., Basir, O., Hassanein, K. and Imam, M.H. 2005. A hierarchical placement strategy
for generating superior layout decision alternatives. International Journal of Operations and
Quantitative Management, 11, pp. 261-280.

[16] Garey, M.R. and Johnson, D.S. 1979. Computers and intractability. NY: W.H. Freeman Press.
[17] Sahni, S. and Gonzalez, T. 1976. P-Complete approximation problems. Journal of the ACM, 23,

pp. 555-565.
[18] Tompkins, J.A., White, J.A., Bozer, Y.A. and Tanchoco, J.M.A. 2010. Facilities planning. New

York: John Wiley.
[19] Mir, M. and Imam, M.H. 1989. Optimal placement for hierarchical VLSI layout design.

Microprocessing and Microprogramming, 25, pp. 177-182.
[20] Mir, M. and Imam, M.H. 1990. A gradient based method for module placement. Computers and

Electrical Engineering, 16, pp. 109-113.
[21] Welgama, P.S. and Gibson, P.R. 1993. A construction algorithm for a machine layout problem

with fixed pick-up and drop-off points. International Journal of Production Research, 31, pp.
2575-2590.

[22] Ramkumar, A.S. and Ponnambalam, S.G.J.N. 2009. A new iterated fast local search heuristic for
solving QAP formulation in facility layout design. Robotics and Computer-Integrated
Manufacturing, 25, pp. 620-629.

[23] James, T. ,Rego, C. and Glover, F. 2009. A cooperative parallel Tabu search algorithm for the
quadratic assignment problem. European Journal of Operational Research, 195, pp. 810-826,.

[24] Misevicius, A. 2003. A modified simulated annealing algorithm for quadratic assignment problem.
Informatica, 14, pp. 497-514.

[25] Talbi, E.G., Roux, O., Fonlupt, C. and Robillard, D. 2001. Parallel ant colonies for quadratic
assignment problem. Future Generation. Comput Syst, 17, pp. 441-449.

[26] Ahuja, R.K., Orlin, J.B. and Tiwari, A. 2000. A greedy genetic algorithm for the quadratic
assignment problem. Computers and Operations Research, 27, pp. 917-934.

[27] Raoot, A.D. and Rakshit, A. 1994. A fuzzy heuristic for the quadratic assignment formulation to
the facility layout problem. International Journal of Production Research, 32, pp. 563-581.

[28] Wong, K.Y. 2010. Applying ant system for solving unequal area facility layout problems.
European Journal of Operational Research, 202, pp. 730-746.

[29] McKendall, A.R. and Hakobyan, A. 2010. Heuristics for the dynamic facility layout problem with
unequal-area departments. European Journal of Operational Research, 201, pp. 171-182.

[30] Scholz, D., Jaehn, F. and Junker, A. 2010. Extensions to STaTS for practical applications of the
facility layout problem. European Journal of Operational Research, 204, pp. 463-472.

[31] Scholz, D., Petrick, A. and Domschke, W. 2009. STaTS: A slicing tree and Tabu search based
heuristic for the unequal area facility layout problem. European Journal of Operational
Research, 197, pp. 166-178.

[32] Sahin, R., Ertogral, K. and Türkbey, O. 2010. A simulated annealing heuristic for the dynamic
layout problem with budget constraint. Computers and Industrial Engineering, 59, pp. 308-313.

[33] Ulutas, B.H. and Islier, A.A. 2009. A clonal selection algorithm for dynamic facility layout
problems. Journal of Manufacturing Systems, 28, pp. 123-131.

[34] Dong, M., Wu, C. and Hou, F. 2009. Shortest path based simulated annealing algorithm for
dynamic facility layout problem under dynamic business environment. Expert Systems with
Applications, 36, pp. 11221-11232.

[35] Imam, M.H. and Mir, M. 1998. Cluster boundary search algorithm for building-block layout
optimization. Advances in Engineering Software, 29, pp. 165-173.

[36] Samarghandi, H., Taabayan, P. and Jahantigh, F.F. 2010. A particle swarm optimization for the
single row facility layout problem. Computers and Industrial Engineering, 58, pp. 529-534.

[37] Anjos, M.F. and Yen, G. 2008. Provably near-optimal solutions for very large single-row facility
layout problems. Optimization Methods and Software, 24, pp. 805-817.

[38] Ficko, M., Balic, J., Brezocnik, M. and Pahole, I. 2010. Solving of floor layout problem in
flexible manufacturing system by genetic algorithms. International Journal of Advanced
Intelligence Paradigms, 2, pp. 354-364.

131

[39] Jankovits, I., Luo, C., Anjos, M.F. and Vannelli, A. 2011. A convex optimisation framework for
the unequal-areas facility layout problem. European Journal of Operational Research, 214, pp.
199-215.

[40] Mir, M. and Imam, M.H. 2001. A hybrid optimization approach for layout design of unequal area
facilities. Computers and Industrial Engineering, 39, pp. 49-63.

[41] Ahmad, A.R. 2014. A new hierarchical placement algorithm for two-dimensional rectangular
layout design. International Journal of Operations and Quantitative Management, 20, pp. 101-
120.

[42] Garey, M.R. and Johnson, D.S. 1979. Computers and intractability: An introduction to the theory
of NP-completeness. San Francisco: W.H. Freeman.

[43] Chandrasekaran, J.B.A.R. 1996. Stock cutting to minimize cutting length. European Journal of
Operational Research, 88, pp. 69-87.

[44] Imam, M.H. and Mir, M. 1993. Automated layout of facilities of unequal areas. Computers &
Industrial Engineering, 24, pp. 355-366.

[45] Tam, K.Y. 1992. A simulated annealing algorithm for allocating space to manufacturing cells. The
International Journal of Production Research, 30, pp. 63-87.

[46] Kado, K. 1995. An investigation of genetic algorithms for facility layout problems. Doctoral
Thesis, University of Edinburgh.

[47] Dunker, T., Radons, G. and Westcamper, E. 2003. A coevolutionary algorithm for a facility
layout problem. International Journal of Production Research, 41, pp. 3479-3500.

[48] Moscato, P. 1989. On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Caltech concurrent computation program, C3P Report, 826, 1989.

[49] Ong, Y.-S., Lim, M.H. and Chen, X. 2010. Memetic computation – past, present & future. IEEE
Computational Intelligence Magazine, 5, pp. 24-31.

[50] Goldberg, D.E. and Voessner, S. 1999. Optimizing global-local search hybrids. In: Genetic and
Evolutionary Computation Conference, pp. 220-228.

[51] Molina, D., Lozano, M., Garcia-Martinez, C. and Herrera, F. 2010. Memetic algorithms for
continuous optimisation based on local search chains. Evolutionary Computation, 18, pp. 27-63.

[52] Drezner, Z. 2008. Extensive experiments with hybrid genetic algorithms for the solution of the
quadratic assignment problem. Computers and Operations Research, 35, pp. 717-736.

[53] Loshchilov, I., Schoenauer, M. and Sebag, M. 2011. Adaptive coordinate descent. In:
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 885-
892.

[54] Moon, K.-S., Szepessy, A., Tempone, R. and Zouraris, G.E. 2003. Convergence rates for
adaptive approximation of ordinary differential equations. Numerische Mathematik, 96, pp. 99-
129.

[55] Imam, M.H. and Tasadduq, I.A. 2010. An extremely simple operation for drastic performance
enhancement of genetic algorithms for engineering design optimization. International Journal of
Engineering Science and Technology, 2, pp. 6630-6645.

[56] Tasadduq, I.A., Imam, M.H. and Ahmad, A.R. 2012. Problem dimensions and best layouts.
Available: http://pami.uwaterloo.ca/pub/rahim/TIA2012.xlsm

[57] VIP-PLANOPT. Engineering Optimization Software. Available: http://www.planopt.com/
[58] Oheba, J. 2012. A new framework considering uncertainty for facility layout problem. Doctoral

thesis, University of Manchester, Manchester, UK. Available online:
 https://www.escholar.manchester.ac.uk/uk-ac-man-scw:181576
[59] Heragu, S.S. 2006. Facilities design. Lincoln: iUniverse.
[60] Tompkins, J.A., White, J.A., Bozer, Y.A. and Tanchoco, J.M.A. 2002. Facilities planning. New

York: John Wiley.
[61] Das, S.K. 1993. A facility layout method for flexible manufacturing systems. Int. J. Prod. Res.,

31, pp. 279-297.
[62] Imam, M.H. and Mir, M. 1989. Nonlinear programming approach to automated topology

optimization. Computer Aided Design, 21, pp. 107-115.
[63] Mir, M. and Imam, M.H. 1992. Topology optimization of arbitrary-size blocks using a bivariate

formulation. Computer Aided Design, 24, pp. 556-564.
[64] Cohoon, J.P., Hegde, S.U., Martin, W.N. and Richards, D.S. 1991. Distributed genetic

algorithms for the floorplan design problem. IEEE Trans. CAD, 10, pp. 483-492.

132

APPENDIX A: Pseudo-Code for the Adaptive Cluster Boundary Search (ACS) algorithm

Let,
𝜁 = Cost of the objective function 𝜉𝐶𝑀 = Set of candidate modules
TM = Total number of modules 𝜉𝑃𝑀 = Set of placed modules with

locations
IM = Incoming module 𝜉𝑃𝑀𝑇 = Temporary Set of PMs
PM = Placed module 𝜉𝑃𝑀𝑂 = Set of PMs with possible overlap(s)

TPM = Total number of PMs 𝜉𝑃𝑀𝑆 = Set of PMs with slopes in descending order
(𝐼𝑀, 𝑥𝐼𝑀, 𝑦𝐼𝑀)

= Incoming module placed at (𝑥𝐼𝑀,𝑦𝐼𝑀) 𝜒,𝜋 = A 𝑃𝑀𝜒 at whose corners an 𝐼𝑀𝜋 or

another 𝑃𝑀𝜋 is being placed
TPMO = Total number of PMs with possible

overlap(s)
ε = A small positive number

/Initialization/

Set TPM = 0, 𝜁 = ∞
Select 𝐼𝑀 𝜖 𝜉𝐶𝑀
Place IM at (0, 0)
Add (𝐼𝑀, 0,0) to 𝜉𝑃𝑀
Increment TPM

Main ()

For p = 2 to TM
Select 𝐼𝑀 𝜖 𝜉𝐶𝑀

 𝜋 = 𝑝
Call BoundarySearch ()
Add (𝐼𝑀, 𝑥𝐼𝑀,𝑦𝐼𝑀) to 𝜉𝑃𝑀
Increment TPM
Call ComputeCost ()
𝜁 = 𝜁𝑇𝑃𝑀
Call SteepestDescent ()
For q = 1 to TPM
 𝜋 = 𝑞

Call BoundarySearch ()
Call HeuristicImpr ()

BoundarySearch ()

For k = 1 to TPM
 𝜒 = 𝑘
 Call ModulePlacement ()
 If 𝜁𝑀𝑖𝑛 < 𝜁
 𝜁 = 𝜁𝑀𝑖𝑛
 𝜉𝑃𝑀 = 𝜉𝑃𝑀𝑇

ModulePlacement ()
 Set 𝜁𝑀𝑖𝑛= ∞, 𝜉𝑃𝑀𝑇 = 𝜉𝑃𝑀
 For i = 1 to 4
 For j = 1 to 4
 If i ≠ j: Place ith corner of 𝐼𝑀𝜋/𝑃𝑀𝜋 at jth corner of 𝑃𝑀𝜒
 Call ComputeCost ()
 If 𝜁𝑇𝑃𝑀 < 𝜁𝑀𝑖𝑛
 𝜁𝑀𝑖𝑛 = 𝜁𝑇𝑃𝑀
 Save current module placements as 𝜉𝑃𝑀𝑇
 Return 𝜁𝑀𝑖𝑛
 Return 𝜉𝑃𝑀𝑇

SteepestDescent ()
 For k = 1 to TPM
 Compute 𝑆𝑘,𝑥 = 𝜕�

𝜕𝑥𝑘
, 𝑆𝑘,𝑦 = 𝜕�

𝜕𝑦𝑘

 Compute 𝑆[𝑘] = �𝑆𝑘,𝑥
2 + 𝑆𝑘,𝑦

2

 Sort 𝜉𝑃𝑀 by S in descending order and save in 𝜉𝑃𝑀𝑆
𝜉𝑃𝑀𝑇 = 𝜉𝑃𝑀

133

For i = 1 to TPM
Do while 𝜁𝑇𝑃𝑀 < 𝜁

Move 𝑃𝑀𝑖 𝜖 𝜉𝑃𝑀𝑆 in the direction of S[i]
Call ComputeCost ()

Call CheckOverlaps ()
If TPMO ≠ Ø

Call RemoveOverlaps ()
Call ComputeCost ()
Save layout in 𝜉𝑃𝑀𝑇
If 𝜁𝑇𝑃𝑀 < 𝜁

𝜉𝑃𝑀 = 𝜉𝑃𝑀𝑇
𝜁 = 𝜁𝑇𝑃𝑀

HeuristicImpr ()

For i = 1 to 𝜋
For j = 1 to 4 / j = 1: positive x; j = 2: negative x; j = 3: positive y; j = 4: negative y /

Do while 𝜁𝑇𝑃𝑀 < 𝜁
Move 𝑃𝑀𝑖 in direction “j” by ε
Call ComputeCost ()

Save layout in 𝜉𝑃𝑀𝑇
If 𝜁𝑇𝑃𝑀 < 𝜁

𝜉𝑃𝑀 = 𝜉𝑃𝑀𝑇
𝜁 = 𝜁𝑇𝑃𝑀

CheckOverlaps ()

For i = 1 to TPM
For j = i+1 to TPM

If overlap
Add module to 𝜉𝑃𝑀𝑂
Increment TPMO

RemoveOverlaps ()

While TPMO > 0
Select first module in 𝜉𝑃𝑀𝑂
𝜋 = 1
Call BoundarySearch ()
Decrement TPMO
Update 𝜉𝑃𝑀𝑂

ComputeCost ()
 Set 𝜁𝑇𝑃𝑀 = 0
 For i = 1 to TPM – 1
 For j = (i + 1) to TPM
 Compute 𝜁𝑇𝑃𝑀 = 𝜁𝑇𝑃𝑀 + 𝑓𝑖𝑗𝛿𝑖𝑗
 Return 𝜁𝑇𝑃𝑀

134

	A HYBRID ALGORITHM FOR OPTIMISING FACILITY LAYOUT
	I.A. Tasadduq10F , M.H. Imam2 & A. Ahmad3

	ABSTRACT
	opsomming
	1 INTRODUCTION
	2 LITERATURE SURVEY
	3 PROBLEM STATEMENT
	4 PROPOSED ALGORITHM
	4.1 Initialisation
	4.2 Main algorithm
	4.3 Heuristic boundary search
	4.4 Analytical improvement
	4.4.1 Adaptivity
	4.4.2 An example of analytical improvement

	4.5 Heuristic improvement
	4.6 Final tuning

	5 RESULTS AND DISCUSSIONS
	5.1 Summary of results

	6 CONCLUSION

